carl-zeiss lecture 4 ipht jena · non-linear raman spectroscopy 2013.11.22 carl-zeiss lecture 4...

Post on 19-Jul-2020

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Non-linear Raman

Spectroscopy

2013.11.22

Carl-Zeiss Lecture 4

IPHT Jena

Hiro-o HAMAGUCHI

Department of Applied Chemistry and Institute of Molecular

Science, College of Science, National Chiao Tung University,

Taiwan

Vibrational Motions of Ensembles

of Acetone Molecules

What Does Raman look at?

p = aE

Raman Looks at a Normal Mode of Vibration.

What Does CARS/SRS Look at?

CARS/SRS Looks at a Vibrational Coherence

p = cE12E2

2w1-w2, 2k1-k2

w2, k2

w1, k1

c3

2w2-w1, 2k2-k1

w1, k1

w2, k2

Coherent Raman Spectroscopy with Excitation

Angular Frequency w1-w2

CARS Coherent Anti-Stokes Raman Scattering: 2w1-w2, 2k1-k2

SRL Stimulated Raman Loss (Inverse Raman): w1, k1 SRG Stimulated Raman Gain: w2, k2

CSRS Coherent Stokes Raman Scattering: 2w2-w1, 2k2-k1

CARS

SRL

SRG

CSRS

c3

Sample Medium with Third-order Optical Susceptibility

w1-w2

Generation of Coherent Vibrational Excitation with Beat

Angular Frequency w1-w2= W (Raman resonance)

SRG

CARS

w1-w2

Interaction of Coherent Vibrational Excitation

w1-w2 with w1

w1-w2

CSRS

SRL

Interaction of Coherent Vibrational Excitation

w1-w2 with w2

Coherent Raman Spectroscopy

CARS Coherent Anti-Stokes Raman Scattering: 2w1-w2, 2k1-k2

SRL Stimulated Raman Loss (Inverse Raman): w1, k1 SRG Stimulated Raman Gain: w2, k2

CSRS Coherent Stokes Raman Scattering: 2w2-w1, 2k2-k1

CSRS

SRG

SRL

CARS

c3

Raman Spectroscopy

High-resolution Raman (1970-72, Tokyo), UV-VIS resonance Raman (1972-77, Tokyo),

Compact gas Raman (1977-79, Cambridge/Aberystwyth), Matrix isolated Raman (1979-

81, Tokyo), Nanosecond time-resolved Raman (1981-1989, Tokyo; 1990-1995, KAST),

Multichannel cw Raman (1986-90, Tokyo; 1990-95, KAST; 1997-2012, Tokyo),

Picosecond time-resolved Raman (1990-1995, KAST; 2004-2012, Tokyo), NIRRaman

(1984-86, Tokyo; 1992-97, KAST; 1997-2012, Tokyo), Low-frequency Raman (2004-

2012, Tokyo, 2012-,Hsinchu), Raman microspectroscop (2004-2012, Tokyo; 2012-,

Hsinchu)

Non-linear Raman Spectroscopy

Inverse Raman (1983-88, Tokyo), Partially CARS (1990-95, KAST) , Picosecond time-

frequency 2-D CARS (1992-87, KAST; 1997-2012, Tokyo), Polarization-resolved CARS

(1997-2001, Tokyo), Picosecond OKE gated CARS (2002-03, Tokyo), Femtosecond

OKE (2002-, Tokyo), Broadband multiplex CARS microspectroscopy (2002-,2012 Tokyo),

CARS spatial distribution (2004-, 2012, Tokyo), Hyper-Raman microspectroscopy (2005-

12, Tokyo; 2013-, Hsinchu), CARS ROA (2011-2012, Tokyo)

Infrared (IR) spectroscopy

Microsecond Time-resolved IR (1986-90, Tokyo), Nanosecond Time-resolved IR (1990-

97, KAST; 1997-2012, Tokyo; 2007-, Hsinchu), Millisecond multiplex FT-IR (1991-95,

KAST), Infrared electroabsorption (1995-2007, Tokyo; 2007-, Hsinchu), Sub-picosecond

time-resolved IR (2003-212)

Non-linear Raman Spectroscopy at Tokyo and KAST

Inverse Raman (1983-88, Tokyo)

Partially CARS (1990-95, KAST)

Picosecond time-frequency 2-D CARS (1992-87, KAST;

1997-2012, Tokyo)

Polarization-resolved CARS (1997-2001)

Picosecond OKE gated CARS (2002-03, Tokyo)

Femtosecond OKE (2002-, Tokyo)

