ccsp sap 2.1a: scenarios of greenhouse gas …...greenhouse gas emissions and atmospheric...

Post on 11-Mar-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

CCSP SAP 2.1A:

Scenarios ofGreenhouse Gas Emissions and

Atmospheric Concentrations

CCSP SAP 2.1A: CCSP SAP 2.1A:

Scenarios ofScenarios ofGreenhouse Gas Emissions andGreenhouse Gas Emissions and

Atmospheric ConcentrationsAtmospheric Concentrations

EMF, Tsukuba, 2006Leon Clarke

2

AcknowledgementsAcknowledgementsAcknowledgements

The organizers of EMF 22.

The authors of CCSP Product 2.1A,Jae EdmondsJake JacobyHugh PitcherJohn ReillyRich Richels

3

BackgroundBackgroundBackground

4

The CCSP Strategic Plan called for 21 synthesis and assessment products

The CCSP Strategic Plan called for 21 The CCSP Strategic Plan called for 21 synthesis and assessment productssynthesis and assessment products

Product 2.1: Updating scenarios of greenhouse gas emissions and concentrations, in collaboration with the CCTP. Review of integrated scenario development and application.

5

Who and what are these scenarios for?Who and what are these scenarios for?Who and what are these scenarios for?

“The scenarios are intended primarily for decisionmakers and analysts who might benefit from enhanced understanding of the potential characteristics and implications of stabilization. For example, technology planners might be interested in enhanced understanding of the potential energy systems implications of stabilization. The scenarios are also intended to serve as a point of departure for further CCSP and other analyses, such as climate scenarios or analyses of mitigation and adaptation options. The development of these scenarios will enhance the capabilities for future scenario analyses that might be conducted by CCSP or related agencies, such as those involved in CCTP.”

1. Solidify and Enhance the Knowledge Base for Decision-makers

2.Inputs to Further Analyses

3.Furthering the Tools and Methods

0. Focus on Stabilization

6

The Scenarios will provide insights into questions such as the following:The Scenarios will The Scenarios will provide insightsprovide insights into questions such into questions such as the following:as the following:

Emissions Trajectories:What emissions trajectories over time are consistent with meeting the four alternative stabilization levels?What are the key factors that shape the emissions trajectories that lead toward stabilization?

Energy Systems:What energy system characteristics are consistent with each of the four alternative stabilization levels?How might these characteristics differ among stabilization levels?

Economic Implications:What are the possible economic implications of meeting the four alternative stabilization levels?

7

Study DesignStudy DesignStudy Design

8

ParticipantsParticipantsParticipants

MIT (IGSM)Henry Jacoby, John Reilly

PNNL (MiniCAM)James Edmonds, Hugh Pitcher

EPRI (MERGE)Richard Richels

Coordinator Leon Clarke

9

Study DesignStudy DesignStudy DesignStabilize total radiative forcing from CO2, N2O, CH4, HFCs, PFCs, and SF6

Other radiatively-important substances (e.g., aerosols) not included

Long-term (many century) stabilization; study period through 2100.Four stabilization scenarios roughly consistent with 450 ppmv through 750 ppmv CO2, along with one reference case.

Total Radiative Forcing from GHGs (Wm-2)

Approximate Contribution to

Radiative Forcing from non-CO2 GHGs (Wm-2)

Approximate Contribution to

Radiative Forcing from CO2 (Wm-2)

Corresponding CO2

Concentration (ppmv)

Level 1 3.4 0.8 2.6 450

Level 2 4.7 1.0 3.7 550

Level 3 5.8 1.3 4.5 650

Level 4 6.7 1.4 5.3 750

Year 1998 2.1 0.65 1.46 365

10

Study DesignStudy DesignStudy Design

All modeling groups assume existing climate programs (Kyoto, U.S. intensity target) but then assume perfect where, when, and what flexibility going forward.Assumptions (e.g., population, economic growth, technological change) developed individually by the modeling groups.No likelihoods assigned to any scenarios or parameters.

Teams directed to develop assumptions they consider “plausible”and “meaningful”.These are not the only sets of assumptions that these three modeling teams could have developed.

