basics of acoustics - creationbaumann.com · fundamentals of acoustics 3.1 sound sound can comprise...

Post on 13-Jul-2018

229 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

BASICS OF ACOUSTICS

2

CONTENTS

1. preface

2. room acoustics versus building acoustics

05

0506060708090910

11

11141616

18

03

04

3. fundamentals of acoustics

4. room acoustic parameters

5. index

3.1 Sound 3.2Soundpressure 3.3Soundpressurelevelanddecibelscale 3.4 Soundpressureofseveralsources 3.5Frequency 3.6 Frequencyrangesrelevantforroomplanning 3.7 Wavelengthsofsound 3.8Levelvalues

4.1 Reverberationtime 4.2Soundabsorption 4.3 Soundabsorptioncoefficientandreverberationtime 4.4 Ratingofsoundabsorption

3

1. PREFACE

Noiseorunwantedsoundsisperceivedasdisturbingandannoyinginmanyfieldsoflife.Thiscanbeobservedinprivateaswellasinworkingenvironments.Severalstudiesaboutroomacousticconditionsandannoyancethroughnoiseshowtherelevanceofgoodroomacousticconditions.Decreasingsuccessinschoolclassroomsoraffectingefficiencyatworkisoftenrelatedtoinadequateroomacousticconditions.ResearchresultsfromclassroomacousticshavebeenoneofthereasonstoreviseGermanstandardDIN18041on“Acousticqualityofsmallandmedium-sizedroom”from1968anddecreasesuggestedreverberationtimevaluesinclassroomswiththenew2004versionofthestandard.Furthermorethestandardgaveadetailedrangeforthefrequencydependenceofreverberationtimeandalsoextendedtherangeofroomstobeconsideredinroomacousticdesignofabuilding.

Theacousticqualityofaroom,betteritsacousticadequacyforeachusage,isdeterminedbythesumofallequipmentandmaterialsintherooms.Inthesenseofgoodacousticstheroomsshouldcontributetoperceivespeech,musicorothersoundsasnottooloudortooquietandthewecancommunicatewithmucheffortandfeelcomfortable.

ThisbrochurehasbeendevelopedbyCréationBaumanwiththeintentiontogiveanintroductionandprofessionalsupportinthefieldofroomacousticsthatsometimeshastheconnotationofbeingconfusingortoomulti-dimensional.Itilluminatesimportanttermsandexplainsbasicsandinterrelationshipsofroomacoustics.

WithitspaletteofcreativetextilesforroomsCréationBaumanndeliversacousticallyeffectiveaswellasartisticattractivesolutionsforroomacousticquestions.Thebandwidthoftheacousticefficiencyoftextileapplicationsisoftenunderestimated.ForthisCréationBaumannofferswithitslargedocumentationofacousticpropertiesforitsmaterials-thatisavailableseparately–agreatpotentialinmodernsolutionsforacousticsbytextiledesigninaroom.

4

2. ROOM ACOUSTICS VERSUS BUILDING ACOUSTICS

Thedifferencebetweenthefieldsofroomacousticsandbuildingacousticsbecomesobviousonlywhenwetakeacloserlookatacousticalquestions.Inbuildingacoustics,thequestionalwaysis:

Whatportionofthesoundreachestheothersideofthecomponentinquestion?Thekeypropertyisthesoundinsulationofthecomponent.Essentially,itisabouttheabilityofcomponents–walls,ceilings,doors,windows,etc.–tominimisethesoundtransmissionbetweentworooms.Ahighdegreeofsoundinsulationisusuallyachievedusingsolid,heavycomponentswhichhinderthepropagationofsound.

ThesoundinsulationofpartitionsforairbornesoundisdescribedbythesoundtransmissionlossorratedsoundreductionlossR’wthatcanbemeasuredonsiteorinlaboratoryorevencalculated.

Backgroundnoiselevel

Buildingacoustics:

Soundtransmissionbetween

adjacentrooms

Transmitted

Soundlevel

SoundlevelSoundlevel

80dB

60dB

Thequestioninroomacoustics,ontheotherhand,is:

Whatsurfaceshelptocreateoptimumlisteningconditionsinaroom?Thekeypropertyinthiscaseisthesoundabsorptionprovidedbythematerialsusedintheroom.Soundabsorptiondescribestheabilityofmaterialstoabsorbsoundortoconverttheincidentsoundenergyintootherformsofenergy.Soundabsorptionisachievedbymeansofsoundabsorbers

Roomacoustics:

Acousticqualitywithinaroom

Backgroundnoiselevel

ThesoundabsorptionofasurfaceisdescribedbythefrequencydependentsoundabsorptioncoefficientorsimplifiedbyaaveragevaluessuchasαworNRC.Thesoundabsorptioncoefficientusuallyismeasuredinspeciallaboratoryroom,so-calledreverberationchambers.

Theterms“soundinsulation”and“soundabsorption”arewell-definedandrelatetothefieldsofbuildingacousticsandroomacousticsrespectively.Ifwefeelannoyedbynoisefromanadjacentroom,increasingthesoundinsulationessentiallyhelpstoimprovethissituation.Thesoundabsorptioninaroomcangenerallyonlydecreasethelevelinroombyasmallamount.Decreasingsoundlevelsinaroombyroomacousticmeansisinprinciplemuchsmallerthananyoptimizationofthepartion.