Broadband multiplex CARS microspectroscopy (2002-2012,

Tokyo)

CARS spatial distribution (2004-, Tokyo)

Hyper-Raman microspectroscopy (2005-2012, Tokyo; 2012-,

Hsinchu)

CARS ROA (2011-2012, Tokyo)

Sample

k1

k2

kCARS

CARS

Energy conservation:

wCARS =2w1-w2=w1+W Momentum conservation:

k = 2k1-k2

w1 w2 w1 wCARS

W

Multiplex CARS Spectroscopy

n=0

n=1

w2 w1 wCARS w1

probed

Multiplex CARS to obtain the whole Raman spectrum

simultaneously

B. N. Toleutaev, T. Tahara and H. Hamaguchi, Appl. Phys. B., 59, 369-375 (1994).

Optical Heterogeneity and CARS Phase Matching

(i) Optically homogeneous system (3) (3)

1 2 1 1 2 1( , , , ; , ) ( , , , )x zc w w w w c w w w w- - = - -

/ 2(3) (3) 2

1 2 1/ 2 0

(3) 2 2

1 2 1

( , , , ) exp sin exp 2 sin ( / 2)

( , , , ) exp sin ( / 2) sinc sin 2 sinc sin ( / 2)

R L

Rdx i x dz i z

RL i L R L

c w w w w

c w w w w

- - -

= - -

E k k

k k k

(ii) Optically heterogeneous system (local structure formation)

(3) 2 2 2 2 2sinc sin 2 sinc sin ( / 2)R LI R L k k

Local structure

(3) (3)

1 2 1domain

exp( ) ( , , , ; )exp( )jj

j

i d i c w w w w - - E r r k r

j

Siganal waves coherently added only within local structure

Phase matching condition is relaxed by extra phase

factor exp(ij)

js 2 2

2

(3) sinc sin 2 sinc exp( ) sin ( / 2)j j jj

j

s s siI k k

・・Ordinary CARS

Polarization rule: tanfR=rtan r; Raman depolarization ratio)

Sample

k1

k2

kCARS

Polarization-resolved CARS Spectroscopy

w1 0o

w2 =60o

wCARS fR Analyzer fa

Energy conservation:

wCARS =2w1-w2=w1+W Momentum conservation:

k = 2k1-k2

w1 w2 w1 wCARS

W

p: r<0.75

Totally symmetric mode

dp: r=0.75

Non-totally symmetric mode

Polarization-resolved CARS Spectroscopic System

=60o

Variable fa

Polarization-resolved CARS Spectra of Liquid Cyclohexane 2

R21

R

G)ww(w

G

---=

R R

RNR

i

HACARSI

CH2 twisting (eg) 1267 cm-1 0.749±0.002

CH2 scissors (eg) 1445 cm-1 0.750±0.002

Depolarization Ratios of Two eg Bands of Cyclohexane

Polarization-resolved CARS Spectra of 1,2-Dichloroethane

T. Shimanouchi, Tables of Molecular Vibrational Frequencies, NSRDS-NBS 39, p.

97.

Depolarized Totally-symmetric Raman Band?

dp → p

Raman optical activity (ROA)

Chiral sensitive vibrational spectroscopy for

absolute configuration determination

Coherent anti-Stokes Raman scattering (CARS)

CARS-ROA

Polarization-resolved heterodyne-detected CARS

Polarization-resolved heterodyne-detected CARS System

28

Polarization-resolved CARS Spectra of (−)-b-pinene

29 Ultimate Spectroscopy and Imaging

Laboratory

CARS-ROA spectrum of (−)-b-pinene

Contrast ratio (chiral signal/ achiral background)

1/10

1/1000

First observation of ROA with CARS using pulsed lasers!

K. Hiramatsu, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, Phys. Rev. Lett. 109, 083901

(2012).

Partially Coherent Anti-Stokes Raman

Scattering (PCARS)

w1

w2

Enhanced anti-Stokes Raman

scattering = PCARS

Sample

T. Ishibashi and H. Hamaguchi, CPL 175, 543 (1990); JCP 106, 11 (1997).

The concentration dependence

of PCARS intensity suggests

microscopic optical inhomogeneity

in the solutions.

