clackamas watershed resilience - clackamas river water

Post on 23-Oct-2021

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Clackamas Watershed Resilience Phase I Report

November 2018

For more info. contact: Beth Gilden at ISS (bgilden@pdx.edu) or Kim Swan at Clackamas River Water Providers

(kims@clackamasproviders.org)

2

Acknowledgements ThisreportwasresearchedandproducedwithsupportfromtheInstituteforSustainableSolutions(ISS)incollaborationwithTheClackamasRiverWaterProvidersandWaterEnvironmentServices.

Contents

Executive Summary 3

Stakeholder Engagement Around Water Quality And Quantity In The Clackamas River Watershed 7

Characterizing Precipitation In The Clackamas River Watershed 16

Drivers Of Water Quality In The Clackamas River Watershed 19

Flow Extremes In The Clackamas River Watershed 23

Fire Risk In The Clackamas River Watershed 25

TheClackamasRiverWaterProvidersisacoalitionofthemunicipalwaterprovidersthatgettheirdrinkingwaterfromtheClackamasriverwhoareworkingtogetheronwaterresourceissues.

TheInstituteforSustainableSolutionsworkstomatchthepassionandexpertiseofPortlandStateUniversityfacultyandstudentswiththeexperienceandneedsofcommunitygroups,governmentagencies,andbusinessestodeveloppracticalsolutionsformoreequitable,livable,sustainablecitiesandregions.

TheWaterEnvironmentServicespartnershipprovidessurfacewatermanagementandsanitarysewerserviceformorethan165,000customersinHappyValley,Milwaukie,Gladstone,OregonCity,WestLinn,JohnsonCity,Hoodland,Boring,Fischer’sForestParkandunincorporatedClackamasCounty.

3

Clackamas Watershed Resilience Project Phase I report

Executive Summary

Introduction TheClackamasRiverprovidesdrinkingwatertoover300,000peopleinClackamasandWashingtonCounties,aswellasrecreationopportunities,andirrigationforfarms.LikeotherareasofthePacificNorthwest,theClackamasRiverWatershed(CW)isvulnerabletochangesinclimatethatcouldimpactwatersuppliesandthenaturalandhumansystemsthatdependonthem.Increasesinwinterflowanddecreasesinsummerflowareparticularlylikelytohavenegativeimpactsonwaterresourcesandwater-dependentindustriesandecosystems.Increasedfrequencyofhigh-impactatmosphericriverrainfallevents,coupledwithsea-levelriseeffectsonthemainstemWillametteRiverareanincreasedthreattotheresiliencyofthewastewaterandstormwaterinfrastructureintheCW.Increasedstormwaterrunoffmayalsoaddmorenon-pointsourcepollutantstotheClackamasRiver,andhotter,driersummerscouldleadtoincreasedwaterdemandsandmeanmoreforestfiresthathavecompoundingimpactsonwaterquantityandquality.

TheextenttowhichClackamaswaterresourcesprovidedbythewatershedaresusceptibletoimpactsfromclimatechangeintothemidandlate21stcenturyisunknown.PreviousresearchshowsthatstreamflowintheCWismoresensitivetochangesintemperaturethantochangesinprecipitation(GravesandChang2007,Jungetal.2012).Aholisticunderstandingofrecentandhistoricaltrendsinclimate,hydrology,andmanagementoftheCWcanhelpwaterandland

Project Goal

The goal of the Clackamas Watershed Resilience project is to help project partners understand local impacts of climate change on water quality and quantity in the region; and develop strategies to sustain a healthy,

reliable water source.

Project Team Portland State University Dr. Max Nielsen-Pincus, Environmental

Science and Management Dr. Heejun Chang, Geography Dr. Andres Holz, Geography Dr. Paul Loikith, Geography Dr. Stefan Talke, Civil and Environmental

Engineering Erin Upton, Student, Environmental Science

and Management Christina Aragon, Student, Geography Junjie Chen, Student, Geography Jonathan Rappaport, Student, Civil

Engineering Beth Gilden, Project Manager, Institute for

Sustainable Solutions Community Partners Kim Swan, Clackamas River Water Providers Matt Glazewski, Water Environment Services

4

managersinpreparingforandrespondingtochanginghumanandnaturalconditions.Thisreportdescribesthefirstphaseofamulti-phaseappliedresearchprojectdevelopedinpartnershipbetweenPortlandStateUniversity(PSU)andpartnersattheClackamasRiverWaterProviders(CRWP)andWaterEnvironmentServices(WES)ofClackamasCountytoinformstakeholderunderstandingoftheClackamasRiverWatershedresiliencetoclimatevariabilityandchange.

CRWPrepresents8waterprovidersonmattersofcollectiveinterestincludingwatershedprotectionandeducation.ManyofthesamecommunitiesareprovidedsanitarysewerandstormwatermanagementservicesintheurbanizedareasofNorthClackamasCountybyWES.WESprovideswholesalesanitarysewerservicetothecitiesofWestLinn,Gladstone,OregonCity,JohnsonCity,andMilwaukie.Stormwatermanagementservice,inadditiontosanitarysewerservice,isprovidedtotheCityofHappyValley,aswellasalargeurbanizedunincorporatedareaofClackamasCounty.

TheoutcomesoftheproposedprojectwillequiptheCRWP,WES,andotherstakeholdersintheCWwiththefoundationsfordevelopingaresilienceplanbyidentifyingstrategiesthatmaketheCWlesssusceptibletodisturbanceeventsorthatpromotequicksystemrecoveryfollowingadisturbance.Adaptationstrategiesmayincludetacticsthataddressthebuiltenvironment,waterinfrastructure,greeninfrastructure,ecosystemservices,riparianbuffers,floodplainconnectivity,landuseplanning,alternativewatersources,andcollaborationacrossstakeholdersineachoftheseareas.

Project Team Process and Scope ThisreportdescribesresearchwhichwascompletedfromMarch2017-June2018focusedonstakeholderinterestsinresilience,aswellashistoricalchangesinclimate,hydrology,fire,andresourcemanagementintheCW.Theobjectivesoftheprojectwereto:(1)helpclarifytheextenttowhichthequantity,quality,andtimingofwaterresourcesprovidedbytheCWhavechangedinrecenthistoryand(2)buildaframeworkforunderstandinghowsusceptibleCWwaterresourcesaretotheimpactsfromclimatechangeintothemidandlate21stcentury.

ThefindingsdescribedheredetailsomeofthesystemsthatdrivewaterquantityandqualityintheCWandwillinformmodelingexercisesinthenextphaseofresearchwhichwillconsiderclimatechangescenarios,futurelanduses,andadaptationstrategies.

ThePhaseIprojectteamincludedrepresentativesfromCRWP,WES,facultyandgraduatestudentsfromPortlandStateUniversity,andaprojectmanagerfromtheInstituteforSustainableSolutions.Theprojectteammetmonthlytodiscussresearchquestions,shareresearchupdatesandfindings,andtheimplicationsoftheresults.Researchfocusedon:

- Stakeholderconcerns:Inadditiontoprimaryprojectpartners,CRWPandWES,theteaminterviewedfifteenadditionalgovernmentalandnon-governmentalstakeholdersintheCWtohelpunderstandthemajorareasofconcernaroundwateravailabilityandquality(Chapter1).

- Localprecipitationpatterns:Theteamfocusedoncharacterizinglocalprecipitationpatternsandchangesinprecipitationpatternsfrom1980to2016.Researchersdescribeddriversof

5

extremeprecipitationeventsthatcouldimpactwaterquality,flooding,andsnowpack(Chapter2).

- Turbidity:Theteamstudiedthedriversofturbiditytobetterunderstandhowwaterqualitymaybeimpactedbychangesinprecipitationaswellaslanduses(Chapter3).

- Flowpatternsandflood:Theteamlookedathistoricflowpatternstounderstandtheinfluenceofsnowmeltandextremeprecipitationonflow,aswellastheriskoffloodingasaresultofseasonalchangesinflowandsealevelrise(Chapter4).

- Firerisk:TheteamconsideredwhatclimatefactorsdrivewildfirerisksintheCWandstudiedpatternssurroundinghistoricwildfires(Chapter5).

Clackamas River Watershed Resilience Project Key Findings Followingaresomeofthekeyfindingsfromthefirstphaseofwork.Amoredetailedexplanationofthesefindingsisincludedinthelargerreport.

1. Stakeholdersareinterestedinmoreengagementaroundclimateresilienceandadaptationstrategies.Locallyrelevantscientificinformationisneededtohelpfacilitatefurtherstakeholderengagementonresilience.Majorareasconcernforstakeholdersinclude:developmentandplanningintheurbanizingareasoftheCW,pesticideandchemicaluse,wildfireriskstotheCW,septicsystemfailures,balancingwatersupplyandconsumption.

2. PrecipitationhasanimpactonbothwaterquantityandqualityintheCW.Thetimingandamountofsnowimpactswaterquantity,andextremeprecipitationeventshaveanimpactonwaterquality.Observedtrendsdonotshowasignificantchangeinannualprecipitation(2015,alowprecipitationyear,wasamajoroutlier);however,giventheimportanceofthetimingandfrequencyofextremerainfallevents(especiallyatmosphericrivers),itisimportanttocontinuemonitoringprecipitationpatternsincludingseasonalchangeandsnowmelttimingintheCW.

3. WaterqualityintheCWisaffectedbylanduses.ObservationsofthetimingofprecipitationandturbidityacrosstheCWsuggestthaturbanizationimpactswaterqualitybyreducingtheresponsetimebetweenprecipitationandincreasedturbidity.Increasedurbanizationmayhaveamoresignificantimpactonwaterqualityinthefutureifcombinedwithincreasesinthefrequencyofextremeprecipitation.

4. Riverflowappearstohaveshiftedtoamorerain-drivensystem,withgreaterwinterflowsandlesssnow-meltdrivenflows,followingtrendsalsoobservedintheColumbiaRiver(Naik&Jay2005).Ashifttoalargerwinterhydrographbutlesssummertimeflowcouldbeasignificantconcern,ifcombinedwithwarmersummersandlargersummertimewaterdemand(duetodevelopment)intheCW.

5. WildfireintheCWisdrivenbyhighdroughtconditionsobserveduptoonemonthbeforeignitionusuallyinJuneandJuly,andthedrynessoftheatmosphereintheonetothreedaysimmediatelyprecedingwhenfiresignite.Theobservationssuggestthatahumidaugustisanimportantcontrolonfireactivity,sothetimingofprecipitationandwateravailabilityareimportantindeterminingthefuturerisksofwildfire.

6

Next Steps ThisprojectwillcontinuethroughJuneof2020.ThePhaseIIcollaborativeresearchteamwillcontinuetomeetregularly,andfocusonthelargerprojectgoalofhelpprojectpartnersunderstandlocalimpactsofclimatechangeonwaterqualityandquantityintheregion;anddevelopstrategiestosustainahealthy,reliablewatersource.PhaseIIwillintegratePhaseIresultsintoclimatechangescenarios,inordertoprovidemoredetailedfeedbackaboutpredictedfuturechangesinclimatethatwillaffectwaterresources.TheteamwillalsoexpandtheirfocustoincludestrategyrecommendationsforCWPandWESbyhostingworkshopswithstakeholdersaimedatfosteringdialoguearoundlocallyrelevantscientificinformationonclimatechangeandincreasingthecapacitytodevelopresilienceandadaptationstrategiesintheCW.

7

Stakeholder engagement around water quality and quantity in the Clackamas River Watershed

Research Questions Thepurposeofstakeholderengagementforthisprojectwastohelptheprojectteamandpartnersbetterunderstand(1)whatrisksandvulnerabilitiestowaterresourcesintheClackamasRiverWatershed(CRW)areperceivedbystakeholders,(2)whatarethepotentialopportunitiesandbarrierstoadaptingtocurrentandfuturechallenges,and(3)howmuchstakeholderengagementandpoliticalwillexiststoadvanceadaptationefforts.

Research Approach ErinUptoninterviewedstaffandrepresentativesfromCRWstakeholderagenciesandorganizationstobetterunderstandperceptionsonthemeaningandfeasibilityofadaptationandresiliencetoclimatechangeintheCRW.Participantswereselectedwithassistancefromtheprojectpartners,theClackamasRiverWaterProvidersandClackamasCountyWaterandEnvironmentServices.Interviewswereconductedinperson,recorded,transcribed,andthematicallycodedusingAtlas.tisoftware.Seventeenintervieweesfrom15agencies/organizationsincluded:

Federal government: USFSMountHoodNationalForest,DistrictRanger

State government: DepartmentofEnvironmentalQuality,BasinCoordinatorOregonDepartmentofFishandWildlife,FishBiologistOregonDepartmentofAgriculture,WaterQualitySpecialist

County government: WaterEnvironmentServices,PolicyAnalystCountyParksandForest,Parks&ForestManagerCountyAdministration,AssistantCountyAdministratorDepartmentofPlanning,DirectorofPlanningCountyDisasterManagement,DirectorofDisasterManagementClackamasSoilandWaterConservationDistrict,GeneralManager,RiparianSpecialist

Municipal government CityofHappyValleyPlanningDepartment,PlanningServicesManagerSunriseWaterDistrict(HappyValley),Engineer

County-wide organizations ClackamasRiverWaterProviders,WaterResourceManagerClackamasRiverBasinCouncil,ExecutiveDirector

Private PortlandGeneralElectric,ProjectManager,EnvironmentalComplianceandLicensing

8

Theinterviewsresultedinover220pagesoftranscripts,whichwerethencoded1toallowtheresearcherstobetterunderstand,link,andmakeconclusionsaboutthemostimportantissuesthatstakeholdersmentionedintheinterviews.Thetranscriptswerecodedusingthefollowingmajorcategories:threats,stakeholders,andadaptation.Eachcategorywasthenthematicallybrokenintosubcategoriesbasedonthecontentoftheinterviews(resultsspecifictoeachsubcategorylistedabovearepresentedasAppendix1tothisreport):

Threats WaterqualityWaterquantityDevelopment/urbanization/populationgrowthClimatechangeOthersAvarietyof“Keepsmeupatnight”scenarios

Stakeholders WhoisengagedWhoismissingPoliticalwillMessagingandoutreach

Adaptation Barriers Opportunities Appropriate scale

Findings Severalcross-cuttingthemesemergedfromthestakeholderinterviewsrelatedtoourresearchquestionsaboutclimateadaptationandresilienceintheCRW.Thefindingsreportedbelowhighlightthefollowingfourcross-cuttingthemes:

1. Partnerships and engagement: stakeholders want more engagement around climate adaptation and water resource resilience planning for the CRW.

2. Development and climate change: stakeholders are concerned about increased development impacts in light of unknown future climate change impacts.

3. Increased education for elected officials: Stakeholders believe public and elected officials need more education about land use impacts on water resources.

4. Stakeholders need translated and relevant science to better inform management and policy decision-making.

1OnetranscriptwascodedbybothUptonandNielsen-Pincusandcodingresultswerediscussedtoensurereliabilityofinterpretations.Uptoncodedthetranscriptsfromtheremaining16interviews

9

OurinterviewguideaskedavarietyofquestionsaboutthethreatsandvulnerabilitiestowaterresourcesintheCRWinthecontextofclimatechange,whoischampioningthesefourthemes,andhowcapableweareofovercomingthem.Participantsnotedawidearrayofthreatsandvulnerabilitiesatthenexusofwaterresourcemanagementandclimatechange,whichweregenerallyorganizedalongthelinesofwaterqualityandwaterquantity;thematicresultsaredescribedinAppendix1.Thefollowingresultshighlightsomeofthecross-cuttingthemesweobservedfromsynthesizingtheinterviewconversations.ManyofthethematictopicshighlightedbyintervieweesweresimilartothoseenvisionedbytheoriginalISSsponsoredresearchteam.TheinterviewshelpedconfirmthevalidityofresearchquestionsposedbythebroaderISSteam,identifiedanetworkofindividualsinterestedinthesetopics,andillustratedsomeideasonhowstakeholdersintheCRWcanovercomebarrierstomanagingfutureuncertainties.

1. Partnerships and engagement “…ifyouthinkofthethreatstowater,there'salotmorecoordinationthatcouldbedoneintermsofthescienceanditsapplication…[to]addresstheuncertaintiesandtherealitiesoflandmanagement.”

ThemostcommonlymentionedopportunitytoaddressthreatstotheCRW’swaterqualityandwaterquantitywastoincreaseandenhancepartnershipsrelatedtowatershedresourcemanagement.Beyondthethreatofclimatechange,stakeholdersdiscussedtheimportanceofresilienceplanningacrossjurisdictionsandorganizationstoaddressthearrayofpotentialthreatstowaterresourcesintheCRW.Asoneparticipantstatedinrelationtotheneedforincreasedengagement:“Everybodyisjustspreadtoothin,butIthinktheopportunityandthebenefit[effectivepartnerships]createwouldoverwhelmthat.”Someparticipantspointedtotheimportanceofexistingmultiplestakeholderpartnerships,liketheClackamasStewardshipPartnersandtheClackamasRiverWaterProviders,whichalreadylookattheCRWmoreholistically.Participantsindicatedthatthesetypesofpartnershipscouldhelpparticipatingagenciesandorganizationstothinkmorestrategicallyaboutresources,priorities,andcoordinatedplanning.Oneparticipantsaid,thesetypesofpartnerships“breakdownthesilosandapplyknowledgeorresearch…”fromonearenatothebroadereffort.Inadditiontohighlightingexistingpartnerships,participantspointedtowardsfutureopportunities.Forexample,oneparticipantindicatedhowacross-departmentalClackamasCountyclimateactionplanwouldallowmoreintegratedplanning,whilealsolinkingtostateandinternationalclimategoals.AnothernotedopportunitywasClackamasCounty’sbiennialhazardassessments,whichcouldintegrateclimateadaptationandresilienceplanningifhazardassessmentsweretoidentifyclimaterelatedhazardsandrisks.Asapartnershipengagementopportunity,hazardassessmentsbringmanystakeholderstogether,includingrepresentativesfromwaterproviders,fire,law,publichealth,socialservicesandothers.Participantsnotedboththeopportunityandthechallengeoffacilitatingtheseefforts.“Timeisstretchedtoothin”saidoneparticipant,and“Wedosomuchcommunicationnowviaemailandphone”thattherearelimitstothebenefitstheycouldgetfrom“sittingdownandtalkingthroughtheissues”.Anyadditionalefforttobringstakeholderstogetheraroundtheseissueswillneedtobetimeandresourceefficienttoensureaworthwhileeffort.

10

2. Development and climate change: “Justplainolddevelopmentandthevariouspeopleandentitiesthatareinvolvedthataren'tnecessarilycoordinatingonlong-termplanningandlongertermhydrologicimpactsof

development.”

Theurbanizedareasofthewatershedaregrowinginpopulation.MuchoftheareaslatedtobedevelopedunderthePortlandMetropolitanregion’sexistingurbangrowthboundaryandareasconsideredsuitableforfuturedevelopment(urbanreserves)areintheCRW.Populationgrowthanddevelopmentwillhaveanumberofimpactsonthewatershedandparticipantsrepeatedlybroughttheseissuestothefrontofourconversationsaboutclimatechange.Asoneparticipantexpressed:“Youcan’tjustkeepaddingtensofthousandsofpeopleayearintoabasinandnothaveithavesomeeffect.”

