chapter 4: divide and conquer master theorem, mergesort, quicksort, binary search, binary trees the...

Post on 17-Dec-2015

256 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Chapter 4: Divide and Conquer

Master Theorem, Mergesort, Quicksort, Binary Search, Binary

Trees

The Design and Analysis of Algorithms

2

Chapter 4. Chapter 4. Divide and Conquer Algorithms Basic Idea Merge Sort Quick Sort Binary Search Binary Tree Algorithms Closest Pair and Quickhull Conclusion

3

Basic Idea Divide instance of problem into two or

more smaller instances

Solve smaller instances recursively

Obtain solution to original (larger) instance by combining these solutions

4

Basic Idea

subproblem 2 of size n/2

subproblem 1 of size n/2

a solution to subproblem 1

a solution tothe original problem

a solution to subproblem 2

a problem of size n

5

General Divide-and-Conquer Recurrence

T(n) = aT(n/b) + f (n) where f(n) (nd), d 0

Master Theorem: If a < bd, T(n) (nd) If a = bd, T(n) (nd log n) If a > bd, T(n) (nlog b a ) Examples: T(n) = T(n/2) + n T(n) (n )

Here a = 1, b = 2, d = 1, a < bd

T(n) = 2T(n/2) + 1 T(n) (n log 2

2 ) = (n )Here a = 2, b = 2, d = 0, a > bd

6

Examples

T(n) = T(n/2) + 1 T(n) (log(n) )Here a = 1, b = 2, d = 0, a = bd

T(n) = 4T(n/2) + n T(n) (n log 2

4 ) = (n 2 )Here a = 4, b = 2, d = 1, a > bd

T(n) = 4T(n/2) + n2 T(n) (n2 log n)Here a = 4, b = 2, d = 2, a = bd

T(n) = 4T(n/2) + n3 T(n) (n3) Here a = 4, b = 2, d = 3, a < bd

Recurrence Examples

0

0

)1(

0)(

n

n

nscns

0)1(

00)(

nnsn

nns

1

22

1

)(nc

nT

nc

nT

1

1

)(

ncnb

naT

nc

nT

8

Recursion Tree for T(n)=3T(n/4)+(n2)

T(n)

(a)

cn2

T(n/4) T(n/4) T(n/4)

(b)

cn2

c(n/4)2 c(n/4)2 c(n/4)2

T(n/16) T(n/16) T(n/16)T(n/16)T(n/16)T(n/16)

T(n/16) T(n/16) T(n/16)

(c)cn2

c(n/4)2 c(n/4)2 c(n/4)2

c(n/16)2 c(n/16)2 c(n/16)2c(n/16)2c(n/16)2c(n/16)2 c(n/16)2 c(n/16)2 c(n/16)2

cn2

(3/16)cn2

(3/16)2cn2

T(1)T(1) T(1)T(1) T(1)T(1) (nlog 43)

3log4n= nlog 43 Total O(n2)

log 4n

(d)

9

Solution to T(n)=3T(n/4)+(n2)

The height is log 4n,

#leaf nodes = 3log 4n= nlog 43. Leaf node cost: T(1). Total cost T(n)=cn2+(3/16) cn2+(3/16)2 cn2+ +(3/16)log 4

n-1 cn2+ (nlog 43)

=(1+3/16+(3/16)2+ +(3/16)log 4n-1) cn2 + (nlog 4

3) <(1+3/16+(3/16)2+ +(3/16)m+ ) cn2 + (nlog 4

3) =(1/(1-3/16)) cn2 + (nlog 4

3) =16/13cn2 + (nlog 4

3) =O(n2).