CARS

Sample

k1

k2

k = 2k1-k2

k

(Phase matching)

A New Non-linear Raman Probe of Liquid Structure:

Spatial Distribution of CARS Intensity

Spatial Distribution of CARS Signal and

Local Structures in Liquids and Solutions (i) Optically homogeneous system

(3) (3)

1 2 1 1 2 1( , , , ; , ) ( , , , )x zc w w w w c w w w w- - = - -

/ 2(3) (3) 2

1 2 1/ 2 0

(3) 2 2

1 2 1

( , , , ) exp sin exp 2 sin ( / 2)

( , , , ) exp sin ( / 2) sinc sin 2 sinc sin ( / 2)

R L

Rdx i x dz i z

RL i L R L

c w w w w

c w w w w

- - -

= - -

E k k

k k k

(ii) Optically heterogeneous system (local structure formation)

(3) 2 2 2 2 2sinc sin 2 sinc sin ( / 2)R LI R L k k

Local structure

(3) (3)

1 2 1domain

exp( ) ( , , , ; )exp( )jj

j

i d i c w w w w - - E r r k r

j

Siganal waves coherently added only within local structure

Phase matching condition is relaxed by extra phase

factor exp(ij)

js 2 2

2

(3) sinc sin 2 sinc exp( ) sin ( / 2)j j jj

j

s s siI k k

・・Ordinary CARS

0.35 mm

0.10 mm

Polystyrene Beads Dispersed in Water

Polystyrene Beads Dispersed in Water: Nuemrical

Simulation

Relative phase Radius of a sphere

Normalized at = 0° Not normalized

40% Aqueous Solution of Ethanol

Neat ethanol

Ethanol/H2O (soon after mixing)

Ethanol/H2O (after two weeks)

Raman Spectra of 40% Aqueous Solution of Ethanol

40% Aqueous Solution of Ethanol

Neat ethanol

Ethanol/H2O (soon after mixing)

Ethanol/H2O (after two weeks)

Cnmim[PF6] (n=4,6,8)

n = 4 n = 8

Larger local structures due to stronger

Interactions with longer chains?

cf. viscosity @ 20℃

C4mim[PF6]: 371 cP,

C6mim[PF6]: 680 cP,

C8mim[PF6]: 866 cP

* J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, and R. D. Rogers, Green Chem. 3, 156 (2001).

Change of distribution pattern

with chain length

Existence of local structures in Cnmim[PF6]

2011.11.29

ASC2011

Xiamen, China

Super Vibrational Spectroscopy with

Hyper-Raman Scattering

Hiro-o Hamaguchi

Nano vibrational spectroscopy with the molecular near-field effect

Super-resolution Raman/Hyper Raman Microscopy

Intermolecular Fano Resonance

Are there still new possibilities of

vibrational spectroscopy?

超 SUPER, ULTRA, HYPER

超 SUPER, ULTRA, HYPER

Superman

超 SUPER, ULTRA, HYPER

Superman Ultraman

SUPER, ULTRA, HYPER

Superman Ultraman Hyperman

SUPER, ULTRA, HYPER

Superman Ultraman Hyper-

Raman

Raman Scattering and Hyper-Raman Scattering

Raman Hyper-Raman

w0- w

2w0- w

w0 w0

w0

Selection Rules in Vibratioal Spectroscopies

– IR and Raman inactive modes can be HR active.

– The ‘Mutual exclusion rule’ holds for centrosymmetric spiecies.

– IR active modes are always HR active.

IR

Raman

HR

x,y,z

xx,xy,xz,...,zz

xxx,xxy,xyz,...,zzz

ΓHR = ΓIR ⊗ ΓRaman

12

8

4

0

Inte

nsity / a

.u.

3000 2500 2000 1500 1000 500 0

Wavenumber / cm-1

3.0

2.0

1.0Ab

so

rptio

n

16

12

8

4

0

Inte

nsity / a

.u.

Complete Vibrational Spectra of Benzene

IR

HR

Raman

Experimental Setup

Sample

Camera lens

Short pass

filter

Telescope (1.5x)

laser

Ti:sapphire

oscillator

Wavelength: 800 nm

Pulse width: 3–4 ps

Rep. rate: 82 MHz

Power: 300-500 mW

R. Shimada

Resonance HR Spectrum of b-carotene in

Cyclohexane

Concentration: 1mM

Excitation: 450 mW @ 800 nm Exposure: 1 min.