Participantsidentifiedconcernsaboutincreasedimpervioussurfaces,andlimitationsforwastewateranddrinkingwaterinfrastructure,inadditiontorecreationaloveruseoftheriverandforestsintheupperwatershed.First,manyparticipantsnotedthatincreaseddevelopmenttypicallyresultsinmoreimpervioussurfacesthatcontributetomore“flashy”hydrologiceventsthatincreasepollutantloadingandturbidityintheClackamasRiver.Developmentcanalsothreatenfloodplainconnectivity,furtherlimitingthecapacityofthehydrologicsystemtoabsorbrainfallevents.Additionally,someparticipantsindicatedthatcurrentwastewaterinfrastructurecannothandleincreaseddevelopmentinallserviceareas,andwillresultinanincreaseinthenumberofhomesonsepticsystems.Thisruralgrowthpresentsfurtherrisksduetothepotentialforindividualsepticsystemfailuresandrelatedwatercontamination.Participantswereparticularlyconcernedabouthowpotentialimpactsofdevelopmentcouldbecomecompoundedbyclimatechange.

Participantsmadetheconnectionbetweendevelopmentandclimatechange.Climatemodelsindicatedthepotentialforanincreasingnumberofhighimpactrainfallevents,whichcouldfurtherincreasethepressureonwastewaterinfrastructure.Concernsalsoexistregardingdrinkingwatershortagesasdemandriseswithpopulationgrowth,andclimatechangemayaffectthetimingorthequantityofwaterproducedbytheCRW.Finally,severalparticipantsalsonotedthatanincreasingpopulationalsoresultsinincreasingrecreationintheupperwatershed.AssomeparticipantsindicatedtheCRWisalready“lovedtodeath”andmorepeoplewillfurtherexacerbatethatchallenge.

Asindicatedabove,manyparticipantsperceivedclimatechangeasathreattotheCRWduetoanumberofrelatedfactors.Forexample,someparticipantshighlightedhowchangingandvariableweatherpatternswouldinteractwithpopulationdemandsforservices.Participantsnotedconcernoverlonger,hotter,anddriersummers;changesinthefrequencyandintensityofprecipitationevents,andreducedsnowpackleadingtoearlierandlowerlowsummerflows.ParticipantsnotedthattheimpactsofchangingandvariableweatherpatternsonmanagementoftheCRWcouldaffectwateravailabilityformunicipaluse,irrigation,andfishhabitat.Anothercommonconcernwasoverbigstormevents.Intensestormscancausebigger“firstflush”events,washingpollutantsfromagriculturalandurbanareasintowaterwaysresultinginincreaseddisinfectionbi-productsindrinkingwater.Oneparticipanthighlightedthatcurrentinfrastructurestrugglestohandle“whatis

11

comingdownthepike”…and“withmoreandmorepeoplemovinghereandmoreandmoredevelopmentinourserviceareacombinedwithhigherimpactrainfallevents,there'salotofthingsthatarecomingatus…”Bigstormeventscanalsoimpacthydroelectricdaminfrastructure.Otherclimaterelatedconcernsincluded(1)anincreaseinwildfirehazardduetolessresilientforeststhataremoresusceptibletopestsanddrought,(2)increasedalgaebloomsthatcompromisedrinkingwaterduetodeclinesinwaterquality,(3)pooroceanconditionsfurtherimpactinganadromousfishrunsintheClackamasRiver,and(4)theriskofsealevelriseincreasingfloodrisktolow-lyingwastewaterinfrastructureneartheconfluenceoftheClackamasandWillametteRivers.

3. Need for improved public and elected official education about land use impacts on water resources. “Once we adopted our drinking water protection plan, it became clear very quickly that there's a huge outreach component in the watershed… We have two audiences. One [is] our customers,

because it's their water dollars that are funding our programs upriver. And then our other audience is the people who are actually in the watershed, in that their land-use can impact our

drinking water source.”

AlthoughintervieweesreadilyidentifiedanarrayofagenciesandorganizationsthatarechampioningwaystoaddressthethreatstheyperceivedtotheCRW(Table1),participantselaboratedinmoredepthabouttheneedforimprovededucationofthepublicandofelectedofficials.Specifically,manyparticipantsaddressedlinksbetweenlandmanagementandimpactsondrinkingwater.Participantsdiscussedtheneedforpublicmessagingandeducationaboutpesticides,agriculturalpollution,firedanger,wastemanagementanddumping,septicsystemfailures,andwaterconsumption.Asthepopulationoftheregioncontinuestogrow,participantsstressedtheneedforongoingpublicawareness,education,andoutreach.SomeorganizationsandprogramsintheCRWhaveoutreachandeducationasacorepartoftheirmission,includingtheClackamasSoilandWaterConservationDistrict,theClackamasRiverBasinCouncil,andtheClackamasRiverWaterProviders.Asoneparticipantnoted,thechallengeisaboutmobilizingtheconnectionmanypeoplehavetotheClackamasRiver:“Howdoyoueducatepeoplebetter,[sothey]knowhowtodealwiththeissues[i.e.threats]?Wehaveagreatopportunity,Ithink,inthePortlandMetroAreatohavealargevolunteerbaseandalotofpeoplethatareinterestedinseeingtheriverprotected.Theyjustdon'tknowwhattodo.”

Inadditiontopubliceducation,manyparticipantsalsonotedaneedtoeducateelectedofficialsaboutwatermanagementandlong-termplanningneeds.SeveralparticipantsnotedhowelectionresultscanleadtopendulumswingsinpoliticalvaluesthatimpacttheCRW,andthusparticipantsfurtherstressedtheneedtocontinuetoeducateelectedofficialsaboutvulnerabilitiestowaterresourcesandplanningandmanagementnecessities.OthersnotedthatOregon’snearly50yearoldsystemoflanduseplanninghasresultedinamoregeneralacceptanceofenvironmentalregulations,butthatdevelopmentofnewareas,likeHappyValley,createadesireforgreaterlocalcontroloverutilities,parks,andotherservicesthatcanimpactthehealthofwaterresources.Manyrespondentsalsohighlightedexistingandanticipatedreductionstofederalandstategovernmentagencybudgets.Oregon’staxsystem,notedoneparticipant,resultsinpublicofficialsputtingleviesinfrontofvoterstopayfortheservicesoflocalgovernment.Thiscontributestotheneedfor

12

educationofboththepublicandelectedofficialsifchampionsintheCRWwantthepoliticalwilltoaddressthethreatstowaterresourcemanagementfromclimatechangeoranyothersource.

Oneparticipantputtheissueofpoliticaldynamicsasastraightforwardissuethatpredictablyimpactswaterresourcemanagement.Utilitieshavecitycouncilsorelectedboardsthatgovernthemand“youareconstantlyteachingyourelectedofficialswhatyoudoandhowyoudoit,andhowweplanourmasterplanningintothefuture,andhowweoutlinetheimprovementswe'regoingtomakeovertime.”Theparticipantwentontonotethatthediscussionsaboutwaterresourcemanagementeventuallyturnbacktofinancialresources,and“whatdoyouchargeforsystemdevelopmentchargesascommunitiesaregrowing.Yougetnewpeopleeveryyear,youjusthavetocontinue[to]educatethem.

13

Table 1. Organizational mentions of agents of water resource management in the Clackamas River Watershed (bold indicates interviewee organizations; numbers indicate the number of mentions across the 15 interviews.

Othernotablementionsincludedlocalcities(6),thetimberindustry(2),tribes(2),andtheagriculturalcommunity(1),butdidnotidentifyspecificorganization.

Organizations # of mentions

Local Government ClackamasSoil&WaterConservationDistrict

10

ClackamasWaterEnvironmentServices

8

Metro 7ClackamasCountyPlanning 5ClackamasCountySheriff 4ClackamasCountyParksandForests 3ClackCountyRoadMaintenance 3ClackCountyAdministrators 2ClackamasCountyPublicHealth 2ClackamasPesticideProgram 2ClackamasCountyDisasterPlanning 1ClackCountyOfficeofSustainability 1CountyBoardofCommissioners 1ClackamasCountySocialServices 1

Federal Government (16) USForestService-MtHoodNationalForest

USGeologicalService 6EnvironmentalProtectionAgency 4NaturalResourceConservationService 2NationalWeatherService 1FederalEnergyRegulatoryCommission

1

USForestService-PNWResearchStation

1

Intergovernmental Agencies (19) 1

ClackamasRiverWaterProviders 6RegionalWaterConsortium 4Non-GovernmentalOrganizations(42) 2OregonAssociationofCleanWaterAgencies

1

PNWCleanWaterAssociation 1

Organizations # of mentions

Universities (5) OregonStateUniversity 2PortlandStateUniversity 2NorthWillametteExtensionService 1

Non-Governmental Organizations (42) ClackamasRiverBasinCouncil 18ClackamasStewardshipPartners 7ClackamasRiverEnforcement&EcologyWorkgroup

3

RockyMountainElkFoundation 1OregonHuntersAssociation 1ClackamasPartners 1FriendsofTrees 1RiverKeepers 1ArborDayFoundation 1TroutUnlimited 1NWORJetBoatersAssociation 1BARK 1OregonEnvironmentalCouncil 1OregonAssociationofSoilandWaterConservationDistricts

1

OregonWild 1ENRGYKayaking 1NetworkofOregonWatershedCouncils

1

Private Sector Business Organizations (8) PortlandGeneralElectric 8StateGovernment(39)OregonDeptofEnvironmentalQuality

17

OregonDeptofFishandWildlife 6OregonDeptofAgriculture 5OregonDeptofWaterResources 3OregonWatershedEnhancementBoard

3

OregonHealthAuthority 2OregonDeptofStateLands 2OregonDeptofForestry 1

14

4. Presenting translatable science to better inform management and policy decisions. “Ideally if we had a better understanding in regards to climate change that might adapt some of the ways

that we look at our water system planning in the future.” Uncertaintywasacommonrefrainacrossinterviews.Forexample,participantstalkedaboutfloodplainandriparianarearegulation.Ononehand,thereisresistancetoenactnewregulationthatwouldprotectfloodplainfunctions,butontheotherhandcurrentlitigationclaimsthattheFederalEmergencyManagementAgency’sfloodinsuranceprogramisviolatingtheEndangeredSpeciesAct,andcouldresultinfederallymandatedfloodplainprotectionatthepotentialexpenseofagriculturalproductivityordevelopment.Inanotherexample,aparticipantnotedthatthecountyiscurrentlydevelopingaproposalforacounty-widesurfacewaterdistricttointegrateplanningandmanagementaroundwaterinacomprehensiveway,whichcouldimpactdevelopmentrules.Inaddition,othersdiscussedmanagementuncertaintyintheupperreachesofthewatershed,whereaNorthwestForestPlanrevisioncouldimpactnationalforestmanagementstartingin2020.

Multipleparticipantsindicatedthatscientificresearch,includingresearchconductedinthisproject,couldcontributetoanunderstandingofhowrobustdifferentmanagementapproachesmaybetouncertainties,includingclimatechange,intheCRW.Severalparticipantsindicatedthatanadaptivemanagementcyclecouldbebeneficial,wheremanagersandresearchcollectivelydevelophypothesesabouttheeffectsofmanagementapproachesthataretestedandusedtorestructurefuturemanagement.Oneparticipantspecificallydiscussedopportunitiestoconnectresearchandmanagement:“Wecoordinate[research],bothinternallyandwithexternalpartners,butitseemslikeifyouthinkofthethreatstowater,there'salotmorecoordinationthatcouldbedoneintermsofthescienceandits[management]application.”Theparticipantwentontosay,“…wearescience-basedorganization,butIstillthinkthatthere'sprobablymoreworkthatcouldaddresstheuncertaintiesandtherealitiesoflandmanagement.”Uncertaintiesinthescienceandpolicylandscapeoflandmanagementweren’ttheonlyissueswithwhichparticipantsgrappled.Urbanwaterusewasanotherdimensionofwaterresourcemanagementthatoneintervieweehighlighted,“unlesswecan…getwaterusedown,wearejustgoingtohavetohavebigger[treatment]plants”withtheirassociatedcostsandwaterdemands.WhenaskedaboutthecapacityofstakeholdersintheCRWtoaddressthethreatstoanduncertaintiesassociatedwithwaterresourcemanagementfromclimatechangeandothersources,avisionoftheCRWasamodelforsustainablewaterresourcemanagementemergedfromseveralparticipants.Asonestated,“Idothinkthatanopportunityexistsforresearch,andthenpromotingtheClackamasasamodel,forhowwe'reabletoaccommodatedevelopmentandgrowth,whileprotectingasourceofdrinkingwater,andthenaturalresources.”

Implications for Clackamas River Watershed Resilience Project OurintentionwastohighlighttheinterestsandconcernssharedbysomeofthemajorstakeholdersinwaterresourcemanagementfortheCRW,aswellastoprovidecontexttothescienceconductedbytheotherresearchteammembers.ThemostcompellingfindingsfromourresearchhaveimplicationsformanagersandplannersintheCRW.First,acrossadiversityofstakeholdersthereexistsadesireforalargerscaleresilienceplanningeffortthatintegratesacrossmunicipal,

15

development,agricultural,conservation,andwaterresourcemanagementintereststoaddressthemanyuncertaintiesfacingtheCRWduetodevelopment,climatechange,andotherfactors.Awaterresourceclimateadaptationorresilienceplanningeffortmaybeanimportanttoolforrealizingthatdesire,mobilizingpartnerships,andcoordinatingworkthatleadstomorecollaborationacrossjurisdictionalandthematicboundaries.Second,wefoundthatstakeholdershadrealsubstantiveconcernsaboutandcouldenvisionopportunitiesrelatedtolocallyspecificuncertaintiesininfrastructureandinstitutionsmanagingwaterquantityandquality.Thisfindingisimportantbecauseuniversity-andagency-basedresearchersinengineering,geography,andenvironmentalscienceshavebothknowledgeandmethodsforconductingresearchtounderstandtheseverytypesofuncertainties,andcanproduceinformationthatmayhelpinformdecisionsonthesetopics.Third,wefoundacommondesireformorelocallytranslatedsciencethatcanbeintegratedintolocalpolicyandprograms.Thisfindingisparticularlyimportantforuniversity-andagency-basedresearcherswhoseskillsandknowledgecouldbeincentivizedtofocusonlocally-basedappliedchallengeslikeclimateadaptationandresilienceplanning.Beyondthesebroadimplications,wealsoidentifiedmanymorethematicallyspecificfindings(Appendix1)thatwehopeprovideideasformanagementandresearchthatdirectlyaddressstakeholderconcernsaboutthethreatsfromclimatechangeandotherfutureuncertainties.

Next steps ResultsfromthisresearchareintendedtocaptureacurrentsnapshotoftheinstitutionallandscapeofmanagingcurrentandfuturethreatstowaterresourcesintheCRW.TheseresultswillbeusedtofacilitatecontinueddiscussionaboutclimateadaptationplanningintheCRWandhelpfosterdialoguebetweenthescientificandpolicy/managementcommunities.Tofurtherthisresearchwillrequireadditionalengagementwithanevenbroaderspectrumofstakeholders.Wehopethatthisentryintounderstandingoftheperceivedrisksandvulnerabilities,opportunitiesandbarriers,andstakeholderengagementandpoliticalwilltoaddressclimatechangewillfosterthatcontinueddialogue.Forexample,wewouldproposehostingaseriesofworkshopsinwhichwepresentfindingsfromthisprojecttodifferentgroupsofstakeholdersanddiscusswhatactionsbestbuildontheassetswithinthewatershedtoaddressthevulnerabilitiesandrisksfacedbythewatershed.Theseworkshopswouldaccomplishthedualgoalsoffurtherfacilitatingdialogueandengagementamongstakeholdersandscientists,whilealsoidentifyingdevelopment,landuse,andwaterconservationstrategiesthatarecommonlysupportedacrossdiverseperspectives.Outcomeswouldfacilitatethedevelopment,communication,andimplementationofscience-basedstrategiesforadaptingtotheimpactsofclimatechangebydevelopingstrategiesfocusedonexpectedthreatstowaterqualityandquantity,aswellasnewresearcheffortsinspiredbytheseworkshops.

16

Characterizing Precipitation in the Clackamas River Watershed

Research Questions ThepurposeofresearchinganddescribingprecipitationintheClackamasRiverWatershedistobetterunderstandwhatkeyweatherandclimatefeaturesareimportantforwaterqualityandquantityintheClackamasRiverWatershed.Specificallyweaimedtoaddressthefollowingquestion:Whataretheclimatologicalconditionsthatleadtothemostimpactfulwaterquantity,quality,andmanagementevents?

Research Approach Toanswertheoverarchingresearchquestion,wefocusedontwokeycontributorstowaterqualityandquantity:1)Heavyprecipitationandtheassociatedstormsthatproduceitand2)SnowwithintheCRW,whenandhowmuchitaccumulates,whenandhowquicklyitmelts,andhowmuchliquidwaterisstoredinthesnowpack.

Toinvestigateandcharacterizeheavyprecipitationandtheassociatedstormsystemsthatproduceit,wefocusedonthelarge-scaleweatherpatternsthathavehistoricallybeenlinkedtoheavyprecipitationeventsovertheCRW.Bylarge-scaleweatherpatterns,wearereferringtopatternsontheorderof100sofmileswhicharecharacteristicoftypicalfall,winter,andspringstormsinnorthwesternOregon.Themotivationfortakingthisapproachisthatheavyprecipitationeventscanoccuratverylocalscales,especiallyinthecaseofcomplexandinfluentialtopographysuchasintheCRW,andasaresultthesephenomenaaredifficulttoresolveinstate-of-the-artclimatemodelswhichprovidedatapixelsthataretoocoarse.Therefore,ifwecanunderstandtherangeofstormtypesthatdrivethelocalscalerainandsnowextremes(stormtypesarelargeenoughinscaleforclimatemodelstoresolvethem),wecanuseclimatemodelstoprovideinformationonwhetherthetypesofstormsthathistoricallyproducedheavyprecipitationareprojectedtochangeinthefuture.

HeavyprecipitationovertheCRWcanoccurwithavarietyofdifferentweatherpatterns.Inordertounderstandthefullrangeofstormtypes/weatherpatternsthathaveresultedinheavyprecipitationinthepastseveraldecades,wefirstidentifieddayswithextremeprecipitation.Weusedthe90thpercentileof24-hourprecipitationbasedonalldayswithmeasureableprecipitationasthethresholdtodefineaheavyprecipitationday.Wethenidentifiedtheweatherpatternsoneachofthedaysexceedingthatthresholdandusedamachinelearningapproachcalledself-organizingmapstosortandsummarizealloftheweatherpatternsinto12categories.Thisallowedustomakeassociationsbetweendifferentstormtypes(basedonthe12weatherpatterns)andheavyprecipitationovertheCRW.Wethenusedanalgorithmtodeterminewhichextremeprecipitationdayswereassociatedwithatmosphericrivers(narrowbandsofhightransportofwatervaporintheatmosphere).Heavyprecipitationanalysiswasperformedovertheyears1980-2016.

