carbon cycle in plant canopyatmenv.envi.osakafu-u.ac.jp/.../251/ecolmet.2018_ppt2.pdfecosystem...

Post on 24-Jan-2020

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

生態気象学特論

Carbon Cycle in Plant Canopy

Ecosystem process and modeling

生態気象・植山

Ecosystem Processes

Examples : 光合成、呼吸、分解蒸発、蒸散、昇華、流出成長、分配、脱窒

Material Cycle:Water, Carbon, Water, and Energy

Compartment

Leaf

Stem

RootLitter

Soil

(Pool)

FluxPhotosynthesis

Respiration

decomposition

decompositiondecomposition litterfall

mortality

Leaf sprout

Retranslocation

Respiration

Carbon

Flux

PrecipitationSoilevaporation

water

Outflow

Transpiration

Intercepted evaporation

Precipitation

Snow

sublimation

Snow melt

Flux

deposition

nitrification

denitrification Litterfall

mortality

Leaf sprout

retranslocation

immobilization

nitrogen

(N-fixation)

Compartment Model

3211 FFF

t

C

C1 : Compartment1(e.g., leaf, stem, or root) (kg m-3)

t : Time (day)

Fi : Flux among compartments (e.g., photosynthesis, respiration, or litterfall) (kg m-2 day-1)

Explaining ecosystem processesusing Compartment and Flux

Carbon Flux

NPP = GPP – RaNEP = NPP – RhNEE = -NEP NBP = NEP + FCO + FCH4 + FVOC

+ FDIC + FDOC + FPOC - FFire

(Chapin et al., 2006)

NPP = GPP – Ra

(Chapin et al., 2006)

NPP : Net Primary Productivity純一次生産量

GPP : Gross Primary Productivity総一次生産量

Ra : Autotrophic respiration独立栄養呼吸

Carbon Flux

NPP (純一次生産量)

NPP = GPP – Ra

Slope = 0.53

CUE = NPP / GPPCarbon Use Efficiency (炭素利用効率)

(De Lucia et al., 2007)

森林について

NEP = NPP – Rh

(Chapin et al., 2006)

NPP : Net Primary Productivity純一次生産量

NEP : Net Ecosystem Productivity純生態系生産量

Rh : Heterotrophic respiration従属栄養呼吸

Carbon Flux

NEE = -NEP

(Chapin et al., 2006)

NEE : Net Ecosystem Exchange正味生態系交換量

NEP : Net Ecosystem Productivity純生態系生産量

Carbon Flux

NBP = NEP + FCO + FCH4 + FVOC

+ FDIC + FDOC + FPOC - FFire

(Chapin et al., 2006)

NBP : Net Biosphere Productivity正味生物圏交換量

F : Flux (フラックス)CO : 一酸化炭素 CH4 : メタン VOC : 揮発性有機物DIC : 溶存無機炭素 DOC : 溶存有機炭素 POC :粒子性有機炭素Fire : 火災 (その他の撹乱)

Carbon Flux

http://www.ipcc.ch/ipccreports/sres/land_use/index.php?idp=24

Carbon Flux

Photosynthesis

Stroma

Thylakoid(膜内にクロロフィル)

Grana

Photosynthetically active radiation:400~700 nm

Chloroplast photochemical reaction

Calvin cycle

(leaf-scale)

葉温

(Chapin et al., 2011)

チラコイド

ストロマ

(leaf-scale)

NADP (ニコチンアミドアデニンジヌクレオチドリン酸)

酵素ルビスコ触媒の酵素反応

クロロフィルの励起による

NA

DP

Hの生成

ホスホグリセリン酸

カルボキシル化

酸素化(光呼吸)

Photosynthesis

RuBP(リブロース・1,5-ビスリン酸)

(Chapin et al., 2011)

Photosynthesis

(Chapin et al., 2011)

(光が十分な場合)

Photosynthesis

A = min (Aj, Ac)

(彦坂, 2016)