10

Recursion Tree of T(n)=T(n/3)+ T(2n/3)+O(n)

11

Mergesort

Split array A[0..n-1] in two about equal halves and make copies of each half in arrays B and C

Sort arrays B and C recursively

Merge sorted arrays B and C into array A

12

Mergesort

13

Mergesort

14

Mergesort8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

Mergesort Code

mergesort( int a[], int left, int right)

{

if (right > left)

{

middle = left + (right - left)/2;

mergesort(a, left, middle);

mergesort(a, middle+1, right);

merge(a, left, middle, right);

}

}

15

16

Analysis of Mergesort

T(N) = 2T(N/2) + N

All cases have same efficiency: Θ(n log n)

Space requirement: Θ(n) (not in-place)

Can be implemented without recursion (bottom-up)

Features of Mergesort

All cases: Θ(n log n) Requires additional memory Θ(n) Recursive Not stable (does not preserve previous

sorting) Never used for sorting in main memory,

used for external sorting

17

QuicksortLet S be the set of N elements Quicksort(S):If N = 0 or N = 1, return

Pick an element v - pivot, in S

Partition S - {v} into two disjoint sets:

S1 = {x є S - {v}| x ≤ v}, and

S2 = {x є S - {v}| x ≥ v}

Return {quicksort(S1), followed by v,

followed by quicksort(S2)}

18

19

Quicksort Select a pivot (partitioning element) Median of three algorithm

Take the first, the last and the middle elements and sort them (within their positions).

Choose the median of these three elements. Hide the pivot – swap the pivot and the next to the last element.

Example: 5 8 9 1 4 2 7

After sorting 1 8 9 5 4 2 7

Hide the pivot 1 8 9 2 4 5 7

Quicksort

Rearrange the list so that all the elements in the first s positions are smaller than or equal to the pivot and all the elements in the remaining n-s-1 positions are larger than or equal to the pivot. Note: the pivot does not participate in rearranging the elements.

Exchange the pivot with the first element in the second subarray — the pivot is now in its final position

Sort the two subarrays recursively

20

left – the smallest valid index

right – the largest valid index

 

if( left + 10 <= right)

{

int i = left, j = right - 1;

for ( ; ; )

{

while (a[++i] < pivot) {}

while (pivot < a[--j] ) {}

 

if (i < j) swap (a[i],a[j]);

else break;

}

swap (a[i], a[right-1]);

quicksort ( a, left, i-1);

quicksort (a, i+1, right);

}

else insertionsort (a, left, right);

21

22

Analysis of Quicksort Best case: split in the middle — Θ(n log n)

T(N) = 2T(N/2) + N

Worst case: sorted array — Θ(n2) T(N) = T(N-1) + N

Average case: random arrays — Θ(n log n)

Quicksort is considered the method of choice for internal sorting of large files (n ≥ 10000)

Features of Quicksort Best and average case: Θ(n log n) , Worst case: Θ(n2), it happens when the pivot is the

smallest of the largest element In-place sorting, additional memory only for swapping Recursive Not stable Never used for life-critical and mission-critical

applications, unless you assume the worst-case response time

23

24

Binary Search Very efficient algorithm for searching in sorted array: K

vsA[0] . . . A[m] . . . A[n-1]

If K = A[m], stop (successful search);

otherwise, continue searching by the same method

in A[0..m-1] if K < A[m],

and in A[m+1..n-1] if K > A[m]

25

Analysis of Binary Search

Time efficiency T(N) = T(N/2) + 1Worst case: O(log(n))Best case: O(1)

Optimal for searching a sorted array Limitations: must be a sorted array (not linked list)

26

Binary Tree Algorithms Binary tree is a divide-and-conquer ready structure

Ex. 1: Classic traversals (preorder, inorder, postorder)

Algorithm Inorder(T) if T Inorder(Tleft) print(root of T) Inorder(Tright) Efficiency: Θ(n)

27

Binary Tree Algorithms

Ex. 2: Computing the height of a binary tree

T TL R

h(T) = max{ h(TL), h(TR) } + 1 if T and h() = -1

Efficiency: Θ(n)

28

Recursion tree for T(n)=aT(n/b)+f(n)

top related