Resonance Hyper-Raman, Infrared and Resonance Raman Spectra of Crystalline All-trans-b-carotene

Mechanism of Resonance Hyper-Raman

Scattering and Molecular Symmetry

(B term)

Qcar

0

m

e

s

HR process

1Bu

2Ag or 3Ag

Centrosymmetric

Y. C. Chung, L. D. Ziegler, J. Chem. Phys. 88, 7287 (1988) .

M. Mizuno, H. Hamaguchi, T. Tahara, J. Phys. Chem. A 106, 3599 (2002) .

Qcar

0

m

e

HR process

Ground

state

Non-

centrosymmetric

(A term)

s

1564 cm-1 1944 cm-1

5 mm

Wavenumber /cm-1

Microscopic image

Spectrum

Hyper-Raman images

Hyper-Raman Imaging with an Infrared-active Mode

Inte

nsity

“Infrared” imaging with much

higher spatial resolution

2012.08.29

EUCMOS2012

Cluj, Romania

New Possibilities of Vibrational Spectroscopy

with Hyper-Raman Scattering

Hiro-o Hamaguchi

National Chiao Tung University, Taiwan/University of Tokyo, Japan

Nano vibrational spectroscopy with the molecular near-field effect

Super-resolution Raman/Hyper-Raman Microscopy

Intermolecular Fano Resonance

1.5x103

1.0

0.5

Inte

nsity

3000 2500 2000 1500 1000 500

Wavenumber / cm-1

2.0x103

1.5

1.0

0.5

Inte

nsity

3x103

2

1Inte

nsity

1.5x103

1.0

0.5Inte

nsity

2.5x103

2.0

1.51.0

0.5

Inte

nsity

Hyper-Raman Spectra of All-trans b-carotene in

Solutions

Benzene

CS2

Crystal

Cyclohexane

CCl4

15

64

1370

1

32

2

Cyclohexane Solution

b-carotene/

cyclohexane

HR

IR

Cyclohexane

HR

CCl4 Solution

b-carotene/CCl4

CCl4

HR

IR HR

CS2 and Benzene Solutions

HR

IR

HR

IR

b-carotene/

CS2

CS2 Benzene

b-carotene/

benzene

Theory of Hyper-Raman Intensities

Mλ,μ,ν : elements of dipole moment operator

εn : energy of state n

ω0 : frequency of the incident light

D. A. Long, and L. Stanton, Proc. R. Soc. London, Ser. A 318, 441 (1970).

Y. C. Chung, and L. D. Ziegler, J. Chem. Phys. 88, 7287 (1988).

Under a two-photon resonant condition,

| ] : electronic state

| ) : vibrational state

Gni : damping constant

Under a Born-Oppenheimer approximation,

Theory of Hyper-Raman Intensities

Using the Herzberg-Teller expansion to electronic states,

The molecular Hamiltonian is divided into three parts;

Electronic Vibrational Vibronic interaction

PERTURBATION

Theory of Hyper-Raman Intensities

Intramolecular

Intermolecular

Theory of Hyper-Raman Intensities

Theory of Hyper-Raman Intensities

A~ B1~ B2~

One photon transition

Two photon transition

Vibronic coupling

Theory of Hyper-Raman Intensities

Intramolecular

Intermolecular

Theory of Hyper-Raman Intensities

How Solvent Vibrations Take Part in Resonance

Hyper-Raman Scattering of Solute

Qcar

0

m

e

s

Solute

1Bu

1Ag

2Ag or 3Ag

Qsolvent

0

Solvent

e

s

Solute molecule

Solvent molecule

B1 term B1’ term

HR intensity enhancement by intermolecular vibronic coupling

The Molecular Near-field Effect

R. Shimada, H. Kano, H. Hamaguchi, J. Raman Spectrosc. 37, 469 (2006).

R. Shimada, H. Kano, H. Hamaguchi, J. Chem. Phys., 129, 024505 (2008).

Detection of Ensembles of Single Molecules!

Detection of Ensembles of Single Molecules!

Detection of Ensembles of Single Molecules!

Detection of Ensembles of Single Molecules!

Resonance HR Spectra of ß-carotene in

Benzene

Benzene

All-trans-ß-carotene in

Benzene-d6

Benzene

Benzene-d6

Resonance HR Spectra of ß-carotene in

Cyclohexane

Cyclohexane

All-trans-ß-carotene in

Cyclohexane-d12

Cyclohexan

e

Cyclohexane-

d12

Cyclohexane

solution

Observed Selection Rule

a2u

e1u e1u

e1u

a2u

e2g

e2g e2g

e2g e1g e2g

a1g

e1g

e2u

e2g

eu

a2u

eu

eu eu

eu eu eu

eu a2u

eg

eg eg

eg

a1g eg

eg eg

a1g

Benzene

solution

a1g

?