Photosynthesis

Ci = 270 umol m-2 s-1

(Bernacchi et al., 2013)

A = min (Aj, Ac)Photosynthesis

Gas diffusion A = gt * (Ca - Cm)

Ca

Cm

(Chapin et al., 2011)

A = 1/rt * (Ca - Cm)

Cm

Ci

Cl

Ca

rm

rs

rb

rt = rb + rs + rm

A = 1/rm * (Ci - Cm)

A = 1/rs * (Cl - Ci)

A = 1/rb * (Ca - Cl)

Continuum

Gas diffusion

A = gt * (Ca - Cm)

Cm

Ci

Cl

Ca

rm

rs

rb

g = 1 / RA = gm * (Ci - Cm)

A = gs * (Cl - Ci)

A = gb * (Ca - Cl)

コンダクタンスは抵抗の逆数

Gas diffusion

Boundary-Layer Conductance (gb):葉の形状、風速 etc

Stomatal Conductance (gs):気孔の数、開度

Mesophyll conductance (gm):葉の厚さ、水分条件 etc

Gas diffusion

気孔コンダクタンス

蒸散による水損失を低減CO2取り込みによる生産の最大化

Hydropassive

Hydroactive

Gas diffusion

WUE (water use efficiency)水利用効率 = 光合成 / 蒸散

大気飽差 (kPa)

(米国;老齢林)

(Tang et al., 2006)

1gのCO2獲得に227gの水の損失

Gas diffusion

Modeling Stomatal Conductance

(Empirical)

Jarvis型モデル

(Running and Warning, 1998)

Jarvis型モデル

gsw = gsw_max * f(T) * f (VPD) * f (PAR)

* f (CO2) * f (SWC)

(Bond-Lamberty et al. 2007)

←潅水の経過日数によって気孔が決まるような関数

最大気孔開度のときの気孔コンダクタンス

気孔開度 (0~1)

Modeling Stomatal Conductance

gsw = A hs / Ca * m + b

光合成速度相対湿度

大気CO2濃度

経験定数 (パラメータ)

Ball型モデル

(Monson and Baldocchi, 2014)

Modeling Stomatal Conductance

(Empirical)

CO2濃度上昇で生態系プロセスはどう変化するか?

光合成速度

気孔コンダクタンス

蒸発散

土壌水分 窒素制限?

(von Caemmerer et al. 2009)

Photosynthesis - Condutance

https://nicholas.duke.edu/duke-forest-face

FACE (Free-Air Carbon Dioxide Enrichment)

開放系大気CO2濃度増加実験

(Long et al., 2004)

FACE (Free-Air Carbon Dioxide Enrichment)

開放系大気CO2濃度増加実験

0 60%CO2増加による光合成の変化率(%)

Photosynthesis vs Nitrogen content

(Chapin et al., 2011)

Canopy photosynthesis

PPFD (μmol m-2 s-1)

群落光合成 = 個葉光合成 x 葉面積 ??

(de Pury and Farquhar, 1997)

Radiation transfer - photosynthesisin plant canopy

Direct Diffuse

Radiation transfer - photosynthesisin plant canopy

Direct beam

Diffuse beam(Rayleigh scattering)

Direct beam

Diffuse beam(Mie scattering)

Radiation transfer - photosynthesis

sunfleck

in plant canopy

Radiation transfer - photosynthesisin plant canopy

PPFDsun = PPFDdirect + PPFDdiffuse + PPFDscatter

PPFDshade = PPFDdiffuse + PPFDscatter

Radiation at sunlit leaf

Radiation at shaded leaf

Radiation transfer - photosynthesisin plant canopy

6

葉面積指数 (m2 m-2)

実際に近い条件

(de Pury and Farquhar, 1997)

Radiation transfer – photosynthesis in plant canopy

Carbon flux

NPP = GPP – Ra

(Chapin et al., 2006)

