che 440/540 infrared (ir) spectroscopy. 3500-3300 cm -1 n–h stretchamines 3500-3200 cm -1 o–h...

Post on 20-Dec-2015

221 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Che 440/540 Infrared (IR) Spectroscopy

3500-3300 cm-1 N–H stretch Amines

3500-3200 cm-1 O–H stretch alcohols, a broad, strong band

3100-3000 cm-1 C–H stretch Alkenes

3000-2850 cm-1 C–H stretch Alkanes

1760-1665 cm-1 C=O stretchketones, aldehydes, esters

1680-1640 cm-1 C=C stretch alkenes

Some Major IR Absorption Bands

1. Look first for the carbonyl C=O band. Look for a strong band at 1820-1660 cm -1. This band is usually the most intense absorption band in a spectrum. It will have a medium width. If you see the carbonyl band, look for other bands associated with functional groups that contain the carbonyl by going to step 2. If no C=O band is present, go to step 3 and check for alcohols.

2. If a C=O is present determine if it is part of an acid, an ester, aldehyde, ketone or anhydride. anhydrides show two C=O absorptions near 1810 and 1760 cm-1

ACID Look for indications that an O-H is also present. It has a broad absorption near 3300-2500 cm-1. This actually will overlap the C-H stretch. There will also be a C-O single bond band near 1100-1300 cm-1. Look for the carbonyl band near 1725-1700 cm-1.

ESTER Look for C-O absorption of medium intensity near 1300-1000 cm-1. There will be no O-H band.

ALDEHYDE Look for aldehyde type C-H absorption bands. These are two weak absorptions to the right of the C-H stretch near 2850 cm-1 and 2750 cm-

1 and are caused by the C-H bond that is part of the CHO aldehyde functional group. Look for the carbonyl band around 1740-1720 cm-1.

KETONE

AMIDE

The weak aldehyde CH absorption bands will be absent. Look for the carbonyl C=O band around 1725-1705 cm-1

Carbonyl C=O band from 1680-1630. In addition, NH stretch(es) will be present from 3475-3150 cm-1; primary amides show two bands, secondary amides one band, and tertiary amides no bands in this region

How to Analyze an IR Spectrum

3. If the C=O band is absent, look for the following:

ALCOHOLS, PHENOLS Broad absorption near 3400-3300 cm-1.Confirm by finding C-O stretch near 1300-1000 cm-1

AMINES Check for N-H stretch. Medium absorption(s)Near 3400 cm-1.

ETHERS Check for a C-O stretch near 1300-1000 cm-1 (and anabsence of O-H near 3400 cm-1).

4. If no functionalities in step 3 are present, check for double bonds and/or aromatic

rings.C=C is a weak absorption near 1650 cm-1.

Aromatic rings show medium to strong absorptions from 1600-1450 cm-1.

Consult the C-H region to confirm. Aromatic and vinyl

C-H absorptions occur to the left of 3000 cm-1. Aliphatic C-H occurs to the right of 300 cm-1.

5. Triple bondsCN shows a medium, sharp absorption near 2250 cm-

1.CC shows a weak, sharp absorption near 2150 cm-1.

6. Nitro groupsShows two strong absorptions at 1600-1530 cm-1 and1390-1300 cm-1.

7. HydrocarbonsThis may be indicated if none of the other functional

groupsare present

Major absorptions are found to the right of 3000 cm-1 to C-H.

Hydrocarbons show very simple spectra. The only otherabsorptions appear near 1460 and 1375 cm-1.

C–H stretch from 3000–2850 cm-1 C–H bend or scissoring from 1470-1450 cm-1 C–H rock, methyl from 1370-1350 cm-1 C–H rock, methyl, seen only in long chain alkanes, from 725-720 cm-1

C=C stretch from 1680-1640 cm-1 =C–H stretch from 3100-3000 cm-1 =C–H bend from 1000-650 cm-1

–C≡C– stretch from 2260-2100 cm-1 –C≡C–H: C–H stretch from 3330-3270 cm-1 –C≡C–H: C–H bend from 700-610 cm-1

C–H wag (-CH2X) from 1300-1150 cm-1 C–X stretches (general) from 850-515 cm-1

C–Cl stretch 850-550 cm-1 C–Br stretch 690-515 cm-1

C–H stretch from 3100-3000 cm-1 overtones, weak, from 2000-1665 cm-1 C–C stretch (in-ring) from 1600-1585 cm-1 C–C stretch (in-ring) from 1500-1400 cm-1 C–H "oop" from 900-675 cm-1

O–H stretch, hydrogen bonded 3500-3200 cm-1 C–O stretch 1260-1050 cm-1 (s)

C=O stretch: aliphatic ketones 1715 cm-1 α, β-unsaturated ketones 1685-1666 cm-1

H–C=O stretch 2830-2695 cm-1 C=O stretch:

aliphatic aldehydes 1740-1720 cm-1 alpha, beta-unsaturated aldehydes 1710-1685 cm-1

(aromatic)

