cambridge university napoli university ispsd, santa barbara, may 2005 a compact model for thin soi...

Post on 17-Dec-2015

217 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

A compact model for thin SOI LIGBTs:description, experimental verification

and system application

Ettore Napoli1,2, Vasantha Pathirana1, Florin Udrea1,3,Guillaumme Bonnet3,Tanja Trajkovic3,Gehan Amaratunga3

1 Dept. of Engineering, University of Cambridge, UK2 Dept. Electronic and Telecom. Univ. of Napoli, Italy3 Cambridge Semiconductor (CamSemi), UK

EU research program ROBUSPIC

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Outline

Motivation Thin SOI LIGBT Differences with Vertical IGBT Spice sub-circuit model for LIGBT

Model equations Model behavior

Half bridge circuit using lateral IGBT Experimental results on flyback circuit Conclusion

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Motivation

• Available IGBT circuit models are not suited to Lateral IGBT

• Need for– a reliable physical based model for Lateral IGBT– usable in various circuit simulators

• Extension to different LIGBT technologies

• Important for smart power design

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Thin SOI Lateral IGBT

• 600V PT• Transparent buffer• Source and Drain up to the BOX• Current flow is horizontal and 1D

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Differences with Vertical IGBT (1)

• Not zero carrier concentration at the collector edge for LIGBT

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

IGBT models not suited for LIGBT (1)

• Total charge and charge profile

LIGBT

Vertical IGBT

LW

LxPLxWPxp W

sinh

sinhsinh0

LWqALPPQ W 2tanh0

LW

LxWPxp

sinh

sinh0

LWqALPQ 2tanh0

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Differences with Vertical IGBT (2)

• Depletion width vs. reverse voltage is influenced by 2D effects

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

IGBT models not suited for LIGBT (2)

• Voltage rise at turn-off is faster due to lower charge in the epilayer and slower depletion width expansion

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

IGBT models not suited for LIGBT (3)

• Important effects such as the voltage bump, resulting in a delay in the turn-off, are not considered

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Spice sub-circuit model for LIGBT

Currents and voltages Epilayer charge equation

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Spice sub-circuit model for LIGBT

Cox

Cgs

I (W)N

IPC_TRNI (0)NI (W)NI (W)P

Cdep

Cds

Q

Vdrift

Drain

Source

Gate

Vj

Vmos

N+

G DS

NN-

BOX

Substrate

P+

P+

I (0)N

VjVdriftVmos

I (W)N

I (W)P

• Vj : Emitter junction• Vdrift:Depends on the injected carriers

– analytic solution• Vmos: Mosfet (level 1)

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Spice sub-circuit model for LIGBT

Cox

Cgs

I (W)N

IPC_TRNI (0)NI (W)NI (W)P

Cdep

Cds

Q

Vdrift

Drain

Source

Gate

Vj

Vmos

N+

G DS

NN-

BOX

Substrate

P+

P+

I (0)N

VjVdriftVmos

I (W)N

I (W)P

• IN(W) : Electron current through the level 1 Mosfet

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Spice sub-circuit model for LIGBT

Cox

Cgs

I (W)N

IPC_TRNI (0)NI (W)NI (W)P

Cdep

Cds

Q

Vdrift

Drain

Source

Gate

Vj

Vmos

N+

G DS

NN-

BOX

Substrate

P+

P+

I (0)N

VjVdriftVmos

I (W)N

I (W)P

• IP(W) : Bipolar hole current

(W/L)b(W/L)P

(W/L)b

(W/L)P

L

qADI

bn

PWI

w

sne

i

P

sinh

1coth

sinh

1coth

)(0

2

20

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Spice sub-circuit model for LIGBT

Cox

Cgs

I (W)N

IPC_TRNI (0)NI (W)NI (W)P

Cdep

Cds

Q

Vdrift

Drain

Source

Gate

Vj

Vmos

N+

G DS

NN-

BOX

Substrate

P+

P+

I (0)N

VjVdriftVmos

I (W)N

I (W)P

• IN(0) : Electron current through the emitter junction

2

20

200)0(

i

sne

i

BsneN

n

PI

n

)P(NPII

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Spice sub-circuit model for LIGBT

Cox

Cgs

I (W)N

IPC_TRNI (0)NI (W)NI (W)P

Cdep

Cds

Q

Vdrift

Drain

Source

Gate

Vj

Vmos

• IPC_TRN : Transient current due to charge sweep-out

t

tWtWqApI TRNPC

_

Increasing Anode Voltage

Stable Anode Voltage

P

0

PW

Wt Wt+δt Wt+2δt

Time is increasing

0

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Base charge equation

IN(W) is the MOSFET current

IN(0) is the emitter edge electron current

IPC_TRN is the charge sweep out current

The last term is for the recombination in the base

Q

IIWIt

QTRNPCNN

_0

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Other model features

Carrier concentration dependent mobility model

Gate-Source Drain-Source and Gate-Drain capacitances are implemented

Physical based model with 13 parameters

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Model behavior

Inductive Turn-off

Expanded for I=1A, V=200V

VoltageCurrentPower

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Model behavior

• Toff Energy vs. Von as a function of lifetime

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Half bridge circuit

• Output characteristics

200V; 2A; 100kHz

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Experimental results on flyback circuit

E xpe rim en ta l re su lts V g = 5V

V g = 4V

V g = 3V

V g = 2V

D ra in v o lta g e [V ]0

0 .5Dra

in c

urre

nt [

A]

1 4 5

O u r m o de l

0

1 .5

1

2

2 3

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Experimental results on flyback circuit

Dra

in V

olta

ge [

V]

Dra

in C

urre

nt [

A]

Pow

er [

kW]

0

0

0 .2

0 .2

0 .4

0 .1

0 .6

0 .3

0 .8

1 .0

1 .2

Tim e [n s]5 0 1 0 00 2 0 0 2 5 01 5 0 3 0 0

0

8 0

1 6 0

2 4 0

3 2 0

4 0 0

4 8 0

E x p e rim e n ta l re s u ltO u r m o d e l

E x p e rim e n ta l re s u ltO u r m o d e l

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Flyback circuit simulation1K

20

47pF

D22 F

1mF

100V

LIGBT

Complete flyback circuit

The simulated waveforms are for the primary winding voltage (green) and the load voltage (red)

Time [ s]

Vol

tage

[V

]

0 20 40 60 80 100

0

100

200

-100

-200

-300

ISPSD, Santa Barbara, May 2005CAMBRIDGEUNIVERSITY

NAPOLI

UNIVERSITY

Conclusion

• A physical based circuit model for Lateral IGBT• Implemented in Spice• Compared against

– Device numerical simulation– Complex SMPS simulation– Experimental results

• Extendable to Thick SOI and JI-LIGBT

top related