bio-med 350

Post on 07-Feb-2016

30 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Bio-Med 350. Normal Heart Function and Congestive Heart Failure. Basic Concepts:. The Cardiac Cycle Myocardial Filling -- “Diastole” Compliance Left ventricular filling curves Myocardial Emptying -- “Systole” Cardiac Output Frank-Starling Performance Curves - PowerPoint PPT Presentation

TRANSCRIPT

Bio-Med 350

Bio-Med 350

Normal Heart Functionand

Congestive Heart Failure

Bio-Med 350

Basic Concepts: The Cardiac Cycle Myocardial Filling -- “Diastole”

ComplianceLeft ventricular filling curves

Myocardial Emptying -- “Systole”Cardiac OutputFrank-Starling Performance Curves

The relationship of filling and emptying: Pressure - Volume Loops

Bio-Med 350

Basic Definitions Cardiac Output is

defined as:

Stroke Volume X Heart Rate

Blood Pressure is defined as:

Cardiac Output XSystemic Vascular Resistance

What happens to each of these during: Exercise? When LV filling is impaired?? When systolic function is impaired???

Bio-Med 350

What happens to the runner during exercise?

OR“Why the jogger didn’t blow his top!”

Bio-Med 350

Basic Definitions Cardiac Output is

defined as:

Stroke Volume X Heart Rate

Blood Pressure is defined as:

Cardiac Output XSystemic Vascular Resistance

Bio-Med 350

Basic Concepts: #1

The Cardiac Cycle

Bio-Med 350

The Normal Cardiac Cycle

Components of Diastole:Isovolumic relaxation

Rapid Ventricular fillingAtrial contraction (“kick”)

Components of SystoleIsovolumic contractionL.V. Ejection

Bio-Med 350

Volume change during LV filling

Bio-Med 350

The Normal Cardiac Cycle

Let’s take a look at the cycle in some depth............

Bio-Med 350

The Cardiac Cycle

Bio-Med 350

Basic Concepts: #2

The Cardiac Cycle Myocardial Filling -- “Diastole”

ComplianceLeft ventricular filling curves

Myocardial Contractility -- Systole Frank-Starling Performance Curves

The relationship of filling and emptying: Pressure - Volume Loops

Bio-Med 350

Left ventricular filling curves Relationship of pressure to

volume defines L.V. “stiffness” or “non-compliance”

At low pressures, almost linear

0

10

20

30

40

V o lu m e (m l)

Pres

sure

(mm

Hg)

Y

Bio-Med 350

Relationships to Remember “Compliance” is

proportional to change in volume

over change in pressure

“Stiffness” is the inverse.

Stiffness is proportional to change in pressure over

change in volume

Bio-Med 350

Normal vs “non-compliant” LV

Bio-Med 350

Basic Concepts: #3

The Cardiac Cycle Myocardial Filling -- “Diastole”

ComplianceLeft ventricular filling curves

Myocardial Emptying -- “Systole”Cardiac OutputFrank-Starling Performance Curves

The relationship of filling and emptying: Pressure - Volume Loops

Bio-Med 350

Mediators of Cardiac Output

H e art R ate

Pre lo ad A f te rlo ad C o ntractil i ty

S trok e V o lu m e

C A R D IA C O U TPU T

Bio-Med 350

Relationships to Remember

“Preload” and “afterload” are defined as the wall tension during diastole and systole, respectively

Wall tension is defined as:

P x r2h

(where h = wall thickness)

Bio-Med 350

Preload

Is the wall tension during ventricular filling

Is defined as P x r 2h

during diastole!!!

Bio-Med 350

Why is volume the most important determinant of ventricular preload??

(Hint: look at the cardiac cycle)

Bio-Med 350

The Cardiac Cycle

Bio-Med 350

Afterload

Is the wall tension during ventricular ejection

Is defined as: P x r 2h

during systole!!!

Bio-Med 350

Why is systolic pressure the most important determinant of ventricular afterload???

(Hint: look again at the cardiac cycle)

Bio-Med 350

The Cardiac Cycle

Bio-Med 350

How do we relate myocardial performance to:

Loading conditions: i.e. preload and afterload

And how does “myocardial contractility” relate to all of the above??

Bio-Med 350

Frank - Starling Curves

0

1

2

3

4

5

6

7

L .V . end-d iasto lic p ressureor en d-d iasto lic vo lum e

Card

iac

Outp

utor

stro

ke v

olum

e

L.V. “performance” curves relating:

1. L.V.E.D.P. (i.e." preload”)

2. L.V. “performance” (i.e. cardiac output)

Bio-Med 350

Frank-Starling Curves in CHF

Bio-Med 350

What happens to: Heart rate Blood pressure Cardiac output Vascular resistance

When:

LV filling falls LV systolic function

is impaired The LV is non-

compliant Afterload increases

Bio-Med 350

How do we measure.....