ToinvestigatesnowpackbehaviorintheCRWovertherecentpast,weanalyzedsnowwaterequivalenttrendsandclimatologyattwoSNOTELobservationstationswithinthewatershed.ThesetwostationsarePeavineRidgeandClackamasLake.Snowwaterequivalentistheamountofliquidwatercontainedwithinthesnowpackandisimportantformeasuringtheamountofwateravailable

17

formeltintotheClackamasRiver.Wealsofocusedonthe2014-2015wateryear,whichwascharacterizedbyananomaloussnowdrought,toputthishighimpactyearintoperspectivewithrecentandpastobservations.Snowpackanalysiswasperformedovertheyears1982-2016

Findings Our research resulted in four key findings described below:

1. Precipitation climatology

2. Atmospheric Rivers

3. Snowpack Trends

4. Winter 2015 in perspective

1. Precipitation climatology TheCRWreceivesabout83%ofitsannualprecipitationbetweenOctoberandAprilwhileextremeprecipitationeventsaccountfor25%ofallannualaccumulatedprecipitationonaverage.

2. Atmospheric Rivers Atmosphericriversarekeytotheoccurrenceofheavyprecipitation.Theyarepresenton73%ofheavyprecipitationdaysand42%ofdayswithanymeasureableprecipitation.Atmosphericriversmakeupthelargestproportionofheavyprecipitationdaysduringthefall(52%)andwinter(49%).Furthermore,thegeographicorientationoftheatmosphericriverisimportationfordeterminingwhethertheheaviestprecipitationfallsovertheCRWorelsewhere.Becauseatmosphericriversareverynarrowbandsofhighwatercontentinthelowerlevelsoftheatmosphere,theanglewithwhichtheatmosphericriverimpactstopographyisimportantforhowmuchrainorsnowfallsovertheCRW.Itistheliftofairprovidedbythemountainsthatcausesthemoistureintheatmosphericrivertocooldownandcondenseoutasprecipitation.IftheatmosphericriverinterceptstheCascadesatamoreperpendicularorientation,heavierrainorsnowwillfallthanifitimpactstheCascadesatalowerangle.ThepositionandorientationoftheatmosphericriverisalsoimportantfordeterminingwhethermostoftheprecipitationfallsasrainorsnowoverthehigherelevationsoftheCRW.Morespecifically,iftheatmosphericrivercoreislocatedalittletothenorthoftheCRW,itismorelikelythatheavyprecipitationwillfallasrain,whereasiftheatmosphericriveriscenteredtothesouthoftheCRWprecipitationismorelikelytofallassnow.Thisisbecausetheatmosphericriveritselfisoftenassociatedwithasurfacefront,whichmarkstheboundarybetweencoolerairfromthenorthandwarmerairfromthesouth.

3. Snowpack trends Since1982,therehasbeenadecreasingtrendinthetimefrompeaksnowwaterequivalenttosnowdisappearanceatPeavineRidge.Inotherwords,snowpackismeltingfastertodaythanitdidinthepast,howeverthereisconsiderableyear-to-yearvariabilityinthelengthofthesnowpackseason.ThistrendisstatisticallysignificantatPeavineRidgeonly.ClackamasLakedoesnotexhibitastatisticallysignificanttrend.ThereisnostatisticallysignificanttrendinApril1stsnowwater

18

equivalentateitherstation.ThisallsuggeststhatclimatechangehasnothadamajorimpactonsnowpackintheCRWtodate.

4. Winter 2015 in perspective Thewinterof2015wasaveryunusualyearregardingsnowpackintheCRW,however2015didnotstandoutasparticularlyunusualasfarashowlowthepeaksnowwaterequivalentwasobservedfortheseason.Thismeansthatmanyyearshadsimilarlylowpeaksnowpackasmeasuredbytheamountofwaterstoredinthesnowpackas2015.2015standsout,however,ashavinganunusuallylownumberofsnowcovereddays.ClackamasLakeandPeavineRidgehad63and60daysofsnowcoverrespectivelywhichiscomparedtoalongtermaverageof160daysofsnowcover.ThiswasprimarilyduetoanunusuallylargeproportionofprecipitationfallingasraininsteadofsnowduringWinter2015.Whilefutureclimatewarmingwilllikelyleadtoashortersnowcoverseasonanddecreasedspringsnowwaterequivalent,2015wasnotconsistentwithrecentobservedtrendsandforthecurrentclimateshouldbeviewedasanoutlier.Inotherwords,2015wasnota“newnormal,”althoughitislikelythataswarmingcontinuesintothemid-21stcentury,yearslike2015willstarttobecomemorecommon.

Implications for Clackamas River Watershed Resilience Project Thisresearchfocusesprimarilyonwhathappenstowaterbeforeitentersthegroundwaterandriversystem.Byfocusingonthemeteorologythatdrivesrainfall,snowfall,changesinwatercontentwithinthesnowpack,andtheintensityofeachofthese,ourresearchprovidesafoundationforafirstorderlookatwhatclimatechangemaymeanforwaterqualityandquantityintheCRW.Changesintheatmospherewilllargelydrivechangesinotherparametersthattheotherresearchersareassessingmakingthisresearchstepcriticalforassessmentofresiliencytofutureclimatechangeimpacts.

Next Steps FuturequestionswillfocusonprovidinginformationaboutclimatechangeandhowitwillaffectwaterqualityandquantityintheCRWinthecomingdecades.Wewillleverageourfindingsfromthecurrentresearchphasetodriveourquestionsaboutfuturechange.Toanswerquestionsaboutclimatechangewewilluseoutputfromalargesuiteofclimatemodelsimulationsthathavebeenproducedatmodelingcentersaroundtheworldandprovidedfreetotheresearchcommunityviatheweb.Allfutureinformationisthereforebasedonclimatemodel“projections”andthisisthetermwewillusetorefertofutureclimateinformation.

1. IsthereaprojectedchangeintheseasonalityofheavyprecipitationovertheCRW?2. Aretheoccurrenceorseasonalityofatmosphericriversprojectedtochange?Isthelocation

andorientationofatmosphericriversprojectedtochangeinrelationtotheCRW?3. Aretheweatherpatterns/stormtypesthathavehistoricallybeenassociatedwithheavy

precipitationeventsprojectedtochangeinfrequency,orientation,ormagnitude?4. CanweprojectchangesinfreezinglevelovertheCRWinausefulway,andifso,canwe

measurechangesintheproportionofprecipitationfallingasrainversussnowovertheCRW?

5. HowisextremeheatprojectedtochangeovertheCRW?

19

Drivers of Water Quality in the Clackamas River Watershed

Research Questions Anticipatedchangesinextremeprecipitationandstreamflowpatternsduringrainyseasonsunderclimatechangemayaffecttimingandmagnitudeofhighturbidityoccurrence—anindicatorofwaterquality.Anincreaseinturbiditylevelassociatedwithprojectedclimatechangecanthreatendrinkingwaterprovidersandincreasethecostanddifficultytomeetfederaldrinkingwaterstandards.Inordertounderstandhowturbiditymightchangeasaresultofchangesinprecipitation,welookedatwhatcurrentlydriveturbidityintheregion.Thequestionsweaskedare:(1)Whatistheobservedtrendandrelationshipbetweenturbidity,discharge,andprecipitationbasedonempiricaldata?(2)Howdoesthetimingofpeakturbiditydifferacrossthegaugingstationsandseasons?Doesprecipitationintensityimpactthelagtimebetweendischargeandturbiditypeak?(3)Howcloselyispeakturbidityrelatedtodischargeandprecipitation?Canweusethelattertwotopredictturbiditybeforeastorminatimelyefficientmanner?(4)Howwasturbidityaffectedbyclimateduringawetyear(2017),adryyear(2015),andanaverageyear(2013)?

Research Approach Thisstudyusedacombinationofliteraturereview,constructionofanempiricaldataset,andhistoricaltrendstatisticalanalysistocharacterizetherelationshipbetweenhydroclimateandwaterquality.Themethodsusedtounderstandeachresearchquestionaredescribedbelow:

Todescribethetrendandrelationshipbetweenturbidity,dischargeandprecipitation,weuseddatafromthreeClackamasRivergaugestations.Wecharacterizedextremeprecipitationeventsbydischargeexceedanceofover20%ofaveragemonthlyflowacrossthreegaugestationsontheClackamasRiver.Wefocusedonextremeprecipitationeventsbecausetheyhavehistoricallybeenlinkedtoelevateddischargeandturbiditylevels.Webuiltadatasetcomposedofprecipitation,streamflow,turbidity,andtreatmentplantintakewaterqualityvaluesandoperationoftreatment.Usingthisdataset,weconductedaseriesofstatisticaltestsonaten-yearperiodfrom2008-2017andcorrelationbetweenpeakturbidityeventsandatmosphericriverpresence.

Inordertounderstandmoreaboutwhatdrivesthetimingofturbidity,wemeasuredthelagbetweenpeakturbidityandpeakdischarge.Thetimingofturbiditypeakeventscanvarybytimeandspace.Toexaminewhetherlandcovertypesandseasonalityhadimpactsontimingandlagbetweenpeakturbidityandpeakdischarge,weusedtheNationalLandCoverDatasettoexaminelandcovertypefromaruraltourbangradientacrossthreestudiedstationsontheClackamasRiver.Wealsodividedourconstructeddatasetbyearly,mid,andlateprecipitationseasontoexaminetemporalvariability.Lastly,thelagtimebetweenturbiditypeakanddischargepeakswascalculatedandassociatedwithprecipitationpatterns,becausethetimingofturbiditypeakscaninformusabouttheproximityofsedimentsthatarebeingeroded.

Acorrelationandregressionmodelwasusedtoexaminetherelationshipbetweenturbidityanddischargeonmultipletimescales,suchasevent,season,andyear.Temporaldependenceofelevatedturbiditylevelswascloselyexaminedtoforecasteventandseasonalforecastofturbidityexceedance,whichcanprovideadditionalinformationformanagementandplanningpurposesforwatertreatmentplantsintheCRW.

20

Finally,wecomparedawetanddryyearturbiditytrends.ToexaminevulnerabilitiesoftheCRWtoextremeevents,welookedatannualprecipitationanddischargeaveragebetween2008and2017todeterminethewettest,driest,andanaverageyear.Wethentriedtorelatetheclimaticconditionsoftheseyearstotheturbiditybehaviorsthatoccurredinthoseyears.Thepurposeofthisresearchquestionistoshowstakeholdersthatextremelywetanddryyearscausedbyvariabilityinclimatechangecangreatlyimpactthefrequencyandmagnitudeofhighturbiditylevels.

Findings

Historical trends of Turbidity Thenumberofdaysinayearwheretheturbiditylevelexceeded10FNUattheNCCWCtreatmentplantintakeisstronglyassociatedwiththenumberofdayswithintenseprecipitation(>1inchin3days)andannualaveragedischarge.Morethan80%ofhighturbidityeventsoccurredbetweenNovemberandMarchinthepasttenyears.Elevatedturbiditylevelsarestronglyassociatedwithincreaseddischargevalues.Approximately60%ofdischargeandturbiditypeaksdatesfellwithinextremeprecipitationeventstypeswhichshowedahighpresenceofatmosphericriverevents.ThisfindingsupportsourexpectationthatatmosphericriveroccurrenceinthePacificNorthwestislikelythecauseofmostextremeprecipitationeventsandelevatedlevelsofdischargeandturbidityinthelowerClackamasRiverWatershed.Basedonanobservedrelationshipbetweenstreamflow,turbidity,andprecipitation,weexpectanincreaseintreatmentsystemvulnerabilitytoclimate-relatedhighturbidityevents.

Timing of Peak Turbidity Weobservedapatternofturbiditypeakingsoonerbeforedischargeduringastormeventasthelandcovergradientchangesfromforested/ruraltourbanarea.TurbidityvaluestendtopeakbeforedischargeatOregonCity,whiledischargepeaksbeforeturbidityforthesamestormevent.MoreimpervioussurfacesanddevelopmentsnearOregonCityarelikelythecauseoftransportingsedimentsmorequicklytowaterbodies.EstacadaandThreeLynxarelocatedfartherupstreamwithmoreforestedlandcoverandtheadditionalofafewhydroelectricdams,whichcanslowdownthetransportofsedimentsduringstorms.However,resultsfromourfindingsshowedafewinstanceswheretheturbiditypeaktimeandlagdifferdrasticallyinOregonCity,butweobservednostatisticallysignificantcorrelationwithprecipitationintensityorseasonality.Wecanconcludethatinadditiontometeorologicaldrivers,landscapesandbasingeomorphologyplaysaroleinregulatingsedimentsupplyandturbiditylevelsaswell,butnotenoughdata(soilmoisture)areavailableforfurtherinvestigation.UrbanizationislikelythecauseofturbidityreachingpeakvaluesfasterthandischargeduringstormsinOregonCity.InstallingadditionalturbidityanddischargemonitoringbetweenOregonCityandEstacadaandtributariesalongtheClackamasRivermaybeusefulinpredictingturbidityvaluesquickerpriororduringastorm.

Turbidity prediction by precipitation and discharge Althoughwehavefoundastatisticallysignificantpositivecorrelationbetweeneventpeakturbidityandpeakdischarge,therelationshipisnon-linear.Turbiditylevelincreasesexponentiallywithdischarge,whiledischargehasapositivenonlinearcorrelationwithcumulativeprecipitation.IfweprojectextremeprecipitationtooccuratahighermagnitudeinthePacificNorthwest,turbidity

21

levelsduringtheseeventsmayincreaseatamuchfasterratethanweexpect.Earlyandlateseasonprecipitationeventsoccurringinearlywinter,andlatespringshowedthestrongestpositivecorrelationtoturbiditypeaks.Asseasonalclimateforecastsbecomemoreaccurateandabletocalculatetheprobabilityofprecipitationtobeabove-normal,near-normal,orbelow-normal,prospectsofturbidityforecastscanbeenhancedbyseasonalprecipitationforecast.FutureinvestigationcanconsidercalculatingtheturbidityexceedancelikelihoodbasedonstreamflowscenariosandprecipitationforecastsbasedonanapproachusedbyTowler(2010)illustratedbelow.

Figure 1. Towler’s Approach to Calculating Turbidity Exceedance

Sensitivity to extreme years Usingannualaveragedischargevalues,weidentifiedtheyear2015toberepresentativeofatypicaldryyear,2017asatypicalwetyear,and2013asanormalyear.Duringthedryyearannualaverageturbiditylevelsdroppedaswellasthenumberofdayswhereturbidityexceeded10FNUattheNCCWStreatmentplant.Theyear2017wasanextremelywetyearwith13extremeprecipitationeventsthathadmorethan20%exceedanceofmonthlyaverageflow.Wealsosawahighnumberofdayswhereturbidityexceeded10FNUatthewatertreatmentplant,andahigherannualmeanofdailyturbiditymaximum.2015isnotatypicalyear,butitdidnothaveanegativeimpactonturbiditylevels,whereas2017asanextremelywetyearthatincreasedturbiditylevelsandloweredwaterqualityinthewinterseason.Ifyearslike2017arebecomingmorecommoninthefuture,thenwewillexpectmoredayswhenturbiditylevelsexceed10FNU,whichcanincreasestressondrinkingwatertreatments.Increasedannualaverageairtemperaturedidnotcontributetoturbiditypeaks,butcouldcausemoreprecipitationinthefallandwintertooccurasraininsteadofsnow,whichinturnincreaseflow.Inaddition,highertemperaturescanalsoshiftthetimingofsnowpackrunofftoearlyspring,whichcanincreasebaseflowinspringandincreasethelikelihoodofhigherturbidityvaluesduringstorms.Thisrelationshiphasnotbeenobservedinthepast,butcanbehighlypossibleifthePacificNorthwestexperiencemorerapidairtemperaturerise.

22

Table 2. Annual average daily discharge and maximum turbidity in CRW, 2009-2017

Implications for Clackamas River Watershed Resilience Project Ourfindingscouldinformwatershedmanagersanddrinkingwaterprovidershowbesttomanagelandsandtreatmentplantsduringdifferentstormeventsovertime.Additionally,theresultsofothersections(e.g.,changesinflowandfireactivities)couldhavedirectimpactontheturbiditylevels.

Next Steps Thesecondphaseoftheprojectwillinvestigatethepotentialshiftsinstreamflowandsedimentloadsunderdifferentfutureclimateprojectionsinthe21stcentury.Togetherwiththeoutputsofdownscaledgriddedclimatedata,wewillrunaprocess-basedhydrologicmodel,SWAT(Soil-WaterAssessmentTool)tosimulatefuturechangesinhydrologyandwaterquality.Specificquestionsareasfollows.

1. Howwillshiftsinprecipitationandtemperatureregimesimpactseasonaldischarge,turbidity,andsummerstreamtemperature?Whataretheprobabilitiesandrangeoftheseshifts?Whatcombinationsofhydrometeorologicalevents(e.g.,prolongeddrydaysfollowedbyheavyrainfallevents)arelikelytoinducehighturbidityevents?

2. Whatistheinterannualvariabilityofturbiditybasedondischarge?Howdoestherelationshipbetweendischargeandturbidityvarybetweendryvs.wetvs.normalyears?

3. Howcanweuseregionalandglobalclimatemodelstopredictseasonalprecipitationandturbidityexceedancelevels?

4. Wherearehotspotsofhighpotentialsoilerosion,whattypesofcurrentlandcoveraswellaslandcoverchangearemostresponsibleforhigherosionpotential?

Estacada Oregon City NCCWC

Turbidity

# of Storms Identified

Water Year

Annual Mean Discharge

Annual Mean of Daily Turbidity Max

Annual Mean Discharge

Annual Mean of Daily Turbidity Max

# of Days > 10 FNU

2009 2727 7.64 3274 10.72 23 62010 2689 5.93 3113 5.05 14 62011 3360 6.23 4139 12.34 45 32012 3253 10.46 4159 13.56 28 82013 2689 5.28 3305 6.17 15 82014 2880 6.37 3525 6.58 26 112015 2063 2.88 2483 4.95 11 52016 2723 2.95 3460 6.44 16 62017 3343 2.97 4394 7.41 30 13

23

Flow Extremes in the Clackamas River Watershed

Research Questions Changesinprecipitation,averageseasonaltemperaturesandsealevelrisemayhaveanimpactonseasonalflowpatternsandwaterlevels,potentiallyleadingtoanincreaseinfloodhazard.Twoprimaryquestionswereconsidered:(1)CanweseesignificantchangesinflowpatternsoverthepasthundredyearsfromtheflowrecordfortheClackamasRiver?(2)WillthelikelihoodoffloodingintheTri-CityWastewaterTreatmentPlantincreasewithincreasedsealevelriseand/orincreasesinpeakdischargeduringafloodevent?

Research Approach Toexaminelong-termchangesinriverflowthatmaybeattributabletoclimatechangeordevelopment,statisticalstudieswereperformedonthemorethan100-yearlongClackamasRiverflowdatasetatEstacada(stationnumber14210000)availablefromtheUSGS.Inordertoevaluatehistoricalandmodernconditions,thedatawasseparatedintotwosets,withthefirst40yearsrepresentingthehistoricaltimeperiodandthelast50yearsrepresentingthemoderntimeperiod.Theseperiodswerethenexaminedseparatelytoseeifthereweresignificantdifferencesintherecords.AGeneralizedExtremeValuefunctionwasusedtoestimatereturnperiodmagnitudes,whileamonthlyhydrographwasproducedtoexaminepossiblechangesinseasonalflowpatterns.

