chapter 5 french

Post on 04-Apr-2018

216 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 1/73

Chapter V

Coupled Oscillations

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 2/73

Two, or more, oscillators coupled together 

Examples

1. Two pendulums, coupled by a spring

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 3/73

2. A molecule

Molecule2CO

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 4/73

3. A crystalline solid

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 5/73

~

4. Coupled electrical oscillators

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 6/73

5. An elastic medium, like a vibrating string

 A wave in a medium is a continuum of 

coupled oscillators

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 7/73

Two Simple Pendulums Coupled by a Spring

1x 2x

m mk 

Equations of Motion :

)xx(k x

gmdt

xdm 12

1

2

1

2

)xx(k x

gmdt

xdm 12

2

2

2

2

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 8/73

0)xx(

m

k x

g

dt

xd1212

1

2

0)xx(m

k x

g

dt

xd1222

2

2

The above two differential equations are

coupled.

 Adding and subtracting the above equations :Decoupling

0qdt

qd

1

2

02

1

2

0qdt

qd

; 2

2

2

2

2

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 9/73

122211 xxq;xxq

Where,

m

k 2;

g 2

0

22

0

The solutions for are :21 q&q

)t(cosAq 1011

)tcos(Aq 222

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 10/73

21 x&x can then be obtained as :

)qq(2

1x 211 )qq(

2

1x; 212

21 q&q are known as the normal

coordinates and are known as normal

frequencies.

&0

Initial Conditions on are obtained

from those of  21 x&x21 q&q

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 11/73

Normal Coordinates : New coordinates, that

are linear combinations of the original, inwhich the equations of motion are

decoupled. 

Normal Frequencies : Frequencies of 

oscillation of the normal coordinates. 

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 12/73

Let the initial conditions be such that

remains zero forever.2

q

0)0(q)0(q 22

Or, )0(x)0(x;)0(x)0(x 2121

Normal Mode Vibrations

Thus, 0)t(q&)tcos(A)t(q 21011

For this to happen, the initial conditions

must be such that

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 13/73

0)t(q&tcosA)t(q 201

tcos2

A)t(x)t(x 021  And,

Taking :

0)0(x)0(x;2A)0(x)0(x 2121

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 14/73

This mode of vibration is called a Normal

Mode Vibration

Normal Mode Vibration : A mode of vibration inwhich only one normal coordinate is excited,

the other normal coordinates remaining zero. 

First Mode for the Coupled Pendulums

0t 4Tt 0

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 15/73

2Tt 0 4T3t 0

0Tt

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 16/73

Second normal mode vibration :

0)t(q1

)0(x)0(x&)0(x)0(x 2121

Required initial conditions :

0)0(q;0)0(q 11

Or,

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 17/73

Complete solution :

tcosA)t(q2

1)t(x

21

0)0(x)0(x;A)0(x)0(x 2112

0)0(q;A2)0(q 22

tcosA2)t(q2

tcosA)t(q2

1)t(x 22

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 18/73

0t 4Tt

2Tt 4T3t

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 19/73

Tt

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 20/73

General Motion (Both Modes Excited) 

 A

Initial Conditions :

A)0(x;0)0(x 21

0)0(x)0(x 21

A)0(q)0(q 21 0)0(q)0(q 21

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 21/73

tcosA)t(q;tcosA)t(q 201

Solutions for  21 q&q

Solutions for  21 x&x

]tcost[cos2

A)t(x 01

 

 

 

 

 

 

 

 

t2sint2sinA00

 

 

 

 

 

 

 

  t

2

cost

2

cosA)t(x 002

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 22/73

)t(x2

t

)t(x1

t

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 23/73

Summary

1. There exist normal coordinates, which

are such that, the equations of motion in

them, are decoupled

2. Each normal coordinate behaves likea simple harmonic oscillation with its own

frequency, the normal frequency

3. With appropriate initial conditions, onecan excite only one normal coordinate, the

other remaining dormant. Such vibrational

modes are called normal mode vibrations.

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 24/73

4. In a normal mode vibration, each mass in

the coupled system, executes a SHO with

the same frequency, the corresponding

normal frequency. The amplitudes of motion

of the different masses, and their phases

are in general different.

5. In the most general motion, which results

from arbitrary initial conditions, the motion of each mass is rather complicated. There is no

definite frequency of vibration. However, the

motion is a superposition of SHMs

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 25/73

No Class on Saturday

Combined Class for Both Sections

On

Sunday (25/11)

 At

10.00 AM

InRoom No. 5102

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 26/73

General Approach for Finding Normal Modes

Back to Coupled Pendulums :

0)xx(x

dt

xd12

2

s1

2

02

1

2

0)xx(xdt

xd12

2

s2

2

02

2

2

Since in a normal mode vibration, all

masses execute SHM of a common

frequency, put :

mk ;g 2

s20

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 27/73

tcosAx;tcosAx 2211

0AA)( 2

2

s1

22

s

2

0

0A)(A 2

22

s

2

01

2

s

In the matrix form :

0A

A

2

1

22

s

2

0

2

s

2s

22s

20

  

  

  

  