Blood pressure Cardiac output Stroke volume LVEDP Systemic vascular resistance

?

Bio-Med 350

The Swan-Ganz Catheter

Bio-Med 350

Werner Forssman – 1929

Bio-Med 350

Right heart catheterization

Bio-Med 350

Right Heart Catheterization

Bio-Med 350

Measuring Cardiac Output

Fick Method --

O2 consumptionA-V O2 difference

Thermodilution method --

“The Black Box”

Bio-Med 350

The Fick Principle

Lungs

Body

O2

Bio-Med 350

Measuring O2 consumption

The Waters Hood

Bio-Med 350

The Thermodilution Method

Similar in principle to the Fick method Uses change in temperature per unit

time, rather than change in O2 saturation

Requires a thermal probe in the right side of the heart

Bio-Med 350

Construction of Starling Curve for an individual patient

0

1

2

3

4

5

6

7

L .V . end -d iasto lic p ressureor end -d iasto lic vo lum e

Card

iac

Outp

utor

stro

ke v

olum

e

Bio-Med 350

Pressure - Volume Loops Relate L.V. pressure

to L.V. volume in a single cardiac cycle

Can be used to explore the effects of various therapies on stroke volume and L.V.E.D.P.

Volume (ml)

Pressure (mm Hg)

Bio-Med 350

Pressure - Volume Loops

Holding afterload and contractility constant

Varying “preload”, measured as end-diastolic volume

Bio-Med 350

Heart Failure

Forward Failure: Inability to pump blood forward to meet the

body’s demands

Backward Failure: Ability to meet the body’s demands, at the

cost of abnormally high filling pressures

Bio-Med 350

Systolic vs. Diastolic Dysfunction

Systolic dysfunction• Decreased stroke volume• Decreased forward cardiac output• Almost always associated with diastolic

dysfunction as well Diastolic Dysfunction

• One third of patients with clinical heart failure have normal systolic function – i.e. “pure” diastolic dysfunction

Bio-Med 350

Left Heart Failure

Impaire d Contrac tility

1. Myoc ardial Infarc tion2. Trans ie nt myoc ardial is c he mia3. Chronic Volume ove rload4. Dilate d Cardiomyopathy

L.V. Dias tolic dys func tion

1. Le ft ve ntric ular hype rtrophy2. Hype rtrophic c ardiomyopathy3. Re s tric tive c ardiomyopathy4. Trans ie nt myoc ardial is c he mia

Pre s s ure Ove rload

1. Aortic S te nos is2. Unc ontrolle d hype rte ns ion

Obs truc tion of L.V. filling

1. Mitral S te nos is2. Pe ric ardial c ons tric tion or tamponade

L.V. Sys tolic dys func tion

Bio-Med 350

Left Heart Failure

Impaired Contractility

1. Myocardial Infarction 2. Transient myocardial ischemia 3. Dilated Cardiomyopathy 4. Chronic Volume overload

L.V. Dias tolic dys func tion

1. Le ft ve ntric ular hype rtrophy2. Hype rtrophic c ardiomyopathy3. Re s tric tive c ardiomyopathy4. Trans ie nt myoc ardial is c he mia

Pre s s ure Ove rload

1. Aortic S te nos is2. Unc ontrolle d hype rte ns ion

Obs truc tion of L.V. filling

1. Mitral S te nos is2. Pe ric ardial c ons tric tion or tamponade

L.V. Sys tolic dys func tion

Bio-Med 350

Left Heart Failure

Impaire d Contrac tility

1. Myoc ardial Infarc tion2. Trans ie nt myoc ardial is c he mia3. Chronic Volume ove rload4. Dilate d Cardiomyopathy

L.V. Dias tolic dys func tion

1. Le ft ve ntric ular hype rtrophy2. Hype rtrophic c ardiomyopathy3. Re s tric tive c ardiomyopathy4. Trans ie nt myoc ardial is c he mia