TodeterminethelikelihoodofincreasedfloodingatthemouthoftheClackamasduetosea-levelriseandalteredprecipitation,aDelft3dFMhydrodynamicmodelwasdevelopedfromthePacificOceantothehead-of-tidesoftheWillamette,Columbia,andClackamasRivers.BasedoffofpreviousworkfortheCityofPortland,themodelwasmodifiedtoincludethebathymetryoftheClackamasRivertotheendoftidalintrusionneartheI-205Bridge.Wethenmodeledthe1996WillametteValleywinterflood,whichfloodedtheTri-CityWastewaterPlantandthedelta-regionoftheClackamasRiver.Inordertosimulatetheeffectofanincreaseinsealevel,weincreasedthebase-heightoftheoceanby0.6and1.5m,basedontheexpectedrangeofsea-levelrisepredictedforthePacificNorthwestbytheyear2100bytheNationalResearchCouncil(2012).Additionalscenarioswererunwitha10%increaseinrunoff,followingpeer-reviewedliteraturewhichsuggesteda0-20%increaseinprecipitationrun-offinfutureclimatescenarios(Najafi&Moradkhani2015).

Findings

Changes in Flow Patterns Overall,evaluationofClackamasRiverflowssuggeststhatannuallyaveragedflowincreasedby7%betweenthe1908-1948and1967-2017periods.Atthesametime,extremeflowsabove1000m3/shavebecomelesscommon,goingfromaprobabilityof.0894inanygivenyearhistorically,toaprobabilityof.0696inthemodernperiod.Riverflowappearstohaveshiftedtoamorerain-drivensystem,withgreaterwinterflowsandlesssnow-meltdrivenflows,followingtrendsalsoobservedintheColumbiaRiver(Naik&Jay2005):inDecember,flowsincreasedby17%,whileJuneflowsdecreasedby16%.Ashifttoalargerwinterhydrographbutlesssummertimeflow

24

couldbeasignificantconcern,ifcombinedwithwarmersummersandlargersummertimewaterdemand(duetodevelopment)intheCRW.

Flood Risk at the Tri-City Water Treatment Plant Modelscenariossuggestthatthesewagetreatmentplantisvulnerabletoincreasedfloodriskfrombothsea-levelriseandincreasedrun-offinboththeClackamas,Willamette,andColumbiaRiverwatersheds.Modelresultsfoundthatwiththemoderate(B2)andhigh(A2)sealevelriseprojectionscenarioscausedanincreaseinthemodeledfloodheightsduringa1996-typeeventby0.16mand.44mrespectively.Whena10%increaseinrunoffwasincluded,thewaterlevelsatthemouthoftheClackamasincreasedby.78mintheB2scenarioand.98mintheA2scenario,respectively.TheA2scenarioisdescribedbytheIPCCasaworldmoredivided,withalotofregionaleconomicandpopulationgrowthandafocusontheeconomyovertheenvironment.TheB2scenarioalsodescribesafragmentedplanetwithoutlargescaleglobalcollaborations,butonethatdoesfocusonreducingemissionsratherthanjusteconomicgrowth.Interestingly,waterlevelsatthemouthoftheClackamasdependontheWillamettebutalsoontheColumbiaRiverflow,whichcauseswatertoback-uptoPortlandandfurtherupstream.Asaresult,managementdecisionsmadeonotherwatershedssignificantlyinfluencerisk,inadditiontosea-levelrise.ThemodeledincreaseinfloodriskwouldlikelyincreasethelikelihoodofdamagetotheTri-citysewageplant,possiblyincreasethetimeofserviceinterruption,andpotentiallycausewaterqualityproblems.

Table 3: Flooding increases under sea level rise and runoff increase scenarios SeaLevelRiseScenario NoSLR(0m) B2(0.6m) A2(1.5m)

NoRunoffIncrease 0.16m 0.44m

10%RunoffIncrease 0.66m 0.78m 0.98m

Implications for Clackamas River Watershed Resilience Project Theshiftfoundinseasonalflowpatternsisconsistentwithobservationsofincreasinglydrysummersandlesssnowinthewatershed,whichcouldincreasefireriskinthewatershed.Withmorewinterflows,therecouldalsobeanincreaseinsedimenttransportduringthewintermonths.Thelowerflowsinsummercouldalsocauseissuesforwatermanagement,influencingwatertemperaturesandcausingtrade-offsbetweenenvironmentalandregulatoryneeds(e.g.,theneedsofsalmonforhighersummerflows)andconsumerneeds(highersummerwaterdemands)thatmayoccurinthefuture.

Next Steps Futureareasofinvestigationmayconsider:

1. Giventhechangesoverthelast100yearsinflowseasonalityandextremeevents,whatcanbeprojectedforfuturechangesintheClackamasRiver?

2. Inafuturescenario,whatisthesmallestsizefloodthatwouldfloodtheTri-Citywastewaterplant?Howlikelywouldthisfloodbe?

3. Howdoalteredflowpatternsaffectwatertemperatureandturbidity

25

Fire Risk in the Clackamas River Watershed

Research Question and Approach It’slikelythatclimatechangeanddevelopmentwillhaveanimpactonfireintheClackamasRiverregion.Tomorefullyunderstandwhatthismaymeanforwaterquantityintheregion,researchers,wesoughttounderstandtherelationshipbetweenwaterandfireintheregion.Theprimaryresearchquestionsweaskedwere(1)WhatarethemainclimaticdriversoffireactivityintheCRWasawhole?(2)Whatistheimpactoffireonwaterquantitypriortoandfollowingfireevents?Themotivationforthesequestionscamefrombothprocess-basedsimulationsandstatisticalmodelingefforts,whichcoincideinthattheareaonthewesternCascademountains,includingtheCRW,willexperiencearapidtoveryrapidincreaseinfireactivitybytheendofthecentury.

Research Approach Forbothquestion1and2.,wereliedonclimaticandhydrologicparametersattheEstacadaweatherandgaugestationsandalsofromgriddedhighresolutionproducts(i.e.PRISM)duringallrecordedfireyearsduringperiodsintherecordswithrobustdata.Conditionsintheparametersduringeachofthefireyearswereaggregatedandcomparedagainstparameteraggregates(orcomposites)duringnon-fireyearsusingSuperimposedEpochAnalyses—anapproachcommonlyusedinclimate-firesciencesandthatreliesonMonteCarlosimulationtoidentifysignificantanomalieswhencomparedtomeanconditions.Analyseswereconductedtotestfordisproportionallyhighorlowvaluesoftheparametersduringfireyears(incomparisontonon-fireyears)duringdayspriorto,duringandfollowingthedaywhenfireeventsintheCRWwerefirstreported.Specialattentionwaspaidtodetectanomaliesordeparturesasfarinadvancepriortofireeventstoaidmanagerswithbetterpreparedness.

Findings

Fire activity is driven by high drought conditions Fromalleightclimaticparametersanalyzed,itwasfoundthatfireactivityintheCRWisprimarilydrivenbydisproportionallyhighdroughtconditions(i.e.dryandwarmconditions)duringthesummerofthefireevent(i.e.dryconditionsfrompreviousyearswerenotsignificant).Thisdryingeffectwasobserveduptoca.2monthspriortothedate(i.e.August)whenmostignitionsthatbecamewildfireswerefirstrecordedintheCRW.Theclimaticparameterthatreportedthehighest(i.e.mostusefulformanager)differencebetweenfireyearsandnon-fireyearswastheVaporPressureDeficit(VPD),whichmeasureshoweasilymoistureflowsbetweenthesoilandvegetationandtheatmosphere;inotherwords,how‘thirsty’theatmosphereis.

Peak Vapor Pressure Deficit and Fire Incontrasttonon-fireyears,duringfireyearsVPDpeaksinAugustrightabout1-2daysbeforethestartofwildfires.ThispeakinVPD(andfirestartingdate)isroughly3weekslaterinthesummercomparedtothetimingoftheVPDpeakduringnon-fireyears.Basedonthis,werecommendthatmanagerscarefullytrackthebehaviorofVPDthroughoutthesummer,especiallyAugust,whenacontinuouslyrisingVPDpeaksroughlyaroundmidAugust.

26

River Discharge and Fire Ingeneral,meandailydischargeintheCRWattheEstacadastationdeclinesduringsummerstosignificantlybelowmeanannuallevelssometimeinJuneandonlyrecoversinlateSeptember/earlyOctober.Itwasfoundthatmeandailydischargeduringfireyearsreachessignificantlybelow-meanlevelsroughly7daysearlierthanduringnon-fireyears.Instead,almostnodifferencewasfoundbetweenthetimingofpost-summermeandailydischargerecoverybetweenfireandnon-fireyears;i.e.themaindifferenceintermsofmeandailydischargeduringfireyears(incomparisontonon-fireyears)arepriortoandnotfollowingfires.

Implications for Clackamas River Watershed Resilience Project AllresearchonfireconfirmsthatfireactivityisincreasingacrosstheWestanditwillcontinuetoincrease.UnderstandingwhatdrivesfireactivityatthescaleoftheCRWisaparamountneed.IntermsoftheFinding2,managerscanuseourlessonstoprepareforseasonswithhighervs.lowerfireprobability.Forinstance,ifVPDdoesnotpeakinJunenorJuly,andcontinuestoriseinearlyAugust,thereisanincreasedprobabilityofignitionstosuccessfullyspread,asfuelshavebeenandcontinuetodryoverthespringandsummer.Instead,ifVPDpeaksbeforeAugustanddeclinessteadilyduringearly-midAugust,itislesslikelythatignitionsinthewesternCascademountainswillspread,asfuelsmightnotbeprimeforrapidfirespread.Finding3highlightsandfurthersupporttheuseofavailablemetricsbymanagerstodeterminesummerswithhigherfirerisksthanothers.Itturnedoutthatmanagerscouldalsousewaterdischargedeclinetimingtopredictyearswithhigherfireprobability.Instead,andleavingimpactsonwaterqualityout,itseemsthattherecoveryindischargeto“normal”levelsoccursalmostatthesametime,regardlessoffireoccurrence.

Next Steps OurinitialanalysisprovidedsomeinformationabouttherelationshipbetweenfireandwaterintheCRW,fornextstepswewillconsiderhowthesedriversmaychangewithclimatechange,howclimatechangescenariosmayimpacttheriskoffireintheWild-UrbanInterface(wherecommunitiesarelocated),andhowfireanddroughtimpactwaterquality.

27

Appendix A – Qualitative Interview Themes

Thefollowingincludesthemesandquotationsfrominterviews(n=18)conductedwithnaturalresourcemanagersandplannersaboutwatershedresilienceintheClackamasRiverWatershed.Open-endedinterviewswereconductedbetweenOctober2017–January2018.Generaltopicscoveredineachinterviewfocusedonthefollowing:

A. ThreatstowatershedresilienceB. AdaptationandresponsestowatershedresiliencethreatsC. StakeholdersinClackamaswatershedresilience

Inthisappendixwepresentbothtopicalthemesthatemergedfromtheinterviews(regardlessofhowcommonoruncommontheywere),andwhereappropriatequotationsthatprovidecontextanddepthtothetypesofresponsesgiven.

A.Threats

1.WaterQuality

Biggestconcerns–humanhealthandfishhealth

Watertemperature

Habitatdegradation

Contaminants

Algae

Algaecombinedwithpre-chlorinationinsomeintakeplants

Bacteriafromfailedsepticsystems

Bacteriafromhumanwaste-campingnearwater,recreationonwater

Bacteriafromlivestock,horses,manure

Chlorineinlargeholdingpondsatnurseries-floodingduringbigrainevents

Disinfectionbyproductsfromchlorine-combinedwithorganics-canbecancercausing

Fuelandoilspills

Garbage/pollutionfromcampingandrecreationandhomelessness

28

Hazmatspills

Hydrocarbonrunofffromroads

Industrialrunoff

Lackofdilutionofcontaminantsinthewaterfromhotter,dryersummerswithlesswintersnowpack

Organics

Othergarbagedumping-includingasbestoswasteproductsfromconstructionsites

Personalcareproducts(notregulatedfordrinkingwater)

Pesticides-nonpointsourcemovement-rainwater,stormwater,leaching,legacypesticides

Pharmaceuticals

PotentialfutureofanapprovedgaspipelineintheCRB

Potentialoffutureuseoffireretardant-phosphorus-contributingtoalgaeblooms

Potentialthreatofterrorismtargetedatdrinkingwatersystems

Residentialfertilizersandotherchemicals

Roadsidespraying

Smallamounts-butcumulativeimpactscanbeunknown

TreatedwastewaterreleasesdirectlytotheClackamasinEstacada,andintothetributaryTickleCreek

Variouscontaminantsfromstormwaterrunoff-metals,toxics

Sediment/Turbidity-hardtofilterdrinkingwater

Badlyplannedlogging

Erosionfromroads

Forestfires

Landslides

Soilerosionfromnurseriesandfarms

Soilerosionfromremovalofstreamvegetation

2.WaterQuantity

Scarcity/Insufficientflow:

29

Climate-hotter,driersummers,lesssnowpack,amplificationofdrought

Competingneedsandinterests-drinkingwater,fishhabitat,irrigation(residentialandagriculture),recreation,industry

Curtailmentonnewwaterpermits

Curtailmentplansdon’ttriggerunlessthereisadroughtdeclarationbythegovernor-otherwiseitisvoluntary.

Dependentononesource.Alternativewatersupplyscenarios–likehookinguptoPortland’ssystem-arereallyexpensive.

Fish-notenoughwatertopushthemdownstream,notenoughoxygeninthewater,notenoughfeedingringsdownstream,notenoughstoredhabitat.

Lackofdilutioninwastestream(moreconcentration)ishardertotreat.I.e.“dilutionsometimesisasolutiontopollution”

Lackofgroundwaterusemonitoring

Lotsofimpoundmentsandponds,smallerdamsonunnamedcreeks-impactflowandgroundwaterbaseflow

Lowflowsimpactrecreationinsummermonths

Mostwaterprovidersmakemostoftheirmoneyinthesummermonthswhenuseishighest,difficulttocommunicatecurtailmentwhenincomeisneededtocoverexpenses.

Populationgrowth-waterdistrictsandagenciesaremandatedtoprovidedrinkingwaterregardlessofpopulationgrowth

Timingofprecipitationchangingseasonally,impactswateravailabilityforirrigation

Waterreuseforcropsdoesn’tallowforrechargeofgroundwater

Flooding:

Balanceofpropertyowners’rightsandmaintainingfloodplainsforprotectionagainstflooding

Climate-rainonsnoweventsleadingtoflooding

Futuresealevelrise,combinedwithhightidesandrainevents/snowmelt–riskforflooding

Highimpactrainfalleventslinkedtoatmosphericriverspushedwatertreatmentplantstothelimitandcausedflooding.

HistoricalfloodsintheCRBhavechangedthelandscape–1964,1996,2008,2009,2011.

Smalldegreesofdifferenceintheamountofprecipitationcanleadto“hellaciousbigfloods”versusslowflowfromsnowmelt,whichmakesforunevenseasonalenergygenerationatthedams-producinglesspower,leadingtolessmoneytoinvestinthingslikefishprotection

30

3.Development/Urbanization/PopulationGrowth

Currentinfrastructurecannothandle“whatiscomingdownthepike”.“Withmoreandmorepeoplemovinghereandmoreandmoredevelopmentinourserviceareacombinedwithhigherimpactrainfallevents,there'salotofthingsthatarecomingatusthatwehavetobeabletohandle,asautility.”

HillyterrainofthedevelopmentinHappyValleydoesn’tallowforalotofinfiltration.

Increasedimpervioussurfacesleadstoincreased“flashiness”ofthesystem.“Asyoudevelopandyouhavemoreimperviousareaandyouhavelessstormwatertreatment,you'refundamentallyalteringthewatershed'sown,what'stheword,sortofresilience.So,it'sunquestionablypartoftheequationandpartofthepuzzle,butIthinkitneedstobeaddressedmoreattheleveloftheentitiesthatareresponsibleforpermittingthatdevelopment.”

Increasedpopulationresultsinincreaseduseofrecreationintheupperwatershed,overwhelmingandchallengingthesystem.CRB“lovedtodeath”.

Increasedruralgrowthanticipatedinthefuture-allwillbeonsepticsystems

MuchoftheUrbanReservesfortheMetroUrbanGrowthBoundaryareintheCRB

Needtoexpandstormwaterserviceswithgrowingpopulation

Poorfloodplainconnectivity

Population“boom”intheCRB.Lotsofnewconstructionisleadingtoimpermeablesurfaces

Potentialtohaveclimaterefugeesmovingtotheareainthefuture

Urbanizationisathreattofishpassage.“Youcan’tjustkeepaddingtensofthousandsofpeopleayearintoabasinandnothaveithavesomeeffect.”

“Mybiggestconcernisthatdevelopmentsimplywillovertakeanyabilityforrestorationorprotectiontokeepfishpersisting.”

Urbanizedareashavevisibleadverseeffectonwaterquality

Wastewatertreatmentplants,necessarytocleanandreleasewaterinurbanizedareas,canhaveoverflowsduringpeakflowevents,ordischargeofchlorinethatcanleadtofishkills.

Watershortageforincreasingpopulation

Wideningandaddingroadscontributestoincreasedpollutionrunoffintowaterways

4.ClimateChange

Biggerstormeventsimpactingthedaminfrastructure

Biggerstormscouldcausebigger“firstflush”intostreams,withpollutantslikeagriculturalrunoff,turbidity,metalsandmore.

Changeinfrequencyandintensityofevents,combinedwithlandusechange

31

Changingsummerweatherpatterns-hotter,drierforlongerlengthsoftime

Climatechangeimpactingwatersupply,exasperatingsummerdroughts

Climatechangeimpactsonoceanhabitatforfish(importanttofishrunsintheClackamas)

Climatechangeuncertaintyprohibitsaccuratelongtermplanningforinfrastructureandadaptation

ClimaterefugeesmovingtotheCRB,whichwillhavemorewaterthanotherregions

Drinkingwateravailabilityisaconcern

Extremeweatherinthepasthasrequiredcompletecampfirebansinrecreationareas

Highimpactrainfallevents,concernsovertoomuchwaterintooshortaperiodoftime.Overwhelmwastewatertreatmentinfrastructure.

Impactsonmanagementactivities-howtobuildresilienceintothelandscape

Increaseindevelopmentandimpervioussurfacecombinedwiththepotentialofmorestormsimpactscleanwater.

Increasepotentialforblue-greenalgaeblooms.

Lessresilientforestislessabletofendoffmountainpinebeetle

Lesssnowpack,lowflowinthesummermonths.Impactsrecreation,temperature,concentrationofwastestreamflow,drinkingwateravailability,irrigationwateravailability

Potentialincreaseinfrequencyofatmosphericriverrainfallevents,combinedwithwarmingweatherglobally.

Sealevelrise,tidalimpactstotheClackamasRiverandriskstowastewaterinfrastructure

Thecountydoesnotcurrentlyhaveaclimateactionplan

Timingofprecipitationimpactsagriculturalcommunityandirrigationneeds,needtochangefarmingpractices.