Benzene

Benzene-d6

Cyclohexan

e

Cyclohexane-d12

R. Shimada

Observed Selection Rule

Enhanced:

IR active modes

Raman active (non-totally symmetric) modes

Not enhanced:

Raman active (totally symmetric?) modes

IR inactive but HR active modes

Theory of Hyper-Raman Intensities

B

(Solvent)

R

A

(Solute)

R. Shimada, H. Hamaguchi, J. Chem. Phys. 134,

034516 (2011).

Dipole–Dipole

Dipole-Quadrupole

Selection rule

Theory of Hyper-Raman Intensities

Dipole–quadrupole interaction

Dipole–dipole interaction

R. Shimada, H. Hamaguchi, J. Chem. Phys. 134,

034516 (2011).

IR active modes!!

Raman active

modes!!

Quadrupole: TRACELESS No or weak enhancements

for totally symmetric modes

Theory of Hyper-Raman Intensities

Dipole–quadrupole interaction

Dipole–dipole interaction Quantum chemical calculation

Geometric factors

-2 +1 0 +3 -3/2

Dipole–quadrupole

Dipole–dipole

R

x

y

z x

y

z

Calculation of Hyper-Raman Intensities

Calculated Orientation Dependent Spectra

x

y

z

x

y

z

x y

z

x y

z

x y

z

Δ Inte

nsity

Inte

nsity

In

tensity

In

tensity

In

tensity

In

tensity

|Dipole derivative|2

|Quadrupole derivative|2

Difference Spectrum (obs.)

Difference Spectrum: Benzene-h6/-d6

|Dipole derivative|2

|Quadrupole derivative|2

Observed

Calculated

(Random orientation)

band width:20 cm-1 Distance: 8 Å

Difference Spectrum: Cyclohexane-h12/-d12

|Dipole derivative|2

|Quadrupole derivative|2

Observed

Calculated

(Random orientation)

band width:20 cm-1 Distance: 8 Å

Solute molecule

Solvent molecule

Dipole-dipole, Dipole-quadrupole interaction

Geometric information (orientation, distance) of

proximate molecules can be obtained

The Hyper-Raman Molecular Near-field Effect

Structure determination in solutions!

Structure determination in biological

systems!

Simultaneous Observation of Raman and Hyper-

Raman Scattering

Theoretical Bckground of Super-resolution

Raman/HR Apparatus

Constructed at Tokyo

K. Matsuzaki

Raman imageRaman imageRaman imageRaman imageRaman image

Raman : < 635 nm

Hype r-Raman : < 419 nm

Supe r-resolution : < 176 nm !

Simultaneous Mapping of TiO2 Nanostructure with

Raman and Hyper-Raman Scattering Raman Hyper-Raman

Raman/Hyper-

Raman SEM

Laser field

Raman imageRaman imageRaman imageRaman imageRaman image

Raman : < 635 nm

Hype r-Raman : < 419 nm

Supe r-resolution : < 176 nm !

Raman: 620 nm

HR: 390 nm

R/HR: 160 nm

Simultaneous Mapping of TiO2 Nanostructure with

Raman and Hyper-Raman Scattering

Raman imageRaman imageRaman imageRaman imageRaman image

Raman : < 635 nm

Hype r-Raman : < 419 nm

Supe r-resolution : < 176 nm !

Super-resolution Achieved !

Raman: 620 nm

HR: 390 nm

R/HR: 160 nm

Fano Resonance: Quantum-mechanical Interference of a

Discrete Level with a Continuum

q: Fano parameter

Raman and Hyper-Raman Spectra of TiO2

Nanoparticles (Anatase, 100-300 nm)

IR spectra:

B. C. Trasferetti, C. U. Davanzo, and R. A. Zoppi, Electrochem. Commun., 4, 301-304 (2002).

E. Hendry, F. Wang, J. Shan, T. F. Heinz, and M. Bonn, Phys. Rev. B, 69 (8), 081101 (2004).

D. Wang , X. Zhang, K. Wu, and S. Xu, Chem. Lett., 35 (8), 884-885 (2006).

LO phonon combination

band coupled to electronic

state

Intermolecular Fano Resonance: Hyper-Raman Spectrum of TiO2 Nanoparticle (100~300 nm) Dispersed in Benzene

Intermolecular Fano Resonance: Benzene and

Deuteriated Benzene on TiO2 Nanoparticle

C6H6

C6D6

Organic Molecules on TiO2 Nanoparticle

1000 800 600

Hyper-Raman Shift / cm-1

benzene

Dichloro-

methane

chlorofom

carbon

tetrachloride

Coherent interaction of adsorbed molecules with TiO2

Selective detection of adsorbed molecules on TiO2

top related