Pre s s ure Ove rload

1. Aortic S te nos is2 . Unc ontrolle d hype rte ns ion

Obs truc tion of L.V. filling

1. Mitral S te nos is2. Pe ric ardial c ons tric tion or tamponade

L.V. Sys tolic dys func tion

Bio-Med 350

Left Heart Failure

Impaire d Contrac tility

1. Myoc ardial Infarc tion2. Trans ie nt myoc ardial is c he mia3. Chronic Volume ove rload4. Dilate d Cardiomyopathy

L.V. Dias tolic dys func tion

1. Le ft ve ntric ular hype rtrophy2. Hype rtrophic c ardiomyopathy3. Re s tric tive c ardiomyopathy4. Trans ie nt myoc ardial is c he mia

Pre s s ure Ove rload

1. Aortic S te nos is2 . Unc ontrolle d hype rte ns ion

Obs truc tion of L.V. filling

1. Mitral S te nos is2. Pe ric ardial c ons tric tion or tamponade

L.V. Sys tolic dys func tion

L.V. Diastolic dysfunction

Bio-Med 350

Diastolic Dysfunction

Impaired early diastolic relaxation (this is an active, energy dependent process)

Increased stiffness of the left ventricle (this is a passive phenomenon)

• LVH• LV fibrosis• Restrictive or infiltrative cardiomyopathy

Bio-Med 350

Diastolic dysfunction due to LVH

Bio-Med 350

Diastolic dysfunction:Pressure – Volume Loop

Bio-Med 350

Left Heart Failure

Impaire d Contrac tility

1. Myoc ardial Infarc tion2. Trans ie nt myoc ardial is c he mia3. Chronic Volume ove rload4. Dilate d Cardiomyopathy

L.V. Dias tolic dys func tion

1. Le ft ve ntric ular hype rtrophy2. Hype rtrophic c ardiomyopathy3. Re s tric tive c ardiomyopathy4. Trans ie nt myoc ardial is c he mia

Pre s s ure Ove rload

1. Aortic S te nos is2. Unc ontrolle d hype rte ns ion

Obs truc tion of L.V. filling

1. Mitral S te nos is2. Pe ric ardial c ons tric tion or tamponade

L.V. Sys tolic dys func tion

Bio-Med 350

Compensatory Mechanisms for Heart Failure

Frank – Starling Mechanism Neuro-humoral alterations Left ventricular enlargement

• LV Hypertrophy ↑ contractility• LV “remodeling” ↑ stroke volume

Bio-Med 350

Frank –Starling mechanism

Bio-Med 350

Neuro-humoral mediators

Bio-Med 350

Neuro-humoral mediators

Bio-Med 350

Left Ventricular enlargement Concentric LVH

• Increased LVEDP• Increased incidence

of backward failure• Decreased wall

stress at expense of increased oxygen demand and increased LVEDP

Eccentric hypertrophy (cavity dilation and hypertrophy)• Seen in volume-overload

states• Seen after acute MI

(post-infarction “remodeling”)

• Increased stroke volume at the expense of increased wall stress, oxygen demand and LVEDP

Bio-Med 350

End results of “compensatory mechanisms”

Bio-Med 350

Left Heart Failure

Impaire d Contrac tility

1. Myoc ardial Infarc tion2. Trans ie nt myoc ardial is c he mia3. Chronic Volume ove rload4. Dilate d Cardiomyopathy

L.V. Dias tolic dys func tion

1. Le ft ve ntric ular hype rtrophy2. Hype rtrophic c ardiomyopathy3. Re s tric tive c ardiomyopathy4. Trans ie nt myoc ardial is c he mia

Pre s s ure Ove rload

1. Aortic S te nos is2. Unc ontrolle d hype rte ns ion

Obs truc tion of L.V. filling

1. Mitral S te nos is2. Pe ric ardial c ons tric tion or tamponade

L.V. Sys tolic dys func tion

Bio-Med 350

“Pseudo” Left Heart FailureAbnormally high filling pressure (PCW pressure) despite normal LV function and LVEDP

Obstruction of L.V. filling

Mitral Stenosis

Bio-Med 350

Right Heart Failure Very commonly a

sequela of Left Heart Failure • LVEDP • PCW• PA pressure• Right heart pressure

overload

Cardiac causes• Pulmonic valve stenosis• RV infarction

Parenchymal pulmonary causes• COPD• ILD

Pulmonary vascular disease• Pulmonary embolism• Primary Pulmonary

hypertension

Bio-Med 350

Right heart vs. Left heart failure

Left Heart failure• Pulmonary congestion• Reduced forward

cardiac output:• Fatigue• Renal insufficiency• Cool extremities• Decreased mentation

Right Heart failure• Neck vein distension• Hepatic congestion• Peripheral edema• Also may result in

reduced forward cardiac output, but with clear lung fields

top related