Wildfireriskassociatedwithachangingclimate

5.OtherThreatstoWaterResources

“Wemightevenaddonemorerisktheretoyourlist,andthatistheunderfundingofourfederallandmanagersdealingwithforestservice.Thoseguyshaveaheroicandalmostimpossibletaskinaworldthatstilltreatstheirbudgetsasbeingbasedontheproductionofnaturalresources[...]That'sreallyranksrightupthereinmyconcerns,becauseitaffectsusdirectly,becauselawenforcement,supportscience,managementofinvasivespeciesontheirpartoftheland,andImean,alloftheirresourceswill[...]theydoanicejob,butshoot,iftheylosemoreofthestaffisgoingtobetough.”

Aginginfrastructurecombinedwithstressedsystems

32

Crustalearthquakes-damagetoinfrastructure

Forestfirethreatlimitingrepairandmaintenanceactivitiesinthesummermonths(repairingTimothyLakedamwasanexample-damwasopenforrepair,butfireriskrequiredastopworkscenario,whichcouldbecatastrophicwhenrainsarrivedinthefall)

Forestfires–notjustincreaseinsedimentationbutalsoresultinginthelossoffiltration

Hazmatspillsharminginfrastructure

Terrorismtargetedatdrinkingwaterinfrastructure

6.“Keepsmeupatnight”Threats

“Andwhatdoeskeepmeupatnighttoo,whenitcomestomessagingisnotgettingtothevulnerablepopulations.PeoplewhodonotspeakEnglish,kidsthatareinschool,homeless.Thosethatmayhavemobilityissuesorhearingandseeingissues.Thatkeepsmeupatnight.”

“Ican'tsaythere'sanythingthat'sthatgripping,butIthinkwhatisconcerningandkindofhardtogetyourarmsaround,somethingthatIknowisaproblemandmycolleaguesknowisaproblemandwe'restilltryingtofigureouthowbesttomanageitthroughouragency,andthatwouldbejustplainolddevelopmentandthevariouspeopleandentitiesthatareinvolvedthataren'tnecessarilycoordinatingonlong-termplanningandlongertermhydrologicimpactsofdevelopment.”

“Ithinkmybiggestconcern,again,isjusttheideathat,willweberatchetedoffhowmuchwaterwecantake.”

“IfIdidhaveaworrythatkeptmeupatnight,itwouldbe,shouldagas-linebeapprovedthatwouldcrossourbasin.”

“I'moncallontheweekendswaitingfor...allthedeputieshavemynumber.Imean,obviously,I'mconcernedinthesensethatsomethingbigwillbreakout.Therewas,anecdotally,Ithinkitwasbackin2008,therewassomenear-riotinggoingon[...]Ithinkit'sreallysomebigsocialdisruption,wouldbetheissue.”

“Mykeepmeupatnightscenarioiseffluentreleasesfromwastewatertreatmentplantsthatkillfishdirectly.CityofSandygoesintoDeepCreekthatflowsintotheClackamas,andthereareincidentswheretheyhavekilledfishasaresultofachlorineeffluentrelease.Sowe'vebuilttheseinfrastructureinandaroundourstreamsthataremeanttocontrolthedevelopmentaroundthestream,buttheycreatesuchariskforthetributarystreamthat,inparticular,throughthisprocesswithTickleCreekandseeinghowDEQisregulatingit,itconcernsmeforwherethosethingsexistelsewhereandaredoingthesamething.”

“Potentially,inthefuture,ifweweretohaveahightideeventcombinedwithasealevelrisejustbecausewehavetheoceansrisingduetomeltingicecaps,combinedwithhighrainfallorsnowmelteventscomingdownthemountainsidesasjustpartoftheregularriversystem,therehastobesomeplaceforthatwatertogo[...]youcanhaveaprettyseriousinundationeventthatwilllastalongperiodoftimeuntileventuallythetidegoesout[...]Thoseeventscanbeprettyserious.Twoofourlargest,mostimportantfacilitiesarerightontheriverfrontofthesetidallyforcedareas.Itisapotentiallyhazardoussituationforusinthefutureshouldthosestarsalign.Youdoneedtogetallthreeofthosethingscomingintophase.Potentially,in

33

thefuture,ifthatisgoingtohappen,that'sabigdeal.Thatonlyhastohappenonceforustofeelthesevereimpact.”

“Theotheristhecrustalquake.Ofcourse,Cascadiagivesme...Butwehavealotofcrustalquakestoothatcouldreallydisruptwaterservice”

“There'sacouplethings.Oneofthemisthe'64scenario.The1964scenario[...]The1964isactuallythe'96floodonsteroids.Imean,thatscenariojustmakesmystomachhurt.ItwasjusttheWillamette,itwasallthewaydowntoSalem,Ithink.Itwasjusthorrific.That'soneofthemostdramatic.Andthen'96ofcourse,afterthat.But'96wasn'teventhatbad.ThatonekeepsmeupatnightbecauseIknowit'shappenedhere,Iknowitwillhappenagain.”

“Well,Iwouldn'tsaythatthereisanycredible,immediatethreatthatkeepsmeupatnight.Anytimeyouhaveaseriesofdamsalongawaterway,therearerisksassociatedwiththosestructures.Thinkingofsomeworst-casescenarioofadamfailure,that'ssomethingthatishighlyunlikely,andtherearemeasuresinplacetoprotectpeople.PGEhassirensandawholesystemofsafeguardsinplace,soitdoesn'treallykeepmeupatnight,butthatwouldbesomething...thatwouldbeterribleforbothpeopleandtheaffectedenvironment.Andthentheothersomethingthatcouldbecatastrophicbutisprobablyanoutlierhastodowithsomekindofcatastrophicwildfirethatleadstolandslidesorjust,denudesthelandscapeofvegetationleadingtoreallysevereimpactstothesoilsandwater.”

“Well,youknow,tomeit'spesticides...Werelyonthestreamsidebuffersandfilters,butwedon'thaveanywayofprotectinggroundwaterreally.Wedon'thaveawayofmanagingpeople'swaterusage.TheworstthatcouldhappenisIseeanirrigationstreamrunningofftheirsiteandIcouldsampleit,andifittestspositiveforpesticideswecouldsayyouneedtodothesethings.So,it'shardtoenforcefrommypointofview,butIreallybelievethat'sthefutureofwaterquality.”

B.Adaptation/responsetothreats

1.AdaptationOpportunities

“AndRockCreekconfluencesanarea,thatwehadarecentprojectin2015,wherethen,whenthedroughtoccurred,itwascontributing10degreescoolerwater,thanthemainstemhead.So,allofthesetributariescomingintoourmainstem,eveninthemostlowestregionsoftheClackamas,havegoodopportunitytoprovidesomefood,andwater.”

“Asa21stcenturymillennialpublicadministrator,Iknowyoucan'tdoeverythingyourself.It'sbettertobreakdownthesilosandapplyknowledgeorresearchorworkthat'sbeenaccomplishedelsewhere.WehavewhatIwouldcallsiblingagenciesalsohereinthePortlandMetroArea.WithintheCityofPortland,ofcourse,ourBureauofDepartmentalServices,WashingtonCounty'sCleanWaterServices,CityofGreshamandthenlookingupanddowntheWillametteValley,CityofSalem,Corvallis,Eugene.Springfieldhasalargeconsortiumandthenlookingfurthertoourneighborstothenorth,ClarkCounty,Washington.ThenlookinguptoourfriendsintheSoundarea,theWaterAlliance,whichisinandaroundtheOlympia,Laceyarea,CityofTacoma,PierceCounty,KingCounty,whichishugeandtheydoalotofheavyliftingbecausetheyhaveaverylargepopulationtoserve.Theyhavealsoaverychallengingservicearea.InandaroundSeattle,it'sveryhillysotheydoalotofgreatworkwithintheCityof

34

Seattle.LookingattheCleanWaterAgencies,there'sanOregonAssociationofCleanWaterAgenciesandthenthere'sthePacificNorthwestCleanWaterAssociation,whichiscalledthePNCWAandtheotherone,wecallitOCWA.Thosedifferentgroupsarethetradeorganizationsthatrepresenttheinterestsofstormwater,wastewater,drinkingwaterinterestsintheregion.Becausethosedifferentgroupsallhavesimilarmissionsorareheldatthesameregulatorystandards,we'reallfacingthesametypesofchallenges,justmaybehingedslightlydifferentlydependingonwhereyouare[...]Learningfromthosedifferentagencies,theworkthatthey'veapplied,whetherit'ssomethinginmodelingeffortsorthey'vebeentryinganewstormwatermanagementdesigncriteriaorthey'veusedsomeneweffortstotryandredesigntheirinfrastructure,theirpipes,whatever,learningfromthosefolksandhavingthoserelationshipsisthemostimportant[...]”

“ASR,AquiferStorageandRecovery.Andso,thetheoryofthatis,inthewinterwhenthere'ssomuchwaterintheriverversusinthesummerwhenthere'slimitedamounts,istotakethewaterthat'splentifulandtreatsomeextraandputitintooursystemandthendropitintosomeaquifers.Soinessence,wemoundupaquifer.Andtheninthesummertimewhenthere'slesswaterintheriver,wetakethatmuchlessoutoftheriveratthetime,andjustdrawfromthatmoundedupaquiferlevel.Andso,ittakesawaytheneedtotakeasmuchfromtheriverandputsitbackon,justgettingitfromwithinthesystem[...]wehaveonewell,andwe've...soforinstance,we'vestored55milliongallons,isthemostwe'vedone.But,theideawouldbe...andwecanpulloneMGDoutofthatperday.Soagain,ifourpeakis12.8,thenalmost10%couldbemetbythat.Sothat's10%lessthatwewouldbetakingoutoftheriveronanygivenday.Andtheideais,aspartofourplanning,masterplan,isthatwewouldhavemoreofthose,youknow,maybeevenlike5orso.”Thiswatercouldalsobeusedtohelpstreamflowforhabitatinthelow-flowsummermonths.

“Idothinkthatanopportunityexistsforresearch,andthenpromotingtheClackamasasamodel,forhowwe'reabletoaccommodatedevelopmentandgrowth,whileprotectingasourceofdrinkingwater,andthenaturalresources.Beingrighthereinthemetroarea,alotofdevelopmentpushingoutward.TheUrbanRuralReserveControlshavebuffersof100foot.Incertainareas.Andmaybebeyondthat,andothers.So,thelongtermeffectsandbenefitsofsuchprograms.”

“Idon'tmeantosaythistodiminishpeople'sskillsorunderstanding,buthowdoyoueducatepeoplebettertothenknowhowtodealwiththeissues?Wehaveagreatopportunity,Ithink,inthePortlandMetroAreatohavealargevolunteerbaseandprobablyalotofpeoplethatareinterestedinseeingtheriverprotected.Theyjustdon'tknowwhattodo.”

“IthinkifaprograminDEQweredeveloped,asopposedtosingleissuewheretheyhavetogetacrewtogetherandgoout,ratherhaveaprogramarounditto...Whoismonitoringtheseurbanwatersheds,andwhat'shappeningwithpeakflowsinthewinter,lowflowsinthesummer?Ijustdon'tthinkanything'sbeingdonetoseewhat'shappening.”

“IthinkwhatIputhereisweneedtolistentowhattheriver'stellingusandstarttomakechangesbefore[...]thatwe'renotrecognizingthatsomethinglike2015isgoingtobeamoreregularoccurrence.Weneedtothinklong-term.We'rejustnotdoingit.AsmuchasIthinkpeoplewerescaredwhenclimatechangeandeverythingbecameanissue,I'mafraidthat'sdieddownalittlebit.Peoplejustaren'tthinkingfarenoughahead.”

“Ideallyifwehadabetterunderstandinginregardstoclimatechange,thatmightadaptsomeofthewaysthatwelookatourwatersystemplanninginthefutureofallrightwellwe'regoingto

35

havetohavetreatmentplantsthathavemoretechnologytodealwiththisarrayofstuffcomingintousonamorefrequentbasis.Orwe'regoingtohavetoupsizetreatmentplantssothatwearegoingtohavelongerhottersummers,andunlesswecanreallygetpeopleandtellthemtheycan'twater,orgetreductionsandwaterusedown,wearejustgoingtohavetohavebiggerplantstoaccommodatethat.”

“It'sbecauseofvoters,itwasseenasamandatetothestate,andtoourlegislators.In2010,whenthevotersvotedaheadofthesunsetsupporttoOWEB,andforlotteryfundstobededicatedtoprotectionofournaturalresources,thatthereispoliticalwill.”

“JustrealquicktotouchonPGEandthehydrofacility,they'reprovingthattheycanhaveanoperationtherewithminimalimpactstofishcurrently.Thatdoesn'ttalkaboutthelegacyeffectsfromdevelopingthehydroprojectsinthefirstplace,buttheircurrentoperations,they'redemonstratingthattheycangetfishtosurvive.It'ssomething,ifinthisprocesswecandemonstratethatbecauseitneedstobedemonstratedtootherbasinsintheWillamettethatitcanbedoneaswell.”

“Simplysittingdownandmeetingface-to-face.WedosomuchcommunicationnowviaemailandphoneandtheconvenienceofthosethatIfindthatsittingdownandtalkingthroughtheissuesisincrediblybeneficial.Wetrytodothatoftentimeswiththefederalagencies.We'vesatdownwithNOAAoftentimes,andyougettotalkaboutissuesandhowwecancollectivelyworktogetheronthem.Itjustdoesn'tseemtohappenonafrequentenoughscale.”

“That'sagoodexampleofrestorationofflows,whattheycando.PGEusedtohaveaminimumflowof,Ithink,20CFSforyears.Nowtheirminimumflowduringfishmigrationperiodsis120CFS,sothere'ssixtimesasmuchhabitatavailableforfishnow.SpringChinookareusingit,whichissomethingwedidn'tseehappening,butnowit'sagaintheabilityofspringChinooktoexpandtheirrangeandusehabitatthatthey'vehistoricallyusedthatwasonlylimitedbythefactthattheydidn'thavethewater.”

“TheupperbasinthatisrelativelyprotectedbytheforestthatsurroundsitandwhatIfeelnowissomethingthatisprotectiveenoughforthatarea.Theforestseemstobeanareathatwecanrelyoninthefuture.Whenwetalkaboutclimatechange,IthinktheClackamas,inparticular,notbeingaglacial-drivenstream,isonethatwon'tsufferthehighsandlowsofclimateimpactsasotherbasinswill.”

“We'refindingrecently,withPGE'simprovements,isthat,say,springChinookarenowusingmoreofthebasinbecausethey'renotdelayedatproject.Theyusedtobedelayed,sosayamonthdelay.Thentheywouldonlygettotheirspawningarea,whichmaynotbefullyutilizingthebasin.Nowtheyare,sothat'sveryencouraging.”

Agenerationalshiftinthefarmingcommunitiescomeswithopportunitiestotrynewcommunicationstrategiesandoutreachaboutbestpractices.

Astronglawenforcementpresenceontheriverhasanexuswithwaterqualityimprovements.

ClackamasPartnership:“It'sapartnershipthatwehavebetweenallthewatershedcouncils,likeJohnsonCreekWatershedCouncil,theNorthClackamasUrbanWatershedCouncil,GreaterOregonCityWatershedCouncil,andtheClackamasbecausetheClackamaspopulationforfishactuallyincludesthosetributaries.Whatwe'redoingiswe'recomingtogethertodothatidentificationoflimitingfactorsandthreatsandthendevelopaproposaltoOWEBforpretty

36

significantfunding,upto$2milliontoimplementrestorationprojects.ThisisonegroupthatIthinkisaperfectexampleofwhatneedstobebroughttogethertodothesethings.There'sagood,similarexampleintheSandy,withtheSandyBasinPartners,thatallofthesegroupshavecometogethertoworktogethertodealwiththeissues.Ithinkwe'regettingthereintheClackamaswiththisgroup.Whatweneedisthatfundingtomakeithappen.TheCRBChasalargeroleinthatgroupbecausethey'rethemostfunded,themostcapable.”

Conservationprograms-likeindoorplumbingcodes(low-flowtoilets,faucets,etc.)

Countyhazardassessmentsthatareupdatedeverytwoyearsareanopportunitytobringmanystakeholderstogether-waterproviders,fire,law,publichealth,socialservices,etc.

CountyParksandForestfundingstrategies:“Andkindoftheinterestingthingtothat,it'sthetimberreceiptsthatcomebacktocounties,comeoffofthetimbersales,andsincewe'reusingsomestewardship,thosetimberreceiptsdon'tcomebacktotheCounty.Sowhatwe'vedoneinsteadwas,movedalotoftheretainedreceiptsandtheprojectsthatwouldbenefitClackamasCountyaskindofanoffset.Solikeculvertrootplacement,thatbothhasapublicsafetyandfishpassagebenefit,wouldbefunded.AnumberofCheryl'sprojects[CRBC],andsomeofthecountyprojectsgetretainedreceipts.WewereonaprogramcalledDumpStoppers,whichitcleansupillegaldumpsitesonforestlands,andsowe'vebeenabletogetsomefundingthroughretainedreceiptstohelprunourDumpStoppersprogram.”

Createforumsforsharinginformationandstrategies-forexampleworkshopswithotherbasincoordinators,technicalassistanceworkshops,etc.

Createresilientforeststofendoffepidemics,whichcanleadtomoredeadtreesandfuelforforestfires.

CREP/NCRSprogrampayslandownerstoplantriparianbuffers.

CSWCDcanbeagrantmakerinsteadofagranttakerbecausethevotersvotedinameasuretofundannually2.2million.

Developmentofacounty-widesurfacewaterdistrictisinthebeginningstages.Thisallowsforintegrationandefficiencyinregulationacrossagencies–roads,culverts,floodplains,etc.KingCountyinWAandWashingtonCountyinOregonhavesimilarsetups.

Differentfundingsourcescanallowfordifferentopportunities.Fundingfromratepayerscanopenupavenuesforcapitalprojectsthatinadifferentsettingwouldneedapprovalfromapoliticallyelectedorappointedboard.Thereismoreflexibilitythisway.Matchinggrantsisanotheropportunity(DEQ).Lotteryfundscanbeusedforeducationandrestoration.

Exploreadaptivemanagementinthefaceofclimatechangeuncertainty.

Federal,stateandlocalpartnershipstomanageforests.Alsoopportunitiestoworkwithtribalpartners-waterqualityandquantityissueseffecteveryone.

Findacommondenominatorthroughnamingtheissuethatstakeholderswithvariedvaluescangetbehind-like“drinkingwater”.

37

Findawaytoincorporateeveryone’sdatatomakeitaccessibleinoneplace.DEQisworkingonthisforwaterquality.

Firepreventionsactivities-likeprohibitingtargetshooting.

Focusresourcesonthecountysepticprogram-helppeopleupgradefailingsystems.

Helplandownersdealwithinvasivespecies,plusadvocateformoreshadeplantingnearthetributariesandrivers.Win-win.“shadeourstreams”program

Maintainregulationsaroundfloodplainsandriparianbuffers.

Microeffortscancontributetothewhole:“Therearethingsthatwelookatasfar...ImeanalotofthemIwouldcharacterizeasmicro,wherewelookat,oh,arebagsstillbeingusedalongcatchbasins?They'remicro,butIstillthinkthey'reprettyimportantaswell.Justthosekindsofthingsoferosioncontrol,bestpracticesonasite.”

Monitoringandmanagementisthefutureofwaterquality.

Newtechnologies,likeDNAtesting,havehelpedwithwaterqualitymonitoring.