11

The Reference ScenariosThe Reference ScenariosThe Reference Scenarios

12

All the reference scenarios include strong drivers for emissions increases

Global Population

0

2

4

6

8

10

12

2000 2020 2040 2060 2080 2100Year

Bill

ion

IGSM_REF

MERGE_REF

MINICAM_REF

U.S. Population

0

0.1

0.2

0.3

0.4

0.5

2000 2020 2040 2060 2080 2100Year

Bill

ion

IGSM_REF

MERGE_REF

MINICAM_REF

U.S. GDP

0

10

20

30

40

50

60

70

80

90

2000 2020 2040 2060 2080 2100Year

Trill

ion

2000

$

IGSM_REF

MERGE_REF

MINICAM_REF

13

Primary energy grows to between three and four times today’s levels by the end of the century.All models envision penetration of fossil alternatives for conventional oilTransition away from conventional oil sourcesSubstantial growth in sources that don’t emit carbonBut fossil fuels remain the dominant energy source.

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

rNon-Biomass Renewables

Nuclear

Commercial Biomass

Coal

Natural Gas

Oil

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

r

Non-Biomass Renewables

Nuclear

Commercial Biomass

Coal

Natural Gas

Oil

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

r

Non-Biomass Renewables

Nuclear

Commercial Biomass

Coal

Natural Gas

Oil

MERGE

IGSM

MiniCAM

14

0

5

10

15

20

25

2000 2020 2040 2060 2080 2100

GtC

/yr

IGSM_REF

MERGE_REF

MINICAM_REF

The result is continually increasing CO2 emissions over the century, with important transition in emitting countries.

Fossil and Industrial CO2 Emissions

0

2

4

6

8

10

12

14

16

18

20

2000 2020 2040 2060 2080 2100

GtC

/yr

Non-Annex 1

Annex 1

0

2

4

6

8

10

12

14

16

18

20

2000 2020 2040 2060 2080 2100

GtC

/yr

Non-Annex 1

Annex 1

0

2

4

6

8

10

12

14

16

18

20

2000 2020 2040 2060 2080 2100

GtC

/yr

Non-Annex 1

Annex 1

15

0

1

2

3

4

5

6

7

8

9

2000 2020 2040 2060 2080 2100

W/m

2

CO2Short-Lived F-gasesLong-Lived F-gasesN2OCH4

0

1

2

3

4

5

6

7

8

9

2000 2020 2040 2060 2080 2100

W/m

2

CO2Short-Lived F-gasesLong-Lived F-gasesN2OCH4

0

1

2

3

4

5

6

7

8

9

2000 2020 2040 2060 2080 2100

W/m

2

CO2Short-Lived F-gasesLong-Lived F-gasesN2OCH4

Radiative forcing trajectories are not consistent with stabilization at any of the four levels considered in the exerciseCO2 takes on an increasingly large share of radiative forcing in all three scenariosContributions of non-CO2 GHGs vary among the models

IGSMMiniCAM

MERGE

16

The Stabilization ScenariosThe Stabilization ScenariosThe Stabilization Scenarios

17

0

1

2

3

4

5

6

7

8

9

2000 2020 2040 2060 2080 2100

W/m

2

IGSM_Level3MERGE_Level3MINICAM_Level3Level 3

Radiative ForcingLevel 3 (650 ppmv)

0

1

2

3

4

5

6

7

8

9

2000 2020 2040 2060 2080 2100

W/m

2

IGSM_Level1MERGE_Level1MINICAM_Level1Level 1

Radiative Forcing Level 1 (450 ppmv)

0

1

2

3

4

5

6

7

8

9

2000 2020 2040 2060 2080 2100

W/m

2

IGSM_Level2MERGE_Level2MINICAM_Level2Level 2

Radiative ForcingLevel 2 (550 ppmv)

Radiative forcing trajectories are similar across the models

18

Emissions ultimately decline toward the rate at which emissions are balanced by removal processes.Timing depends on the stabilization levelEmissions trajectories vary because of differences in (1) ocean uptake, (2) net terrestrial emissions, and (3) contributions from non-CO2 GHGs

Fossil & Industrial CO2Level 2 (550 ppmv)

0

5

10

15

20

25

2000 2020 2040 2060 2080 2100

GtC

/yr

IGSM_Level1IGSM_Level2IGSM_Level3IGSM_Level4IGSM_REF

0

5

10

15

20

25

2000 2020 2040 2060 2080 2100

GtC

/yr

MERGE_Level1MERGE_Level2MERGE_Level3MERGE_Level4MERGE_REF

0

5

10

15

20

25

2000 2020 2040 2060 2080 2100

GtC

/yr

MINICAM_Level1MINICAM_Level2MINICAM_Level3MINICAM_Level4MINICAM_REF

19

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

rNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

r

Non-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

r

Non-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

Stabilization requires substantial changes in the energy systemThe models present very different approaches to this evolutionAll of the scenarios maintain a heterogeneous energy mix

IGSM MiniCAM

MERGE

PRIMARY ENERGY(Reference)