Asymmetric C=Ostretch

Symmetric C=Ostretch

H3C

O

O

O

CH3

O–H stretch from 3300-2500 cm-1 C=O stretch from 1760-1690 cm-1 C–O stretch from 1320-1210 cm-1 O–H bend from 1440-1395 and 950-910 cm-1

C=O stretch aliphatic from 1750-1735 cm-1 α, β-unsaturated from 1730-1715 cm-1

C–O stretch from 1300-1000 cm-1

N–H stretch 3400-3250 cm-1 1° amine: two bands from 3400-3300 and 3330-3250 cm-1 2° amine: one band from 3350-3310 cm-1 3° amine: no bands in this region

N–H bend (primary amines only) from 1650-1580 cm-1 C–N stretch (aromatic amines) from 1335-1250 cm-1 C–N stretch (aliphatic amines) from 1250–1020 cm-1 N–H wag (primary and secondary amines only) from 910-665 cm-1

N–O asymmetric stretch from 1550-1475 cm-1 N–O symmetric stretch from 1360-1290 cm-1

Non-conjugated Compound

Frequencycm-1

Conjugated Compound

Frequency cm-1

Frequency cm-1

butanal 1725 2-butenal 1691 benzaldehyde 1702

2-butanone 1717 methyl vinyl ketone 1700 (s-cis) 1681 (s-trans)

acetophenone 1685

propanoic acid 1715 propenoic acid 1702 benzoic acid 1688

ethyl propionate 1740 ethyl acrylate 1727 ethyl benzoate 1718

butanoic anhydride1819,1750

2-butenoic anhydride

1782,1722

benzoic anhydride

1786,1726

Effect of Conjugation on C=O absorptionsConjugation moves the C=O absorption to a smaller wave number.

Match the following spectra with the structures shown below.Support your answers with specific approximate frequencies.

OH O

O OH

O

H

OH O

O OH

O

H

OH O

O OH

O

H

OH O

O OH

O

H

OH O

O OH

O

H

O-H stretcharom C=C

arom C-Hstretch

aliphatic C-Hstretch

C-O stretch

Propose a structure for a compound with molecular formula C7H12O,whose IR spectrum appears below.

Propose a structure for a compound with molecular formula C6H12O,with the following IR spectrum:

Propose a structure for a compound with molecular formula C6H13N,whose IR spectrum appears below.

Alkene Frequency (cm-1)

RCH=CH2

(mono-substituted)

985-1000

905-920

R2C=CH2

(gem-di-substituted)

880-900

RCH=CHR

(trans-di-substituted)

960-975

RCH=CHR

(cis-di-substituted)

675-730

Alkenes (out-of-plane C-H bending)

912 cm-1

993 cm-1

890 cm-1

965 cm-1

(trans)

698 cm-1

(cis)

Limitations of IR in Identifying Alkenes

What would be a better way to identify these?

Benzenoid AromaticsC=C out-of-planering bending

C-H out-of-planebending

Combination and overtone bands

monosubstituted: strong absorption near 690 cm-1

ortho-disubstituted: strong absorption near 750 cm-1

meta-disubstituted: the 690 cm-1 band, one near 780 cm-1, and often one near 880 cm-1

para-disubstituted: strong absorption in the region 800-850 cm-1

monosub-stitution

CH2CH3

oop

aromaticC=C stretch

ortho-di-substitution

CH3

CH3

oop

aromaticC=C stretch

meta-di-substitution

CH3

CH3

oop

aromaticC=C stretch

para-di-substitution

CH3

CH3

oop

aromaticC=C stretch

Propose a structure for an aromatic compound with the molecularformula C9H12 which gives the following IR spectrum. Justify your answer.

Propose a structure for an aromatic compound with the molecularformula C10H14 which gives the following IR spectrum. Justify your answer.

C-O stretch

O

NH2 stretch(primary amide)

overlapN-H bendC=O stretch

C-N stretch

NH2

O

NH stretch(secondary amide) C=O

stretch

N-HBend (1540 cm-1)

Overtone of 1540 band(3080 cm-1)

CH3 N

O

H

C=Ostretch

Notice that there is no N-H stretch in the 3350-3180 cm-1 region in a tertiary amide.

C-Nstretch

N

O

CH3

CH3

Propose a structure for a compound with the molecular formula C8H14O2 which gives the following IR spectrum. Justify your answer.

Propose a structure for a compound with the molecular formula C8H14O2 whose IR spectrum appears below. Justify your answer.

Propose a structure for a compound with the molecular formula C8H9NO which gives the following IR spectrum. Justify your answer.

Propose a structure for a compound with the molecular formula C10H12O2 whose IR spectrum appears below. Justify your answer.

An unknown compound has the mass spectrum shown below. The IR spectrum shows peaks in the 3100-3030 and the 2979-2879 cm-1 ranges and a strong absorption at 1688 cm-1. Suggest a structure consistent with this data.

An unknown compound has the mass spectrum shown below. The IR spectrum shows peaks in the 2963-2861 cm-1 range and a strong absorption at 1718 cm-1. Suggest a structure consistent with this data.

top related