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 28/73

For non-trivial solutions for 

( ), the determinant of 

the matrix must be zero :

21 A&A

zeronotA&ABoth 21

04

s

222

s

2

0

Or,2

s

2

00 2or

First Normal Mode

1A

A

2

101

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 29/73

tcosAx;tcosAx 1211

Second Normal Mode

1A

A2

2

12

s

2

02

tcosAx;tcosAx 2221

Normal Coordinates

0xx 21

First Mode : 0xx 21

Second Mode :

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 30/73

Since, in the second normal mode vibration,

the first normal coordinate is identically zero

211 xxq

Since, in the first normal mode vibration, thesecond normal coordinate is identically zero

122 xxq

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 31/73

Prob. 5.10

m

m

k

k

Consider the vertical motion

of the system.

a) Find the normal modefrequencies and the ratio of the

amplitude of the two masses in

each mode

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 32/73

1x

2x

m

m

Equations of Motion :

)xx(k xk td

xdm 1212

12

)xx(k td

xdm 1222

2

Or,

0)xx2(td

xd21

2

02

1

2

0)xx(td

xd12

2

02

2

2

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 33/73

Substituting : tcosAx;tcosAx 2211

0AA)2( 2

2

01

22

0

0A)(A 2

22

01

2

0

Writing the above as a matrix equation and

setting the determinant to zero, we get :

02

22

0

2

0

2

0

22

0

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 34/73

Or,2

0

2

2

53

We have : 22

0

2

0

2

1

2A

A

First Mode :15

2

A

A

2

1

Second Mode :15

2

A

A

2

1

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 35/73

2 cm

1.23 cm

2 cm

3.23 cm

First Mode

Second Mode

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 36/73

b*) Find the normal coordinates

First Mode : 0x2x15 21

Second Mode :

211 x2x15q

212 x2x15q

0x2x1521

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 37/73

c*) If the lower mass is pulled down a

distance A, while the upper mass is held

fixed, and the system released, describe thesubsequent motion.

0)0(q)0(q;A2)0(q;A2)0(q 2121

)t(cosA)t(q 1111

We have :

)t(cosA)t(q2222

Initial Conditions :

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 38/73

)tcos(B2)tcos(A2)t(x 22111

)tcos(B)15()tcos(A)15()t(x 22111

One can directly write down the complete

solutions for , without requiring to

obtain the normal coordinates .

21 x&x

21 q&q

When B is zero, the system oscillates in

the first mode with the requisite ratio of 

amplitudes, and, so is the other way

around.

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 39/73

tcosA2)t(q 11

tcosA2)t(q 22

Now,

)qq(52

1x 211

212 q)15(q)15(54

1x

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 40/73

Prob. 5.9 The carbon

dioxide molecule can be

likened to a central

mass connected to two

other identical masses,

by identical springs of spring constant k.

a) Set up the equations of motion, find thenormal frequencies and ratios of the

amplitudes in the normal modes

2m

1m1m

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 41/73

Equations of Motion :

)xx(k dt

xdm 122

1

2

1

)xx(k )xx(k dt

xdm 231222

2

2

)xx(k 

dt

xdm 232

3

2

1

1x2x 3x

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 42/73

Or,0)xx(

m

dt

xd21

1

2

1

2

0)xx2x(

m

dt

xd321

2

2

2

2

0)xx(m

dt

xd23

1

2

3

2

Substituting :

tcosAx;tcosAx;tcosAx 332211

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 43/73

0Am

k A

m

k 2

1

1

2

1

 

  

 

0Am

k A

m

k 2A

m

k 3

2

2

2

2

1

2

 

  

 

0Am

k A

m

k 3

2

1

2

1

 

  

 

Setting the determinant of the coefficient

matrix to zero, the normal frequencies are

obtained as :

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 44/73

 

 

 

 

21

3

1

21m

2

m

1k ;

m

k ;0

From the equations for the coefficients :

1

2

11

321m

k :

m

k :

m

k A:A:A

 

  

 

First mode

1:1:1A:A:A 321

No oscillations, rigid shift of the molecule

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 45/73

Second Mode

1:0:1A:A:A 321

AAA

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 46/73

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 47/73

Third Mode

1:m

m2:1A:A:A

2

1321

1:7.2:1

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 48/73

Coupled and Driven Oscillators

tcos

m

F)xx(x

dt

dx

dt

xd 012

2

s2

2

02

2

2

2

0)xx(xdtdx

dtxd 12

2s1

20

121

2

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 49/73

 Adding and subtracting the equations

tcosm

Fq

dt

dq

dt

qd 01

2

01

2

1

2

tcosmFq

dtdq

dtqd 0

222

22

2

Steady-state solutions of the above

equations are :

)t(cos)(A)t(q 111 )t(cos)(A)t(q 222

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 50/73

)t(cos)(A)tcos()(A2

1)t(x 22111

)t(cos)(A)tcos()(A2

1)t(x 22112

)(A1 )(A2

0

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 51/73

When the driving frequency matches one of 

the two frequencies , the

displacements of the two pendulums

become large.