20

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

rEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

r

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

r

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

Stabilization requires substantial changes in the energy systemThe models present very different approaches to this evolutionAll of the scenarios maintain a heterogeneous energy mix

PRIMARY ENERGY(Level 4, 750 ppmv)

IGSM MiniCAM

MERGE

21

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

rEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

r

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

r

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

Stabilization requires substantial changes in the energy systemThe models present very different approaches to this evolutionAll of the scenarios maintain a heterogeneous energy mix

PRIMARY ENERGY(Level 3, 650 ppmv)

IGSM MiniCAM

MERGE

22

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

rEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

r

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

r

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

Stabilization requires substantial changes in the energy systemThe models present very different approaches to this evolutionAll of the scenarios maintain a heterogeneous energy mix

PRIMARY ENERGY(Level 2, 550 ppmv)

IGSM MiniCAM

MERGE

23

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

rEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

r

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

200

400

600

800

1,000

1,200

1,400

1,600

2000 2020 2040 2060 2080 2100

EJ/y

r

Energy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

Stabilization requires substantial changes in the energy systemThe models present very different approaches to this evolutionAll of the scenarios maintain a heterogeneous energy mix

PRIMARY ENERGY(Level 1, 450 ppmv)

IGSM MiniCAM

MERGE

24

-800

-600

-400

-200

0

200

400

600

800

1000

2000 2020 2040 2060 2080 2100

EJ/y

r

CCSEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoalNatural GasOil

-800

-600

-400

-200

0

200

400

600

800

1000

2000 2020 2040 2060 2080 2100

EJ/y

rCCSEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoalNatural GasOil

-800

-600

-400

-200

0

200

400

600

800

1000

2000 2020 2040 2060 2080 2100

EJ/y

r

CCSEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoalNatural GasOil

Stabilization requires substantial changes in the energy systemThe models present very different approaches to this evolutionAll of the scenarios maintain a heterogeneous energy mix

PRIMARY ENERGY(Level 4, 750 ppmv)

IGSM MiniCAM

MERGE

25

-800

-600

-400

-200

0

200

400

600

800

1000

2000 2020 2040 2060 2080 2100

EJ/y

rCCSEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoalNatural GasOil

-800

-600

-400

-200

0

200

400

600

800

1000

2000 2020 2040 2060 2080 2100

EJ/y

r

CCSEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoalNatural GasOil

-800

-600

-400

-200

0

200

400

600

800

1000

2000 2020 2040 2060 2080 2100

EJ/y

r

CCSEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoalNatural GasOil

Stabilization requires substantial changes in the energy systemThe models present very different approaches to this evolutionAll of the scenarios maintain a heterogeneous energy mix

PRIMARY ENERGY(Level 3, 650 ppmv)

IGSM MiniCAM

MERGE

26

-800

-600

-400

-200

0

200

400

600

800

1000

2000 2020 2040 2060 2080 2100

EJ/y

rCCSEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoalNatural GasOil

-800

-600

-400

-200

0

200

400

600

800

1000

2000 2020 2040 2060 2080 2100

EJ/y

r

CCSEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoalNatural GasOil

-800

-600

-400

-200

0

200

400

600

800

1000

2000 2020 2040 2060 2080 2100

EJ/y

r

CCSEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoalNatural GasOil

Stabilization requires substantial changes in the energy systemThe models present very different approaches to this evolutionAll of the scenarios maintain a heterogeneous energy mix

PRIMARY ENERGY(Level 2, 550 ppmv)

IGSM MiniCAM

MERGE

27

-800

-600

-400

-200

0

200

400

600

800

1000

2000 2020 2040 2060 2080 2100

EJ/y

rCCSEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoalNatural GasOil

-800

-600

-400

-200

0

200

400

600

800

1000

2000 2020 2040 2060 2080 2100

EJ/y

r

CCSEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoalNatural GasOil

-800

-600

-400

-200

0

200

400

600

800

1000

2000 2020 2040 2060 2080 2100

EJ/y

r

CCSEnergy ReductionNon-Biomass RenewablesNuclearCommercial BiomassCoalNatural GasOil

Stabilization requires substantial changes in the energy systemThe models present very different approaches to this evolutionAll of the scenarios maintain a heterogeneous energy mix

PRIMARY ENERGY(Level 1, 450 ppmv)

IGSM MiniCAM

MERGE

28

0

400

800

1200

1600

2000

2020 2040 2060 2080 2100

Year

$/to

nne

(200

0$)

IGSM_Level1IGSM_Level2IGSM_Level3IGSM_Level4

0

400

800

1200

1600

2000

2020 2040 2060 2080 2100

Year

$/to

nne

(200

0$)