Opportunitiestochangemindsandcreatecredibilityandtrustataneighborlevel.

Opportunitiestoreducefuelsforforestfiresthroughthinningprojects.

PGEchangedoperationstoreducetraveltimeofwaterattheFaradydaminthesummermonthstohelpcontrolwarmingofwater.

PGEfundedhabitatprojectsandwaterqualityandquantityimprovementprojects(millionsofdollars’worth)-partneringwiththeCRBCandothers.

Promotesepticprogramasapublichealthissue-messagingtopublicandtopoliticians.

Regardingriverflowanddams:“It'swhatthenaturalresourcesintheriver,thefishandthewatercrittersexpecttosee.So,we'renottryingtomakeitbetterthannatural,we'resayingiftheygrewupfacingbigspringrunoffsthentheyshouldfacethemnow.Sothat'skindofthelong-termgoalonthatproject.”

Reintroductionofspeciesfromotherbasins(i.e.reintroductionofbulltroutintheupperClackamasfromtheMetoliousRiver.

Retrofittingpumpsinirrigationwellsatnurseriestouselessenergyandtometerwaterbetter.

Reusing“purplepipe”recycledwastewaterforirrigation.

Robustfishmonitoringprogramsatthedam-keepingtrackofjuvenileandadultfish,sortingwildfromhatcheryfishandonlyallowingwildfishabovethedamtocreateandpreserveawildfishsanctuary.

Salmoneducationinschools-CRBCprogram

StashtheTrashbagprogramontheriverforrecreationgarbagecurtailment

38

SystemDevelopmentCharges-givecitiesthecapacitytorequirecertaininfrastructureinvestmentsfromdevelopersonnewprojects,includingprovidingopenspace.

TheClackamasPartners(differentthantheClackamasStewardshipPartners)isarecentlyformedgroupthatincludesavarietyofstakeholders.“ThisgroupislookingattheClackamasRiverBasinasawhole[...]butthey'rereallylookingat:whatarethewatershedandrestorationneedsinthebasin?Whereshouldweputlimitedresources?Whatarethepriorities?Thisgroupisworkingtogethertocomeupwithanupdatedactionplan.Theyformedoneawhileback,butthey'rerevisingit,renewingit,takingafreshlookatconditionsthatmayhavechangedsincetheydevelopedtheirlastplan.Throughthisplan,intermsoffundingforrestorationwork,projectsthatcanattractavarietyoffundingsourcesareoftenthemostlikelytogetimplemented,andsohavingthisactionplanmighthelpallofusstrategicallythinkabouthowwe'regoingtohelpsupporttheprioritiesintheland.”

Thelocalplannershavetheflexibilitywithcodetomakeexceptionsthatcanhelpminimizeimpactsofdevelopment,forexamplereducingrequiredparkinginanenvironmentallysensitivearea.

TheregionalstormwatermanagersCleanRiversCoalitionisagreatwaytosendonemessageinonevoicetotheentireWillamette-agreatmodelforoutreachandcommunicationwithstakeholders.

Thereareopportunitiesforbetterstorageanddisposalofagriculturalchemicals.

Therehasbeenalotofcoordinationinthebasinaboutwaterqualityandfishhabitat,thereistheopportunitytotackletheissueofwaterquantitytoo.

Thereisgoingtobemoreopportunitiesforcollaborationindecision-making

Thereistheneedforamorestrategicandintegratedplanforwatercurtailmentinresponsetodrought.

Thereistheopportunityforthecountytodevelopaclimateactionplanacrossdepartments-linkingtostate,andinternationalclimategoals.

Volunteerprojectstoraiseawarenessandcommunitybuy-in.

Withregardstoclimatechange:“Wecoordinatewell,bothinternallyandwithexternalpartners,butitseemslikeifyouthinkofthethreatstowater,there'salotmorecoordinationthatcouldbedoneintermsofthescienceanditsapplication,howweimplementthat.Imeanwearescience-basedorganization,butIstillthinkthatthere'sprobablymoreworkthatcouldaddresstheuncertaintiesandthenalsotherealitiesoflandmanagement.”

Workwithagchemicalsalesrepstohelpeducateaboutappropriateamountsofapplication(moreisnotalwaysbest).

2.BarrierstoAdaptation

“[...]theyreallyneedtoworkongettingthosequality,QAPs,thequalityassuranceplansout,and,because,[...]wecouldn'tuseanyofthe,soDEQforusjuststarteddoingthis[...]isgatheringdataintheirdatabaseandrunningastatusandtrendanalysisforourmanagementareaandthenreportingtheresultstous.Whatwe'refindingis,youknow,theremaybe500,150data

39

sets,butthey'reonlyabletousefivebecausetheother100eitherdidn'tmeetthetypeofqualityoritdidn'tgetdownloadedright,orwhateverreasontheycouldn'tuseit.”

“2015istheexampleofwhathappenswhenyougetultralowflow,highwatertemperatures,andfishdiedasaresult.Wehadabigdie-offofspringChinookduringthatyear,anditprovidedusareallygoodpictureofwhatitmightlooklikein20,30years,onamoreregularoccurrence.”

“Iwouldsaythatrightnow,wehaveadequateresources,butourbudgetshavebeenremainingprettystaticinrecentyears,ifnotdeclining.Withthathappening,itmakesitevermorechallengingtomaintainthestaffinglevelsthatwewouldlike,toprovidethegoodsandservicesandprotectionsthatweoffer.”

“Ifyoudon'tunderstandtheproblem,you'renotgoingtowanttofixit.AndIthinkrurallandownersandaglandownersdon'tall,theyintuitivelyhaveabetterunderstandingofwaterqualitythanmaybeanurbanpersondoesbecausethey'reoutthereworkinginiteveryday,butatthesametimetheydon'treallyknowthestatusoftheirwaterquality.Theydon'tknowthatthey'relivingonanimpairedstream.Theydon'tunderstandthat.”

“Oneofourmandatesisthatweprovidewatertotheareasthatarewithinourboundariesandtheotheroneis,again,wehavethatrelationshipwithcityofHappyValleyaspartofthewaterauthority.So,astheymovesomewhere,wetooaresupposedtomoveandservethatarea.So,wekindofjustaresometimesinthereactionmode[...]wearen'ttheonesdecidinghowitdevelops.Wedon'thavesayinwhatindustrygoeswhereandhowmuchwatertheycanorcan'tuse.”

“SomethingthatIknowisaproblemandmycolleaguesknowisaproblemandwe'restilltryingtofigureouthowbesttomanageitthroughouragency,andthatwouldbejustplainolddevelopmentandthevariouspeopleandentitiesthatareinvolvedthataren'tnecessarilycoordinatingonlong-termplanningandlongertermhydrologicimpactsofdevelopment.”

“There’salotoflayersandalotofplayersandalotofvaluesassociatedwithit.Noteverybodyvalueswaterforthesamereason.”

“ThisiswhereI'vequestionedDEQandhowthey'reregulatingthelargedevelopmentsthatareoccurring.Dowesizethingsliketreatmentpondsorwhateverforimpervioussurfaces?Aretheybigenough?Irarelygetananswerthatsays,yes,theyare.Weknowtheyare.It'smorethattheyusesomemodelingtodeterminesizing,andItypicallythinkthatmostofthosearesimplyinadequate,especiallywhenweconsidertheimpactsofimpervioussurfaceinpeakfloweventsthathappeninthosewatersheds.Theysimplycan'tcontrolthewater[...]There'salotofinstanceswhereyougooutanddoyourthingandcreateastormwaterdetentionpondthat'sgoingtocleanthewater.Doweknowifitactuallyfunctionseffectivelytoprotectfish?“

“Timeisstretchedtoothin,yeah.Everybodyisjustspreadtoothin,butIthinktheopportunityandthebenefititwouldcreatewouldoverwhelmthat.Wejustdon'tdoit.”

“Wecandoeverythingwewantto,toprotectandrestorefishintheupperbasin.Theyhaveacorridor,andalsotheydorearinthelowerbasinaspartoftheirlifehistory.Soyoucan'tjustwriteitoffandletthingsdeteriorate,asIthinkweare.Acoupleofexamplesofthatare,again,thewastewatertreatmentplants.Wehappentobethere.Wehappentomonitor,soourguysarewalkingthestream,andthey'llsmellchlorine.It'sreallythatbad.We'veonlyhadtwospecificincidentswherefishdiedasaresultofit,buttherewasonewhere60adultcohodied,anotherwherenearly100juvenilecohoandsteelheadsdied,directlyasaresultofeffluentrelease.So

40

there'sthat,andit'satributarytotheClackamas,soDeepCreek.Thenyou'vegotRockcreek,whichisdownstreamandprobablythehighestrateofdevelopmentanywhere.”

“Weneedtolistentowhattheriver'stellingusandstarttomakechangesbefore[...]we'renotrecognizingthatsomethinglike2015isgoingtobeamoreregularoccurrence.Weneedtothinklong-term.We'rejustnotdoingit.AsmuchasIthinkpeoplewerescaredwhenclimatechangeandeverythingbecameanissue,I'mafraidthat'sdieddownalittlebit.Peoplejustaren'tthinkingfarenoughahead.”

“We'rekindofanaffluentareaandsotheytendtousequiteabitofwaterforwater,wateringtheirlawns.So,togiveyouafeel,ourwinterdemandismorelike3.5milliongallonsperday....thedifferencebetween3.5and12.8[summeruse].”

Alotmorecoordinationneedstobedonewithpartnerstoaddresstheuncertaintiesthatwillcomewithclimatechange.

Aneedtobemorestrategicindroughtcontingencyplanning.

Abletoenforcezoning,butnotmuchbeyondthat

Abundantrecreationincloseproximitytowaterisproblematic.

AgricultureregulationiscomplicatedbecauseofthelargevarietyoftypesofagricultureintheCRB.

AsHappyValleytakesoverprovidingservicesforDamascus,whatfutureresponsibilitywillfallonthecityregardingupdatinginfrastructure?

Costisamajorbarriertoimplementingstrategies.

CRBCissupportedbythestategeneralfund.Decisionsaremadeatthelegislaturelevel,notthelevelofthosedoingtheworkontheground.Thismakesitperpetuallyvulnerable.

Currentinfrastructurewillnotbeadequatetodealwiththeincreasedfrequencyandintensityofweathereventsinthefutureduetoclimatechange.

Curtailmentplansarenotcohesiveorconsistentinthebasin,andmostthemdon’ttriggerunlessthereisadroughtdeclarationbythegovernor.Mostcurtailmentisvoluntary.

Decisionsaboutwhethertospendrestorationmoneyinurbanareas,orusethesameamountofmoneyinruralareasto“preservealotmorefish”.Howdowestarttacklinganissuewhereitcanbemosteffective?

DEQshouldbethekeeperofdatathatcanbesharedbetweenagencies,buttheyhavenothadasustainabledatamanagementsystemuntilnow(tobenewlyimplementedsoon).Rightnowsharingisadhoc.

Difficulttocontroldumping-homelessencampments,humanwasteimpactsontheriver.

Difficulttoimproveoldinfrastructurewhenpeopledonotwanttheirwaterratesincreased.

41

ESArecoveryplanisnotregulatoryandnotmandatory,itonlyhappensifthereispoliticalwilltodoit.Plus,existingregulationsarebeingpeeledback.

Fisheriesmanagementislackingingettingtheirmessageouttothepublic.

Focusoncomplaintsandcodeviolations,versuspayingattentiontowheredevelopmentisproceeding.Plus,resourceddropoffintheseareasbecauseresidentsaren’tpayingtousesewerpipes-yetdevelopmentisstillhappening.

Frequentcomingandgoingofthefarmingpopulationmakesmessagingaroundregulationsdifficulttocommunicate.

FundingtoDEQ,passeddownfromtheEPAhasgonedowneveryyear.Thisacongressionaldecision,sonotalocalcontrol.ThismeanstheyareunabletoprovidegrantstosupportotherorganizationslikeCRBC.

HappyValleyhasa“reallyextremelylowpermanenttaxrate”,soinorderfundoperationsthecityhastogoafteralevyandgetapprovalfromthevoters.

Highertemperaturesandlowerflowsrequiringmoretreatmentinwastewater.

Ifpermittingandregulationswouldallowformoreflexibilitypeoplecouldsharewaterrightsincertainways.

Increasesinconstructionandimpermeablesurfacesinrecentyears,andprojectedforfutureyears,aretaxingutilityinfrastructure.

Itisasignificantundertakingtotrytochangetheregulatoryprocess.

It’sdifficultandcontroversialtotrytobalancepropertyrightsandenvironmentalprotections.

Lackofadequatelawenforcement–notenoughpeopleontheforce.

Lackofcoordinationofinformationbetweendepartmentsandagencies.

LackofeducationorapublicknowledgebaseaboutwaterintheCRBisachallengeandthreattotheresource.

Lackofuseofonlineresourcesforruralagriculturalpopulation-generationaldifference.

Legacyfarmingconditionsaredifficultandexpensivetocorrect:channelizedstreams,compaction,invasiveplants,etc.

Manyfarmershaveoff-farmjobsanddon’thavealotofsparetimetoconnectwitheducationorresourceopportunities.

Oldinfrastructureintreatmentplantscannotdealwiththeincreaseinuse/need.

Opportunitiestodooutreachtolandownersdependsonavailablefunding,whichisuncertaininthefuture.

42

Outreachtovulnerablepopulationsisabigchallenge(floods,landslides,fires,humanhealthissues)-includednon-Englishspeakers,childreninschool,thehomeless,thosewithmobility/visionorhearingissues.

Peopleareshyabouttheirdata-“theydon’twanttobe,wellIsharedthiswithyouandnowthegovernment’shereandthey’retellingusourstreamsaredirtyandwecan’tdoallthesethingsandit’sallmyfault.”

Peopleareshyabouttheirdata,notsureifitsgoodenoughtoshare.

Pesticidesalesrepsmaypushmorechemicalsthanarenecessaryinordertomeettheirsalesbottomlines.

Politicalpendulumswingscanbeachallengebecausetheelectedboardgovernsthedepartment.

Politicalshiftscanshiftmanagementdirectives,whichimpactswaterproviders,particularlyincitieswherewaterisjustoneofmanyresponsibilitiesoftheelectedofficials.Thereisaconstantneedtoeducatetheelectedofficials.

Regardingwaterrights,thereismoredemandthanwater.

Resistancetochangebylandowners.

Resourcesarenotavailabletomonitorwaterquality-therearenotenoughmonitoringlocations.longtermdatasetsarelacking,andmodelingislacking.

Socialmedia-driveneventshavesetbackeffortstochangenegative-impactsandbehaviorforrecreationontheriver.Nowthereareverylargeevents,organizedquicklythatbringthousandsofpeopleinoneday(Floatapalooza,TheGothFloat,etc.)–itputsastrainonthesystem.Plusifsomeoneisusingtheriverjustonce,theydon’tcareabouttheriverinthesamewayasregularvisitors.“Westartedseeing,fromasocialorculturalphenomenon,peopleofentitlement,didn'tcareaboutyourrules,didn'tcareabouttheriver,didn'tcareaboutanythingbutjustforthenextthreeorfourhours,theywerejustgoingtodowhattheywantedtodo.”

Someagenciesspendtimereviewingandcommentingonlanduseissues,butrunintofrustrationswhenitdoesnotmakeadifference.ManyoftheDEQregulationsarenotsufficientforwaterquality.“It'snotenough.Whenyoulookdowntheroadand,inparticular,considerclimatechange,they'renot.OnequestionthatIoftentimeshavefortheregulatorsthatweworkwithishowisthisgoingtomakeadifference.Whatdifferencewillourcommentorourefforttoreviewsomethingmakeintheoverallimplementationoftheproject?Soit'sgottothatpointwhere,becausewe'respreadsothin,unlessweknowwe'regoingtomakeadifference,wedon'tgetintothearenaanymore.”

Staffingissuesresultintheinabilitytobeproactive.

Thebiggestrisktotheriveristheoverusebypeopleforrecreationwithverylittlecontroloveraccess.

43

Thecombinationofdroughtandfutureclimatechangehavenotbeenconsideredinplanningyet.Theneedswillvaryindifferentpartsofthebasintoo(SouthCountyhasbeenparticularlyimpactedinthepast).

ThefutureofEPAfundssignificantlyimpactsthePacificCohoSalmonRecoveryFundthatisdistributedthroughOWEB.

Therearenotsystemsinplacetodealwithsevereevents,rathertheyarehandlesinmoreofanad-hocmanor.

Therehasbeenafocusontechnicalsolutions,butthereisaneedformoreplanningandcollaborationonsharingresources.

Thereisaconflictinprioritybetweenthecountytourismdepartmentandtheparkdepartment.TheParkdepartmentisnotinterestedinattractinganymorepeopletotheriversinceitisalreadystrainedsystem.

Thereisatendencythatwaterdecision-makerswill“goatitthemselves”,insteadofcollaborating.

Thereisanincreaseindevelopmentofareasthatarenotservicedbysewers,thereforetheyareonseptic,andtheseareasarenotwell-mapped,lackregulatorymechanisms,andsufficientfundingtofixit.

Thereisdifficultytacklingproblemsthatareexpensiveandlong-term.

Thereisnotagoodunderstandingofhowclimatewillimpactfrequencyandintensityofstormsandhowthiswillaffectpastandcurrentriparianandhabitatrestorationefforts.

Thereisnotcurrentthinkingabouthowtoincorporateforestfireriskintowatershedplanning

Timeisanothermajorbarrier

Traditionalfarming:conservativeandhighlyfocusedon“safe”decisions.Conservationbestpracticeslagbehindcuttingedgeresearch.

Uncertaintyabouttheimpactsofclimatechange.

Understaffed-unabletobeproactive

Waterboardsrepresentthepeopleandmaytakeexceptiontorestrictionsofwateruse.

Waterinfrastructurefunctionandimprovementsarefundedthroughratepayers,sothereisnotincentivetocurtailwateruseinthesummer.

WaterprovidersdonothavetheirwaterrightsdeterminedbecausethereisongoinglitigationfromWaterWatchregardingtheirimpactsonfishhabitat.

Waterqualitymonitoringthatisbeingdone,ishousedindifferentplacesanddifficulttoshare.

Waterqualityreportsdonotgetdistributedaswidelyastheyshould.Youhavetoknowwheretogolookonawebsitetofinditnow.

44

WaterqualitysamplingmaydecreasefromagenciesandnonprofitswhorelyonDEQ319grants,asthatmoneyisnotlongeravailable.

Whendryyearsarefollowedbywetyearsthesenseofurgencyfordroughtplanningdeclines.“Outofsight,outofmind[...]We’llbethereagainoneday”.

3.IstheBasintheAppropriateScaletoApproachAdaptationStrategies?

“Six-fieldwatershedscale”likethelowerportionofDeepCreek-it’sanappropriatescaletomeasureandtobeabletoseechangeinrestorationactivities.

CRBistherightscaletoaddressthesethreats(mainresponse)

DepartmentofFishandWildlife(federal)andWaterResourcesDepartment(state)

Forfish,wealsohavetoconsidertheWillametteandColumbia,includingthePortlandHarborintheWillamette.

Individualconnectionisabetterscale,“thebestinteractionshappenbetweenneighborstoestablishcredibilityandtrust”.Thisishowtochangepeople’sminds.Itisdifficultto“scaleup”thislevelofengagement.