&0

There are, thus, two resonant frequencies,corresponding to the two normal frequencies

at which the system can oscillate

 At the lower resonance frequency, the

two pendulums are in phase. At the

higher one, they are totally out of phase.

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 52/73

Prob. 5.12 Two identical masses are

connected to three identical springs on a

frictionless surface as shown 

The free end is driven with a displacement :

tcosXX 0

Find and draw the graphs of the displacements

of the two masses.

X 1x 2x

mm kkk

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 53/73

X 1x 2x

mm kkk

Equations of Motion :

)xx(k )Xx(k dt

xdm

1212

1

2

2122

2

2

xk )xx(k dt

xdm

Or, tcosXxx2dt

xd0

2

02

2

01

2

02

1

2

0x2xdt

xd

2

2

01

2

02

2

2

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 54/73

 Addition and subtraction of the two equations

gives us :

tcosm

Fq

dt

qd 01

2

02

1

2

tcosm

Fq3

dt

qd 02

2

02

2

2

Where, 00212211 Xk F,xxq,xxq

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 55/73

Steady-state solution :

tcos)](A)(A[2

1)t(x 211

tcos)](A)(A[2

1)t(x 212

where,

22

0

0

2

0222

0

0

2

01

3

X)(A;

X)(A

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 56/73

tcos)3()(

2X)t(x

22

0

22

0

22

00

2

01

tcos

)3()(

1X)t(x

22

0

22

0

0

4

02

 At a driving frequency , the mass

nearer the end being driven, becomesstationary

02

Indefinite Number of Coupled Oscillators

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 57/73

Indefinite Number of Coupled Oscillators

N Light Beads Connected by Massless Rods

Equilibrium

General State of Vibration

m

T

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 58/73

Equations of Motion

p P+1P-1

py1py

1py

1

2

)sinsin(Tdt

ydm 122

p

2

)]yy()yy[(T

1ppp1p

Or,0)yy2y(

dt

yd

1pp1p

2

02

p

2

TT

m

T2

0

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 59/73

0)yy2y(dt

yd1pp1p

2

02

p

2

N.........,,2,1p

It is assumed that there are two mass points,

at and , which are

permanently fixed.

Normal Modes

Substitute : tcosAy pp 0AA)2(A 1p

2

0p

22

01p

2

0

0p 1Np

Boundary Conditions : 0AA 1N0

0)t(y)t(y 1N0

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 60/73

2

0

22

0

p

1p1p 2

A

AA

The amplitudes must depend upon the

discrete index in such a manner that the

ratio on the left above is independent of p

and the boundary condition is satisfied.

pA

p

 A clever guess :

0AA 1N0

)tstancons,&C(psinCAp

cos2A

AA

p

1p1p

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 61/73

For the boundary conditions to be satisfied,

we must have :

0)1N(sin N........,,2,1n)1N(

n

Each of the above possible values for 

leads to a normal mode frequency :

2sin2 0

 

  

 

)1N(2

nsin2 0n N........,,2,1n

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 62/73

The amplitudes of the mass point in

the normal mode is :

 

  

 

1N

npsinCApn

thpthn

N,........,1n;N.......,,1p

px)1N(

xnsinC

 

  

 

pxL

xnsinC

 

  

 

 

  

 L

nxsinC)x(A,where),p(AA nnpn

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 63/73

The First Mode

 

  

 

)1N(2

sin2 01  

  

 L

xsinC)x(A1

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 64/73

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 65/73

The Second Mode

  

  

Lx2sinC)x(A2

  

  

)1N(sin2 02

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 66/73

Three Particles

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 67/73

General Solution

N

1n

nnnp )t(cos1N

npsinC)t(y N.......,,1p

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 68/73

Prob. 5.16 (Resonance in N coupled

Oscillators) 

Consider a system of N coupled oscillators

driven at a frequency . Forcing is done at

the extreme end such that

tcosh)t(y 1N

Find the resulting amplitudes of the particles.

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 69/73

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 70/73

In the steady state, each particle will oscillate

with the driving frequency.

tcos)(Ay pp

Here, is the driving frequency, andhence, given

Substituting the above into the equations of 

motion, we get :

2

0

22

0

p

1p1p 2

A

AA

Boundary Conditions : hA;0A 1N0

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 71/73

Solution : psinCAp

Second boundary condition requires :

h)1N(sinC

)1N(sin

hC

2

0

22

0

p

1p1p 2cos2

A

AA

)1N(sin

)psin(h)(Ap 2

0

22

0

2

2cos

, Where,

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 72/73

The amplitudes blow up whenever 

0)1N(sin

Or,1N

n

This happens when the driving frequency is

such that :

2

0

22

0

2

2

1N

ncos

Or,

 

 

)1N(2

nsin2 0

A li d f ill i b l h

7/30/2019 Chapter 5 French

http://slidepdf.com/reader/full/chapter-5-french 73/73

 Amplitudes of oscillations become large when

the driving frequency is one of the normal

mode (natural) frequencies

N

1n

nnnp )t(cos1N

npsinC)t(y

Most general solution of the driven oscillators :

tcos)1N(sin

)psin(h

Transient Steady State

top related