MERGE_Level1MERGE_Level2MERGE_Level3MERGE_Level4

0

400

800

1200

1600

2000

2020 2040 2060 2080 2100

Year

$/to

nne

(200

0$)

MINICAM_Level1MINICAM_Level2MINICAM_Level3MINICAM_Level4

CARBON PRICES

29

0%

1%

2%

3%

4%

5%

6%

7%

8%

2000 2020 2040 2060 2080 2100

Per

cent

age

Loss

in G

ross

Wor

ld P

rodu

ct

IGSM_Level3

MERGE_Level3

MINICAM_Level3

PERCENTAGE LOSS IN GROSS WORLD PRODUCT (MER)

0%

1%

2%

3%

4%

5%

6%

7%

8%

2000 2020 2040 2060 2080 2100

Per

cent

age

Loss

in G

ross

Wor

ld P

rodu

ct

IGSM_Level2

MERGE_Level2

MINICAM_Level2

0%

1%

2%

3%

4%

5%

6%

7%

8%

2000 2020 2040 2060 2080 2100

Per

cent

age

Loss

in G

ross

Wor

ld P

rodu

ct

IGSM_Level1

MERGE_Level1

MINICAM_Level1

Level 3(650 ppmv)

Level 1(450 ppmv)

Level 2(550 ppmv)

30

The Main DriversThe Main DriversThe Main Drivers

The issue—why is there a difference in estimates of costs across the three models? Two factors appear to play prominent roles.

1. Degree of Emissions Reductions, and

2. Assumptions about post-2050 technology

31

Emissions ReductionsEmissions ReductionsEmissions Reductions

Relative Cumulative Emissions Reductions from the Reference

Scenarios 2000 to 2100IGSM MERGE MiniCAM

Level 4 28% 9% 7%

Level 3 40% 20% 19%

Level 2 55% 40% 38%

Level 1 69% 69% 66%

While both the degree to which models reduce emissions matters in all stabilization scenarios, differences in the degree of emissions mitigation are particularly important in stabilization Levels 3 and 4.

32

Sources of Differences in Emissions Mitigation

Sources of Differences in Emissions Sources of Differences in Emissions MitigationMitigation

Reference case emissions

Carbon cycle

Non-CO2 GHG’s

0

5

10

15

20

25

2000 2020 2040 2060 2080 2100

GtC

/yr

IGSM_REF

MERGE_REF

MINICAM_REF

Reference CO2Emissions

0

1

2

3

4

5

6

7

8

9

IGSM MERGE MiniCAM

Wm

2

CH4 N2OLong-Lived F-gases Short-Lived F-gasesCO2

Forcing in 2100, Level 2 (4.7 W/m2)

33

The Role of TechnologyThe Role of TechnologyThe Role of TechnologyThe cost behavior of the scenarios behavior is relatively similarly in 2050.Technology in the post 2050 time frame has strong cost implicationsThe approach to when flexibility links the short and long term

Price vs Percentage Abatement 2100

$0

$400

$800

$1,200

$1,600

$2,000

0% 20% 40% 60% 80% 100%Percentage Abatement

Pric

e ($

/tonn

e C

)

IGSM

MINICAM

MERGE

Price vs Percentage Abatement 2050

$0

$400

$800

$1,200

$1,600

$2,000

0% 20% 40% 60% 80% 100%Percentage Abatement

Pric

e ($

/tonn

e C)

IGSM

MINICAM

MERGE

34

0

50

100

150

200

250

300

350

2000 2020 2040 2060 2080 2100

EJ/y

rNon-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

50

100

150

200

250

300

350

2000 2020 2040 2060 2080 2100

EJ/y

r

Non-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

0

50

100

150

200

250

300

350

2000 2020 2040 2060 2080 2100

EJ/y

r

Non-Biomass RenewablesNuclearCommercial BiomassCoal: w/ CCSCoal: w/o CCSNatural Gas: w/ CCSNatural Gas: w/o CCSOil: w/ CCSOil: w/o CCS

IGSMMiniCAM

MERGE All of the models have ample opportunities for decarbonizing electricity.

In the Level 1 scenarios, the electricity sector is almost completely decarbonized.

35

Post-2050 TechnologyPostPost--2050 Technology2050 Technology

What is the bioenergy resource base?Are there other low-carbon sources such as low-carbon hydrogen?How far can electricity move into new end uses?

None of the scenarios seriously electrify the transportation sector.