It’sgoingtotakealllevels-nationalleadership,stateprocesses,thecounty“allpoliticsislocal”,neighborhoodscales

Watershedlevelistherightscalebecauseyouneedtolookatthe“bigperspective”-fromtheheadwaters,transportanddepositiontotheocean.

C.Stakeholders

1.WhoIsCurrentlyEngaged

“ThebiggestonethatisthechampionistheClackamasRiverwaterproviders”

“TheWatershedCouncilishuge.Imean,theWatershedCouncil,Iwouldsay,isthedrivingforceofpositivechangeandprotectionintheClackamasBasinthere.”

“TheWatershedCouncilisaconvener,[...]theWatershedCouncilisthecentralentitythatbringsustogether.”

“IwouldmentiontheSoilandWaterConservationDistrictisalsoanotherreally,reallyimportantsourceofpositiveworkandpositivechangeintheriverbasinbecauseoftheirtechnicalexpertise,particularlyaroundconservationandrestorationandlandmanagement,andbecauseoftheirrelationshipwithlandownersthatnotbeingaregulatoryagency.”

Metro-“They'reanenormoussignificance,andtheyaremostdefinitelynotonlyatthetablebutIthinkcouldalmostbeinsomecasesconveningotherpeoplearoundthetableofrestoration.”

“Ithinkthere'sanintentandawillingnesstohavegoodinformationsharing,butweall,whenIsaywe,I'mtalkingaboutallthestakeholdersinthebasin,allhaveourownsystemsthatwe're

45

keepingourdatain.Ithinkit'sfairforpeopletolookatanagencylikeDEQandsay,youshouldbetheplacewhereallentitiescansendtheirdata.”

“Ithinkthefolksthathavelotsofdata,theClackamasRiverwaterprovidersbecauseofthecontractworkthatthey'vefundedandcontracted,USGeologicalSurvey,DEQ,theSoilandWaterConservationDistricthasitsowndata.TheWatershedCouncildoessubmittheirdatatoDEQ.There'salotofentitiesthathavedata,andwe'recertainlywillingtoshareitwitheachother.Wejustdon'thaveareallyconvenientwaytodothat,andsoittendstobekindofadhoc[...]Ithinkwe'reallawareofit,andagaintheWatershedCouncilhasdoneareallygoodjobofinitiatingthoseconversationsaboutwho'scollectingwhatwhereandmakingusawareofworkthat'sgoingon,butit'sabigliftforanyoneentitytobeabletopullitalltogetherandmakeitsharable.”

2.WhoisMissingfromEngagement

Agriculture,growergroups

AttimesClackamasCountygovernment

Landowners

Morepeopleneedtobeengagedinthebigpictureoflanduseplanning,developmentplanning,roads,agriculturalconversionsandforestryconversions.

“MorethanIfeellikesomeone’smissing,IwishIhadmoreengagement.Becausetheyshowup.Butit’shardtokeepitgoinguntilwecangetitalldonebecauseittakestime.”

Moreworktodotoreachthegeneralpublic,the“missingmiddle”

Planningonawatershedscale.

“Thatisareallyexcellentquestion,andthat’salwaystheonewewanttobeasking.Wethinkweknowwhatallthesourcesare,andwethinkweknowwhoallthestakeholdersare,butImean,ifsomeone’smissing,howdoweknowthey’remissing?

Theacademicside,scientificresearch

Tribes-taxedintermsofresourcesandtime,theyare“vital,keymanagersoflandandwater”

Workonbettercoordinationamongstagencies.Weworkpasteachotheralot.

3.IstherePoliticalWilltoAddresstheseThreats?

“Ithinkthatingeneralasthecity'sgrown,theelectedofficialshavebeen,that'skindofbeentheirinterestis[...]havinggreaterlocalcontroloversomeofthesethings.”

“IthinkwedohaveaconcernonfuturesupportfederallytotheEPA,andanypoliticaldirection,thatdictatestheirresponses.”

“Ifwe'relookingatcapitalprojectsorthingsthatarepotentiallymorefar-reaching,youwouldwanttogetapprovalfromthecommissionersforthattypeofpolicydirection.Youhavetowalk

46

thatlineverycarefullyandusethepoliticalclimateatthetimeasabellwethertodeterminewhetherornotyoucanembarkontheseprojects.”

“IntheU.S.,legalcasesandprecedentsthatpushusnottoundulylimitlandownerandpropertyownerrights.Again,itkindofcomesbacktothisbalancingact.”

“It'sbecauseofvoters,itwasseenasamandatetothestate,andtoourlegislators,In2010,whenthevotersvotedaheadofthesunsetsupporttoOWEB,andforlotteryfundstobededicatedtoprotectionofournaturalresources,thatthereispoliticalwill.”

“Myperceptionasastate-levelenvironmentalregulatorisIthinkthereis.Ithinkit'saquestionofresourcesmorethanwill.Idothinkthatthecountyrecognizesthattheyhavewaterandlandmanagementresponsibilities,obviously,andthatdevelopmentcertainlyhasanimpactonwaterandlandmanagement.”

“No,nope.Idon'tknowhowseriouspeopleareabout...Sincefishprotection,fishrestoration,ourESArecoveryplanisnotmandatory.It'snotregulatory.There'snoreasonforanybodytodoanythingreally.Unlessthere'spoliticalwillandsomebodythatcanbackeitherthe...regulationseemstobepeelingback.NotthatIsayweneedmoreregulation.Wedon't.Weneedtoregulatewhatwehavetoregulatewiththetoolsthatwehave.Itfrustratesmetonoendthatweseemtobepeelingbacktomakeiteasierforpeopletodosomeofthesethings.So,istherethepoliticalwilltostandupandsaynomore?We'vegottodosomething.”

“Planninganddevelopmentisreallyourbig,bigmajortool.Asacitythatgrewupfrombeingsomewhatanti-development...”

“Politicalwillispoliticalwill.Itcomesandgoesaspeopleareelectedintooffice.

“There'salwaysthestressofwherefundingis,andavailablefunding.So,therecanbeshiftsinpoliticalwill,basedoncreationofjobs,presenceofcorporations.Thingslikethat.”

“Weactuallyown,thecountyownsabout3,400acresofforestlandthatwemanagefortimberproduction,thattherevenuefromthetimberoperationisoneofmyrevenuestreamsfortheparks,butit'salsokindofourownlaboratoryofbeingabletohaveavoiceandspeakaboutforestpolicyandforestissues,becausewe'renotjusttalkingaboutit,we'relivingitanddoingit.Sowegetalot,Idoalotofworkwiththecountycommissionersonforestpolicy,stateandfederalissuesaffectingforestlandsandforesthealth,andfire,andallthat.”

“Yeah,ifwe'regoingtohavetopayforParkswe'regoingtohavetodoalevy,whichishowwedoourownlocalpoliceforce.That'sthethingthatkindofhamstringsusonalotofthisstuffisthatwehavealowpermanenttaxrateanditwouldrequirealotofpoliticalwillamongthecitizenstoraisetheirowntaxratepermanently.Andparticularlytokindofentrustthatthegovernmentwouldbethestewardsofthoseincreasedrevenues.”

Alothingesonpublicopinion,andthecountyisdiversewithalargeurbanpopulationandalsomanypeoplewholiveinruralareas.

Basincoordinatorsarefundedbythestategeneralfund.Allofthesepositionsneedlegislativeapproval,soarevulnerablewhenattemptingtomakethebudgetbalance.

47

ClackamasCountygovernmenthaslimitedjurisdictionoverlong-rangeplanningforwater,andthereforea“prettyminimalsurfacewatermanagementrole”.

CompetingscienceandpoliticsregardingendangeredfishlistingintheCRB

CurrentlythereisfederallitigationgoingonbetweentheNationalMarineFisheryServiceandFEMA,whichclaimsFEMA’sfloodplainregulationsareviolatingtheEndangeredSpeciesAct.Theoutcomeofthislawsuitmayrequirecitiesandcountiestoenforcelargerriparianbuffersandfloodplains.

Federalbudgetsarestaticordeclining-difficulttomaintainstaffinglevels,providesgoodandservices

FundingprovidedtoDEQhasgonedownconsistentlyeveryyear.Itisdependentoncongressionaldecisions.

Onthecountylevel,somearguethatcitiesshouldbepayingformoresource-waterprotectionstrategies.

PlanningandzoninghasbeeninOregonfor40years,somostpeopleunderstandthatthereareenvironmentalregulationsandthereisnotpushback.

Technicalsideversustheopinionsofindividualboardsorcommissioners-theydon’talwaysmatchup

TheCountyCommissionerscanhaveapendulumswing-inthepasttherewereTeaPartyRepublicans,nowisitlargelyprogressiveenvironmentalists.

Thecountyneedsacounty-widesurfacewaterdistricttointegrateplanningandmanagementaroundwaterinacomprehensiveway.Thisisaveryrealpossibilityinthenearfuture.

TheguidingdirectionfortheUSFSwillnotchangewithoutaforestplanrevision,whichisoverdue.Theearliesttherevisionmayhappenis2020.

Therearefederalmandatesonhowwatersystemswork,butchangesatthefederallevelareslow.

ThereisanopportunityforthecountytohaveaclimateactionplanandengagethelegislatureonstatewidegoalsthatalignwiththeParisClimateAccord.

Thereisnotpoliticalwilltoexpandthesizeofriparianbuffers-perceptionthatitwillcausehardshipforfarmersbyremovingproductivefarmland.

ThereispoliticalwillatODAfromleadershiptopromoteagwaterquality.Currentlythereisnotan“AgPracticesAct”,butthereisrecognitionthatifthingsaregoingthewrongwaythensomeonewillsaythisisnecessaryinordertomeasurelevelsofcompliancetostandardsandBMPs.

Utilitieshavecitycouncilsorelectedboards,andpoliticaldynamicsdefinitelyimpactdecisiondirections.“Youareconstantlyinthislearningandteachingyourelectedofficialswhatyoudoandhowyoudoit,andwhyweneedtoincreaserates,andhowweplanourwatersystemmasterplansplanningintothefuture,andhowwekindofoutlinetheimprovementswe're

48

goingtomakeovertime,andthatcomesbacktowhatdoyouchargeforsystemdevelopmentchargesascommunitiesaregrowing.It'slikehowdoesthatnewgrowthpayintothesystem?Andit'snotrocketscience,butitiscomplicated,andasyougetnewpeopleeveryyear,youjusthavetocontinuenotonlytoremindthosethatareevensomewhataware,butweeducatethem.”

WastewateroutfallsarenotallowedontheClackamas(exceptionofEstacadaintotheClackamasandSandyintoTickleCreek).Aslongaspoliticiansmaintainthisrule,theCRBmightavoidmajorissueswithpharmaceuticalsinthewater.

Waterboardrepresentsthepeople-mayberesistanttorestrictionofwateruse

Yes,citiesandwateragenciesasagroup,butsometimesonanindividualbasiseveryonestillwants“theirwaterandtheirright”.

4.StakeholderMessagingandOutreach

“Andunfortunately,thathassomewhattodowiththewayourratesare...youknow,howourwaterratesworkinthatwedon'tdoagoodjobcommunicatingtopeoplewhatratespayfor,andprobablyweneedtodoabetterjobofmakingourbaselineflatratecoverjustoperationmaintenanceyear-round,andthen...Mostpeoplehavetieredrates,sointhesummerthemoreyouuse,themoreyoupay.”

“Onceweadoptedourdrinkingwaterprotectionplan,itbecameclearveryquicklythatthere'sahugeoutreachcomponentinthewatershedalso,sowekindofhavetwoaudiences.Oneareourcustomers,becauseit'stheirwaterdollarsthatarefundingourprogramsupriver.Andthenourotheraudienceisthepeoplewhoareactuallyinthewatershed,inthattheirland-useactionscanimpactourdrinkingwatersource.”

“There'snoteethoranyregulatoryrequirement.Butwehavebeenengagedinourwatershedsincethelate'90s,andIthinkthatallofourwaterprovidersunderstandthatandrecognizethatbecauseweareoneofthebiggestusersofthebasinthatwehavetoshowthatwearegoodstewardsandthatwearenottakingforgrantedwhereourwaterresourcescomefrom.Andtheyalsorecognizethatthemorewecandotobeengagedinthewatershedandhelppeopleunderstand,andhelpmaintainahighqualityofwater,thebetterabilitywehavetokeepourtreatmentcostslow.”

Arealthreatispeoplenotknowingorunderstandingtheirroleinmanagingwaterqualityfromagricultureactivities,forexamplemanurefromhorsesorotherfarmanimals.

CountyEmergencyManagementdoesmediablitzes(andsocialmedia)regardinghumanhealthandsafety,includingboilwaterannouncements,flooding,fire,snowandice,drought.

Curtailmentplansvarybywaterproviders,butmostdon’twanttotelltheiruserstheyarerequiredtorestrictuse,theywouldratheritbevoluntary.

DEQreportsareavailableontheirwebsite,butpeopleneedtoknowthattheycangolookthemup.

49

Firedanger-attimesofhighfiredanger,crewsgooutandmakecontactwithcampersandimplementpublicuserestrictions.Socialmediaisbeingusedmoreforpublicoutreach,andrecentfireswithairqualityimpactshaveraisedfiredangerawareness.

ForestryhasasetofstandardsandBNPsinOregon.Agricultureputsforwardconditions,andtrytoworkwithfarmerstobeincompliance.Theconditionsvarydependingontheclimateandregion.Thereare38regionsinOregon.Thismakesdealingwithregulationsverycomplicated.Farmerscanreceivefundingandtechnicalassistancetogetintocompliance.

Issueswithpesticideuse.Thereisaneedtopartnerwithcompanies,likepesticidesalesreps,tohelpwitheducationoffarmersintermsofappropriateamountstoapply.Homeownersneededucationtoo.Justbecauseyoucanbuyitandit’slegaldoesn’tmeanyouneedtoapplyasmuchasyoudo.

It’sdifficulttomaintainthemessaging-peopleonlycarewhensomethinggoeswrong.Itisdifficulttogetpeopletocareaboutmessagingaroundpreparednessforfutureproblems,likeclimatechange.

Managerscanchooselanguagethatappealstoeveryone,like“drinkingwater”insteadofjust“water”.

ManypeoplearemovingtotheregionandtheClackamasdoesserveasPortland’s“backyardplayground”,sothereisconstantneedforpublicawarenessandoutreach.Theabilitytodothisisfundingdependent.

Messagingisstilltargetedatoutdoorwateruseinsummermonths,promotingconservation.Withclimatechangethisisgoingtobeevenmoreimportant.

Needtoeducatepeopleaboutminimizingamountofpesticidesenteringtheriverandstreams

ODA-24hourpesticideconcernlineforthepublic

ODAprogramfocusedonnon-pointsourcepollutionworkswithfarmers,ranchersandtheagcommunityasawhole.Thisincludesmaintainingstreamside-vegetation.

OutreachandmessagingthroughtheClackamasRivercleanupscausedthecommissionerstostepupandtakeaction.Bansonunsanctionedalcoholandenforcementefforts.

Peoplereallyconnectwithsalmonandsteelheadmessaging(ascomparedtootherspecies).Butmessagingisstillaprobleminthisarea,itoftenfallsondeafears.ThereisanattempttoreachMillennials,asthenextgenerationofanglers.

Privatelandownersgetinvolvedwithrivercleanup,andvoluntaryplacegarbagereceptaclesontheirpropertiesadjacenttotheriver.

Septicsystemowners-thecountyrequiresareportthatthesystemisputinbyalicensedinstaller.Thereisadesirebythecountytohavemoreresourcestobemorepro-active,likegrantstoupgradesystemsandtimetogooutandmarketittolandowners.Thereisaneedtopitchitasahuman-healthissue.

Sharingtechnicalinformationwithboardsandcommissioners

50

Shiftsawayfromjustmonitoring,insteadformpartnershipsofstakeholders,andsharedata/transparency

TheClackamasRiverBasinCouncildoesoutreachtothecommunityforanumberofprojects,liketheShadingOurStreamsprogram,theymakeparticipantsfeelproudoftheirachievements.TheCRBCisalsoinvolvedwithschooleducationprogramsaroundfish.

TheClackamasSoilandWaterConservationDistrictarethesourceofinformation,educationandresourcesatalocalscaleforlandowners.Theyserveanimportantrolebecauseoftheirrelationshipswithlandowners.Ithelpstheyarenotaregulatoryagency.

TheDepartmentofStateLandshas“biggerhammer”.Theycancitepeoplewhopulloutvegetationinwetlandswithoutapermit.

ThePesticidesStewardshipProgram-engagedinoutreachactivitiesandassessments

Therearemanynewfarmers,peoplecomingandgoing,manydon’tknowtherulesexist.Orhavehadyearsanddecadesofbadpractices.Itisdifficulttoconnectwithfarmers,theyoftenhave“offfarm”jobsandnotalotoftime.

Thereisaneedforbetterpublicunderstandingofdangertodrinkingwater,includingwastemanagement,dumping,etc.

Usefundstoincentivizepeopletochange-irrigationupgradeprojects,butmustincludewatergauges,forexample.

Waterdistrictshaveaneedtoconstantlyeducateelectedofficialsaboutwhattheydoandhowtheydoit,whyrateincreasesmaybenecessary,andlongtermplanningneeds.

Waterqualityreportsdistributedtolandowners

51

Appendix B.1 – Precipitation data and methods 1.Data

In-situprecipitationdataisfromtheCooperativeObserverNetwork(COOP)dataset,aNationalCentersforEnvironmentalInformationproduct.COOPdatacomesfromanetworkofover10,000volunteerobserversspanningtheUnitedStates.TheEstacada2SE(41’elevation)andtheOregonCity(17’elevation)COOPstationsarelocatednearurbancentersinthelowerClackamaswatershed(USGScatalogingunit:17090011).In-situsnowwaterequivalent(SWE)dataisfromtheNaturalResourcesConservationServices(NRCS)SnowTelemetry(SNOTEL)network.ThePeavineRidge(3420’elevation)andClackamasLake(3400’elevation)SNOTELstationsarelocatedintheupperClackamaswatershed.TheSNOTELnetworkconsistsofovermorethan800automateddatacollectionsiteslocatedinhigh-elevationmountainwatersheds.Modern-EraRetrospectiveanalysisforResearchandApplications,Version2reanalysis(MERRA-2)wasusedforatmosphericcirculationvariablessealevelpressure(SLP),500-hPageopotentialheight(Z500),250-hPawindspeed(V250),andintegratedvaportransport(IVT;Gelaroetal.2017).MERRA-2isaproductoftheNationalAeronauticsandSpaceAdministration(NASA)availablefrom1980.MERRA-2has0.5°x0.625°spatialresolutionandhourlytemporalresolution.GRIDMETdatawasusedforsurfacetemperatureandregionalprecipitationfigures.GRIDMETisaUniversityofIdahoproductavailablefrom1979.GRIDMETdatahas1/24°x1/24°spatialresolutionanddailytemporalresolution(Abatzoglou2013).GRIDMETdatacombineshightemporalresolutiondatafromtheNorthAmericanLandDataAssimilationSystemPhase2(NLDAS-2)withhighspatialresolutiondatafromtheParameter-elevationRegressionsonIndependentSlopesModel(PRISM).