NPP : Net Primary Productivity純一次生産量

GPP : Gross Primary Productivity総一次生産量

Ra : Autotrophic respiration独立栄養呼吸

Autotrophic respiration

Ra = Rg + Rm

Ra : Autotrophic respiration独立栄養呼吸

Rg : Growth respiration成長呼吸

Rm : Maintenance respiration維持呼吸

1 gの乾物を生成する際のコスト

(Chapin et al., 2011)

Autotrophic respiration

Maintenancerespiration

Growth respiration

Seasonality in autotrophic respiration at a temperate forest

(Miyama et al., 2006)

Autotrophic respiration

NPP (純一次生産量)

NPP = GPP – Ra

Slope = 0.53

CUE = NPP / GPPCarbon Use Efficiency (炭素利用効率)

(De Lucia et al., 2007)

NPP (純一次生産量)

NPP = GPP – Ra CUE = NPP / GPP

(De Lucia et al., 2007)

NPP (純一次生産量)

NPP = GPP – Ra (Chapin et al., 2011)

純一次生産量

https://nelson.wisc.edu/sage/data-and-models/atlas/maps.php?catnum=3&type=Ecosystems

各要素へのNPPの分配率の代表値

(Chapin et al., 2011)

Allocation(分配)

http://matome.naver.jp/odai/2143120929338037401

Allocation(分配)リービッヒの最小律

光に制限

地上部へ多く配分

水・栄養分に制限

地下部へ多く配分

Allocation(分配)

分配

(Littonet al., 2007GCB)

木部

地下部

Carbon Flux

NEP = NPP – Rh

(Chapin et al., 2006)

NPP : Net Primary Productivity純一次生産量

NEP : Net Ecosystem Productivity純生態系生産量

Rh : Heterotrophic respiration従属栄養呼吸

NEP = NPP – Rh

(Chapin et al., 2011)

Decomposition

Litter

Litter

Litter

Litter

Soil

Soil

Soil

Soil

粗大有機物

Decomposition

CWD

*CWD : coarse woody debris

リター中の含水率(%)

従属栄養呼吸

(mg

CO

2g-1

liite

rd

-1)

(O’Connell et al., 1990)Decomposition

Carbon flux

(Ueyama al., 2009)Black spruce forest in Alaska

Methane budget in terrestrial ecosystems

Ecosystem process and modeling

GWP = 28 at 100 years

Greenhouse gas & radiative forcing

(IPCC AR5, 2013)

2nd Greenhouse Gas

http://www.esrl.noaa.gov/gmd/ccgg/iadv/C

H4

co

ncen

trati

on

(p

pb

)

Mauna Loa, Hawaii, USA

1700

1750

1800

1850

1900

1950

1650

1600 1984 1988 1992 1996 2000 2004 2008 2012

Year 2016

Methane

Pre-industrial level

722 ppb

678 Tg CH4 yr-1Methane emission

(Kirshke et al. 2013; Nature Geo.)

wetland

Agriculture

Fossil fuelBiomassburning

Wild animalsTermites

Others

Methane emission 678 Tg CH4 yr-1

(Kirshke et al. 2013; Nature Geo.)

wetland

Agriculture

Fossil fuelBiomassburning

Wild animalsTermites

Others

(Kirshke et al. 2013; Nature Geo.)

Methanogenic Archaea

632 Tg CH4 yr-1

OH-radical(83%)

Soil

Methane sinkStratospheric OH

Tropospheric

Methanotroph(bacteria)

(McEwing et al., 2015l Plant Soil)

Methane process in wetland

(Riley et al., 2011; Biogeosciences)

(Rinne et al., 2007; Tellus B)

Seasonality Boreal fen at Finland

Methane emission vs water table

(Oleefeldt et al., 2013; GCB)

High emissions

WetDry

Norther wetland across permafrost zones

Methane emission at wetlands

(Riley et al., 2011; Biogeosciences)

Modeling Global methane emission

(Melton et al., 2013; Biogeosciences)

Wetland area

(Melton et al., 2013; Biogeosciences)

top related