36

RATIO OF ELECTRICITY TO

PRIMARY ENERGY

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2000 2020 2040 2060 2080 2100

Rat

ioIGSM_Level1IGSM_Level2IGSM_Level3IGSM_Level4IGSM_REF

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2000 2020 2040 2060 2080 2100

Rat

io

MERGE_Level1MERGE_Level2MERGE_Level3MERGE_Level4MERGE_REF

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2000 2020 2040 2060 2080 2100

Rat

io

MINICAM_Level1MINICAM_Level2MINICAM_Level3MINICAM_Level4MINICAM_REF

37

Other FactorsOther FactorsOther Factors

Emissions reductions in other sectors (e.g. cement)Model structureEffects on capital accumulation

38

Ratio of the Price of CH4to the Price of Carbon

Ratio of the Price of CHRatio of the Price of CH44to the Price of Carbonto the Price of Carbon

0.00

0.00

0.01

0.10

1.00

10.00

100.00

2020 2040 2060 2080 2100Year

Rat

io

IGSM_Level1IGSM_Level2IGSM_Level3IGSM_Level4

0.00

0.00

0.01

0.10

1.00

10.00

100.00

2020 2040 2060 2080 2100Year

Rat

io

MERGE_Level1MERGE_Level2MERGE_Level3MERGE_Level4

0.00

0.00

0.01

0.10

1.00

10.00

100.00

2020 2040 2060 2080 2100Year

Rat

io

MINICAM_Level1MINICAM_Level2MINICAM_Level3MINICAM_Level4

The models take very different approaches to the treatment of non-CO2 greenhouse gases

39

0

100

200

300

400

500

600

2020 2040 2060 2080 2100Year

Rat

ioIGSM_Level1IGSM_Level2IGSM_Level3IGSM_Level4

0

100

200

300

400

500

600

2020 2040 2060 2080 2100Year

Rat

io

MERGE_Level1MERGE_Level2MERGE_Level3MERGE_Level4

0

100

200

300

400

500

600

2020 2040 2060 2080 2100Year

Rat

io

MINICAM_Level1MINICAM_Level2MINICAM_Level3MINICAM_Level4

Ratio of the Price of N2O to the Price of Carbon

Ratio of the Price of NRatio of the Price of N22O O to the Price of Carbonto the Price of Carbon

The models take very different approaches to the treatment of non-CO2 greenhouse gases

40

Limitation/Areas for Future WorkLimitation/Areas for Future WorkLimitation/Areas for Future Work

Technology and other sensitivity analysisConsideration of less optimistic policy regimesImprovement/enhancement of the land use components of the modelsInclusion of other radiatively-important substancesDecision-making under uncertainty

41

ENDENDEND

42

Although the reference scenarios end up at roughly the same place, they take very different pathways over the century.

0

5

10

15

20

25

2000 2020 2040 2060 2080 2100

GtC

/yr

IGSM_REF

MERGE_REF

MINICAM_REF

Reference CO2Emissions

43

-12

-10

-8

-6

-4

-2

0

2000 2020 2040 2060 2080 2100

GtC

/yr

IGSM_Level1IGSM_Level2IGSM_Level3IGSM_Level4IGSM_REF

-12

-10

-8

-6

-4

-2

0

2000 2020 2040 2060 2080 2100

GtC

/yr

MERGE_Level1MERGE_Level2MERGE_Level3MERGE_Level4MERGE_REF

-12

-10

-8

-6

-4

-2

0

2000 2020 2040 2060 2080 2100

GtC

/yr

MINICAM_Level1MINICAM_Level2MINICAM_Level3MINICAM_Level4MINICAM_REF

OCEAN UPTAKE

44

-4

-3

-2

-1

0

1

2

2000 2020 2040 2060 2080 2100

GtC

/yr

IGSM_Level1IGSM_Level2IGSM_Level3IGSM_Level4IGSM_REF

-4

-3

-2

-1

0

1

2

2000 2020 2040 2060 2080 2100

GtC

/yr

MERGE_Level1MERGE_Level2MERGE_Level3MERGE_Level4MERGE_REF

-4

-3

-2

-1

0

1

2

2000 2020 2040 2060 2080 2100

GtC

/yr

MINICAM_Level1MINICAM_Level2MINICAM_Level3MINICAM_Level4MINICAM_REF

NET TERRESTRIAL

EMISSIONS

45

0

1

2

3

4

5

6

7

8

9

IGSM MERGE MiniCAM

Wm

2

CH4 N2OLong-Lived F-gases Short-Lived F-gasesCO2

Stabilization at 4.7 W/M2 (Level 2, 550 ppmv)

Differing contributions from non-CO2greenhouse gases

top related