2.Methodology

2.1 ExtremeprecipitationeventdefinitionThisstudyevaluates1-daytotalprecipitationaccumulationoverthe37-yeartimeperiodfrom1980(correspondingtotheavailabilityofreanalysisdata)through2016.BothCOOPstationswereusedtocalculate the 90th percentile 1-day total precipitation accumulation based on wet days (>0 mmprecipitation at either station). In other words, the daily wet day precipitation total frequencydistributionusedtoidentifythe90thpercentilewasconstructedusingdataaggregatedfrombothstations.IftheprecipitationamountateitheroftheCOOPstationswasgreaterthanorequaltothe90thpercentile1-daytotalprecipitationaccumulationthreshold,thedaywasconsideredanextremeprecipitationevent.

2.2 Large-scalemeteorologicalpatternsassociatedwithextremeprecipitationdaysCompositesofSLP,Z500,andV250wereconstructedfortheextremeprecipitationdaytimeseries(Figure 3). These variables describe atmospheric circulation near the surface, in the mid-troposphere,andnearthetopofthetroposphererespectivelyandtogetherprovideacomprehensivediagnosisofthedrivingatmosphericmechanismsforextremeprecipitationdays.Theself-organizingmaps (SOMs) approach is employed to identify the range of large-scalemeteorological patternsassociatedwithextremeprecipitationdayswithintheCw.SOMsareaclassofunsupervisedneuralnetworksthattake,inthiscase,2-dimensionalgeophysicaldataasinputandsorttheinputdatainto

52

asetofmxnclustersor“nodes”whereeachdayassignedtoagivennodehasweatherpatternswithsimilar characteristics as the other days assigned to that node. The SOMs approach has beendemonstrated as an effective and robust tool forstudying synoptic-scalemeteorologicalpatterns(LennardandHegerl2015;Swalesetal.2016).ThisstudyleveragestheSOMsapproachedusedbyLoikithetal.(2017)usingtheweatherpatternsateachofthethreeatmosphericlevelsforeachdayidentifiedashavingextremeprecipitationasinputtotheSOM.Basedonasensitivityanalysis,a4x3nodeconfigurationwasfoundtooptimallycapturethesynopticpatternvariabilitywhileminimizingpatternrepetition.The12-nodestructureisintendedtomaximizeutilitybypractitioners.

Nodecompositesofvariousdynamicalvariables(IVT,surfacewinds,surfacetemperature,regionalprecipitation, and precipitation anomaly) were created based on SOM assignment of extremeprecipitationdaystothe12nodes.TheRutzAtmosphericRiver(AR)Catalog,basedonMERRA-2inputdatawasusedtoidentifyatmosphericrivers(Rutzetal.2014)fordaysassignedtoeachnode.This studymaintains the Rutz et al. (2014) definition of ARs: narrow corridors of water vaportransport>2000kminlengthwithintegratedvaportransport(IVT)>250kgm-1s-1.ThelatitudeandlongitudeboundsusedfortheRutzARindicatorwere[4546]and[-124-122]respectively.

2.3 SWEchange(Preliminaryresearch)Thisstudyevaluates1-daychangesinSWEoverthe36-yeartimeperiodfrom1981(correspondingtotheinstallationofSNOTELstationsintheClackamaswatershed)through2016.Atbothstations,theSWEtimeserieswassortedintothreeclasses:daysofincreasedSWE,daysofdecreasedSWEanddayswithnochangeinSWE.SOMsanalysisasdescribedabovewasperformedonincreasedSWEdaysandondecreasedSWEdaysatPeavineRidgeandseparatelyatClackamasLake.

AppendixB.2–Extremeprecipitationself-organizingmaps

While the composites in Figure 2 are physically interpretable and provide plausiblemechanisms for extreme precipitation over the Cw, it is likely that there is considerable intra-composite variability. To identify the range of weather patterns associated with extremeprecipitationovertheCw,Figure3showstheSOMsresultswhereextremeprecipitationdaysaresortedinto12nodes.Eachdaywithextremeprecipitationrecordedisassignedtooneofthe12nodessuchthatadayassignedtoNode1wouldhaveastronglowpressuretothenorthwest,adeeptroughtothewestatZ500,andastrongjetstreakorientedfromsouthwesttonortheast.TheSOMsapproachhighlights the large range ofweather patterns that can bring heavy precipitation to the Cw. Forexample,therightsideoftheSOMtendstobemoreassociatedwithhighpressurewhiletheleftsideoftheSOMismoreassociatedwithlowpressure.

53

Figure 3. 12-node self-organizing maps for the 1166 greater than 90th percentile accumulation days showing (left) sea level pressure (SLP; contours at 5 hPa spacing), (center) 500 hPa geopotential height (contours at 50 m spacing), and (right) 250 hPa jet stream winds (contours at 5 m s-1 spacing). InFigure4,wesorttheoccurrenceofdaysassignedtoeachofthe12nodesbymonth.ThecirclesizeinFigure4isproportionaltothenumberofdaysfromthecorrespondingmonththatareassignedtoeachnodewithlargercirclesindicatingmoredays.Mostnodesareprimarilycommoninthefallandwinter months. Node 12 stands out as being a primarily summer pattern, which is physicallyconsistentwithexpectationsconsideringNode12inFigure3showsamuchdifferentpatternthantheothercoolseasonpatterns.Node11alsoshowssometendency towardsspringwhileNode4tendstobemostcommoninfall.

Figure 4. SOM dots plot showing node assignment along the x-axis and month along the y-axis. Dot size is proportional to the number of days in each node from each month. Dot shading indicates node frequency of occurrence with yellow nodes occurring most often and dark blue nodes occurring least.

54

The RMSE of each final node composite relative to all node input days is displayed in red at the top of the figure.

Togetabetterunderstandingofthemechanismsassociatedwithextremeprecipitationdays,Figure5showscompositeaveragesoftheintegratedwatervaportransport(IVT)fordaysassignedtoeachnode. IVT describes the total amount of water vapor that is being moved through the entireatmosphereateachdatapoint.WhenIVTisover250kg/m/s,thethresholdtobeconsideredanARisreached.OntopofeachnodecompositeinFigure5isthepercentofdaysassignedtothatnodethatwere identified as being associatedwith an AR according to the Rutz catalog. Node patternassociationwithARsisassignedtoweak,moderate,andstrong,consistingof0-40,41-70,71-100percentofpatterndayscoincidingwithapositiveARsignal.ThereisastrongassociationbetweenARsandnodes1,2,3,4,5,6and9.ThereisamoderateassociationbetweenARsandnodes10,11and12.ThereisaweakassociationbetweenARsandnodes7and8.ThehighestproportionofARdaysoccurwiththestrongestlowpressurepatterns,whilethelowestoccurrenceisforthehigherpressure patterns (see Figure 3 for corresponding patterns). This suggests that ARs are a keymechanismforbringingextremeprecipitationtotheCw,howevernotallextremedaysareassociatedwithanAR.

Figure 5. Node composites of integrated vapor transport (contours at 50 kg m-1 s-1 spacing). Bold contour indicates at 250 kg m-1 s-1 threshold for AR classification. Red numbers are the percent of events in each node that have a positive AR signal over the study area.

55

AppendixC.1--Turbidity,Discharge,andPrecipitationDynamics1.Data

ThreeUSGSgagingstationswerechosentoobtaindischargedataincubicmeterspersecond(CMS)andturbiditydatainFormazinNephelometricUnit(FNU)fromthewateryear2008to2017(Table1).Dischargeandturbiditydatacollectedwereonlyanalyzedforthewetseason,whichinthisstudywasdefinedasbetweenOctober1standMay29th.SummermonthsfromJunetoSeptemberwereneglectedinthisstudybecausethechosenwatershedsdonotreceiveasignificantamountofprecipitationsduringthedryseason.Precipitationdatawasalsocollectedonanhourlybasisinmillimeter(mm)fromthenearestPortlandHydraRainfallNetworkstationsduringthe10-yearstudyperiod.Landscapecharacteristicdatalikelandcovertypewerecollectedfromthe2011NationalLandCoverDatabase(NLCD)toidentifythepercentageofurban,agricultural,andforestcoverpercentageineachsub-basindelineatedfromthestudystations.

2.Methods

2.1StormIdentification

IdentifyingstormsandheavyprecipitationswerenotstraightforwardbecausehydroclimateinthePacificNorthwestishighlyinfluencedbyseasonality,atmosphericcirculationpatterns,andtheCascademountainrange.BothClackamasRiverandJohnsonCreekareinthelow-lyingvalleyswestoftheCascades,whichexhibitmildyear-roundtemperatures,substantialrainfallduringthewinter,andhigheraccumulationofprecipitationinupperaltitudes.Weidentifiedmajorstormswithcorrespondingelevateddischargeandturbiditylevels.Namely,weuseda20%thresholdexceedanceofthemonthlyaveragedischarge.Durationofeachmajordischargeeventwaslimitedtolessthansevendays.Stormselectioncriteriaalsoincludedanintra-stormperiodofnolessthan8hoursandinter-stormnomorethan24hours.Onceindividualstormeventswereidentifiedbydischargepeaks,thecumulativeprecipitationamountforthedischargepeakdayandthetwodayspriorweresummed.Half-hourlydischargedatawerecollectedatthebeginningoftherisingcurveofthehydrographuntildischargevaluesreturnedtotheinitialstatebeforethestorm.Correspondingturbidityvalueswerealsocollectedforthesametimeframeevery30minutes.StormswereidentifiedforallselectedstationsbeginninginOctober2008andendinginMay2017.Stormsidentifiedwerealsoseparatedbyseason,wherestormsoccurredduringOctoberandNovemberwereclassifiedasearlywetseason;DecembertoFebruarywasmidwetseason,andMarchtoMaywasthelatewetseason.

2.2HysteresisModels

Accordingtohysteresismethodsinpreviousstudies,hysteresismodelscanquantifybyindicestoassessthedifferenceinhysteresisloopshapeanddirectionatmultipletimeandspacescales.Usually,hysteresisloopsexhibiteithercircular,eight-shaped,linear,orscatterbehaviorfordischargeandturbidity[1,2].Inthisstudy,weborrowedthemethodsfromLawler(2006)duetoitsabilitytocalculatethehysteresisindexatmultipleincrementsandaveragingthemtoobtainadimensionlessHIandalsobyinterpolatingturbidityvaluesatthemid-pointstreamflowofeachevent.Theadvantageofusingthismethodisthathysteresisresultsallowmodeluserstoconducta

56

robuststatisticaltestandcomparestormloopfordifferenteventsatdifferentsites.WefirstnormalizedturbidityanddischargevaluesusingEq.(1)and(2)sothedifferentmagnitudeofstormscanbecompared.

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑄- = /01/203

/2451/203(1)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑇𝑈- = 890189203

89245189203(2)

WhereQiandTUirepresentthetimestepdischargeandturbidity,andQmax/TUmaxandQmin/TUminrepresentthemaximumandminimumofdischargeandturbidity(Lloydetal.2016a).Thenweusedtheraisinglimbturbidityvaluestosubtractthefallinglimbvaluesandobtainthehysteresisindex(HI).PositiveHIindicatesclockwisehysteresisloop,whereasnegativeHIindicatesanticlockwiseloop.WedefinedhysteresisloopintoeightclassesaccordingtomethodsbyZueccoetal.(2016).Thefigureofeightlooppatternswhenthedirectionofthehysteresisloopshiftsdirectionsduringthemiddleofthehighdischargeevent.HysteresisindexforeachstormeventswascalculatedafterclassifyingloopsusingthederivedequationfromLloydetal.(2016)andZueccoetal.(2016)inEq.(3)

𝐻𝐼 = 𝑇𝑈<=_?@AB − 𝑇𝑈D=_?@AB (3)

whereHIrepresentsthehysteresisindex,computedwiththerisinglimb(RL_Norm)andfallinglimb(FL_Norm)ofnormalizedturbidityusingjavascriptdevelopedbyZueccoetal.(2016).Weexaminedthetemporalvariabilityofhysteresisindexandlooppatternsbyseasonandlookedforspatialvariabilityacrossallfourstudiedstations.

2.3StatisticalModels

Spearman’sranknon-parametriccorrelationmodelwasusedtocomparedischarge,turbidity,andprecipitationvariablesforeachidentifiedstorminRv.3.5.1(RCoreTeam2013).Variablescomparedweredischargemaximum,minimum,andrange;turbiditymaximum,minimum,andrange;hysteresisindex,and3-daycumulativeprecipitation.Correlationcoefficientsforstormsineachstudiedstationwerecalculatedontwodifferenttimescales(wateryearandseason).P-valuesofeachcorrelationtestwasexaminedtoevaluatethestatisticalsignificance.Forturbidityanddischargevariables,thepositivelogarithmicrelationshiphasbeenobservedinpreviousstudies[3–6]betweensedimentconcentrationanddischarge.Sinceturbiditymeasurementswerefoundtobehighlycorrelatedtosedimentconcentrationandreliabletoapproximatesuspendedsedimentconcentration[7,8],weusedlog-transformedturbidityvaluestoconstructsimilarregressionwithlog-transformeddischargeinSPSS23(IBMCorp.2017).Forothervariables,theregularlinearregressionmodelswereusedtotestthecontributionofeachindependentvariablesandtheirabilitytopredictthedependentvariables.Ratingcurveandlinearregressionlineslopeequationwerecalculatedalongwiththecoefficientofdetermination(R2).

57

3.Results

Table C1. Number of hours turbidity values exceeded 10 FNU each month from WY 2009-2017

Figure C1. Correlation between number of days when turbidity values exceeded 10 FNU, annual mean discharge, and 3-day cumulative precipitation

WaterYear Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep SUM

2009 - 56 53 209 42 3 3 85 3 - - - 451

2010 - - 50 35 - 62 18 3 72 4 - - 243

2011 - - 186 54 - - - - - - - - 240

2012 - 38 75 274 21 140 85 1 10 14 - - 656

2013 18 95 73 15 - 23 18 - - - 1 24 264

2014 30 1 49 - 205 223 8 10 1 - - - 525

2015 1 28 76 31 - - - - - - - - 135

2016 - 30 125 - 2 - - - - - - - 157

2017 - - - - 80 51 3 - - - - - 133

SUM 49 246 685 616 349 500 133 98 85 18 1 24 2801

58

Figure C2. Number of hours where turbidity exceeded 10 FNU each month from WY 2009-2017

Figure C3. Selected storms hysteresis in water year 2013, 2015, and 2017 at Estacada

0

100

200

300

400

500

600

700

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Hours

Date

201720162015201420132012201120102009

59

Figure C4. Selected storms hysteresis in water year 2013, 2015, and 2017 at Oregon City

Figure C5. Log Discharge range and turbidity maximum rating curves by nonlinear regression model at studied sites; n=59 (Oregon City & Estacada)

60

Figure C6. Linear regression models of turbidity maximum and cumulative precipitation for study sites; n=59 (Oregon City & Estacada)

Table C2. Summary of annual discharge, turbidity, and precipitation values at Estacada and Oregon City

Estacada OregonCity NCCWCTurbidity #of

StormsIdentifiedWater

YearAnnualMeanDischarge

AnnualMeanofDailyTurbidity

Max

AnnualMean

Discharge

AnnualMeanofDaily

TurbidityMax

#ofDays>10FNU

2009 2727 7.64 3274 10.72 23 6

2010 2689 5.93 3113 5.05 14 6

2011 3360 6.23 4139 12.34 45 3

2012 3253 10.46 4159 13.56 28 8

2013

2689 5.28 3305 6.17 15 8

2014 2880 6.37 3525 6.58 26 11

2015

2063 2.88 2483 4.95 11 5

2016 2723 2.95 3460 6.44 16 6

2017

3343 2.97 4394 7.41 30 13

61

Table C3. Spearman’s rank correlation coefficients values by study sites and season (*significant at the 0.1 level; ** significant at the 0.05 level; n=sample size). Highest correlation coefficient values are shaded for each location.

StationDischarge&Turbidity Turbidity&Precipitation

Oct-Nov Dec-Feb Mar-May Oct-Nov Dec-Feb Mar-MayOregonCity 0.73* 0.89** 0.68** 0.65* 0.56** 0.72**

(n=11) (n=33) (n=15) (n=11) (n=33) (n=15)

Estacada 0.91** 0.71** 0.84** 0.22 0.63** 0.67**

(n=13) (n=30) (n=16) (n=13) (n=30) (n=16)

ReferencesC

1.Lawler,D.M.,Petts,G.E.,Foster,I.D.L.,andHarper,S.“TurbidityDynamicsduringSpringStormEventsinanUrbanHeadwaterRiverSystem:TheUpperTame,WestMidlands,UK”ScienceoftheTotalEnvironment360,no.1–3(2006):109–126.doi:10.1016/j.scitotenv.2005.08.032

2.Zuecco,G.,Penna,D.,Borga,M.,andMeerveld,H.J.van.“AVersatileIndextoCharacterizeHysteresisbetweenHydrologicalVariablesattheRunoffEventTimescale”HydrologicalProcesses30,no.9(2016):1449–1466.doi:10.1002/hyp.10681

3.Mather,A.L.andJohnson,R.L.“Event-BasedPredictionofStreamTurbidityUsingaCombinedClusterAnalysisandClassificationTreeApproach”JournalofHydrology530,(2015):751–761.doi:10.1016/j.jhydrol.2015.10.032,Availableathttp://dx.doi.org/10.1016/j.jhydrol.2015.10.032

4.Pietroń,J.,Jarsjö,J.,Romanchenko,A.O.,andChalov,S.R.“ModelAnalysesoftheContributionofIn-ChannelProcessestoSedimentConcentrationHysteresisLoops”JournalofHydrology527,(2015):576–589.doi:10.1016/j.jhydrol.2015.05.009

5.Vaughan,A.A.,Belmont,P.,Hawkins,C.P.,andWilcock,P.“Near-ChannelVersusWatershedControlsonSedimentRatingCurves”JournalofGeophysicalResearch:EarthSurface122,no.10(2017):1901–1923.doi:10.1002/2016JF004180

6.Williams,G.P.“SedimentConcentrationversusWaterDischargeduringSingleHydrologicEventsinRivers”JournalofHydrology111,no.1–4(1989):89–106.doi:10.1016/0022-1694(89)90254-0

7.Sherriff,S.C.,Rowan,J.S.,Melland,A.R.,Jordan,P.,Fenton,O.,andHuallacháin,D.O.“InvestigatingSuspendedSedimentDynamicsinContrastingAgriculturalCatchmentsUsingExSituTurbidity-BasedSuspendedSedimentMonitoring”HydrologyandEarthSystemSciences19,no.8(2015):3349–3363.doi:10.5194/hess-19-3349-2015

8.Rymszewicz,A.,O’Sullivan,J.J.,Bruen,M.,Turner,J.N.,Lawler,D.M.,Conroy,E.,andKelly-Quinn,M.“MeasurementDifferencesbetweenTurbidityInstruments,andTheirImplicationsforSuspendedSedimentConcentrationandLoadCalculations:ASensorInter-ComparisonStudy”Journalof

62

EnvironmentalManagement199,(2017):99–108.doi:10.1016/j.jenvman.2017.05.017,Availableathttp://dx.doi.org/10.1016/j.jenvman.2017.05.017

top related