5

3. FUNDAMENTALS OF ACOUSTICS

3.1SOUND

Soundcancompriseharmonioustones,music,bangs,noise,crackling,butalsospokenwords.Allofthesesoundeventscauseaslightvariationinairpressurewhichpropagateswithinthesurroundingsofitssource.Wethereforerefertothesoundpressureofatone,ofnoise,speechormusic.Thelouderthesoundevent,theheavieristhispressurevariationandthehigheristhesoundpressure.

Asarule,soundalwayspropagatesintoallthreedirectionsofspace.Withmanysoundsourcesthesoundradiationde-pendsontheorientationofthesource;inmostcasesitissufficient,however,toassumeroughlyauniform,omnidirec-tionalsoundradiation.Soundsourcesofthistypearereferredtoasomnidirectionalsoundsources.Todayitisalsopos-sibletoselectverytightlyrestrictedsoundradiationdirectionsbymeansofspecialloudspeakerssothattheradiatedsoundcanbedirectedspecificallytoaparticularposition.Thismethodisused,forexample,whenfittinglectureroomswithelectroacousticequipment.Here,ithastobetakenintoaccountthatthesoundenergydecreasesconsiderablywithincreasingdistancefromthesoundsource.Intheareasoccupiedbytheaudience,however,thesounddistributionshouldbeasuniformaspossible.Toachievethiseffect,alargernumberofloudspeakersmayhavetobeused.

Asarule,soundalwayspropagatesintoallthreedirectionsofspace.Withmanysoundsourcesthesoundradiationdependsontheorientationofthesource;inmostcasesitissufficient,however,toassumeroughlyauniform,omnidi-rectionalsoundradiation.Soundsourcesofthistypearereferredtoasomnidirectionalsoundsources.Inprincipalonehastodifferentiatebetweenairbornesound,soundinliquidsandsoundinsolidbodies.Generallysoundisapropagationofpressureanddensityvariationinanelasticmedium.Ifsoundtravelsthroughawalloranotherpartitiontheairbornsoundisconvertedtovibrationofthewallandthenradiatedfromthevibratingwallasairbornsoundtotheroom.

Unwantedsoundeventscanbenamedasnoise.Thisdefinitionshowsthattheperceptionofsoundshasstrongsubjectiveaspects.Psychoacousticsasabranchofacoustics,oralsonoiseeffectresearch,dealswiththerelationshipbetweenoursubjectiveperceptionandthesoundsignalswhichareobjectivelypresent.Oftenadifferencebetweenwantedsoundsuchasmusicinaconcertoravoiceofaspeakerundunwantedsoundliketrafficnoiseormusicoftheneighbourismade.

6

3.2SOUNDPRESSURE

Soundcancompriseharmonioustones,music,bangs,noise,crackling,butalsospokenwords.Allofthesesoundeventscauseaslightvariationinairpressurewhichpropagateswithinthesurroundingsofitssource.Wethereforerefertothesoundpressureofatone,ofnoise,speechormusic.Thelouderthesoundevent,theheavieristhispressurevariationandthehigheristhesoundpressure.Theminimumsoundpressurethatahumanbeingcanperceiveisaround20µPa=0.00002Pascal,averylowvalueshowinghighsensitivityofthehumanauditorysystem.Soundpressurevaluesof20Pascalwilldamagethehearingsystemforveryshortexposuretimes.

Time(sec)

SoundpressureinPascal

3.3SOUNDPRESSURELEVELANDDECIBELSCALE

Thestrengthofasound,thesoundpressure,usuallyisgivenassoundpressurelevelorsoundlevel.Asoundpressurelevelof0decibelrefersbydefinitiontothesoundpressurelevelwherehumanperceptionbegins.Thisdefinitionprovidesascalebetween0decibel(abbr.:dB)andabout140dB.Constantsoundlevelsofmorethan80dBorveryshortnoisesofmorethan120dBcanirreversiblydamagetheauditorysystem.

Decibel

intolerable

veryloud

loud

quiet

veryquiet

inaudiable

aircraftengine

discotheque,jackhammer

tickingwatch

breathing

whispering

140dB(A)

120dB(A)

100dB(A)

80dB(A)

60dB(A)

40dB(A)

20dB(A)

0dB(A)

loudcommunication,busyoffice

quietcommunicationquietlibrary

absolutesilence

heavytraffic

*DefinitionseeChapter5

*

7

3.4SOUNDPRESSUREOFSEVERALSOURCES

Anincreaseinthenumberofsoundsourcesbyafactoroftwoalwaysresultsinanincreaseofthelevelby3dB,afactorofteninanincreaseby10dB,andafactorofonehundredinanincreaseby20dB.

SOUNDPRESSUREINCREASEFORIDENTICALSOUNDSOURCES

Thefollowingtablegivesasimpleruleofthumbfortheadditionoftwosoundlevels.Firstofallthedifferencebetweenthetwolevelsshouldbecalculated.

Example:Fortwosourcesof45dBand52dB,respectively,thedifferenceof7dBmeansanincreaseby1dB,whichisaddedto52dBandthusresultsinatotallevelof53dB.

Numberofidenticalsoundsources Soundpower Soundpressure Soundpressurelevel

×100 ×10+20dB

×10 ×3,2+10dB

×4 ×2+6dB

×2 ×1,4+3dB

×1 ×10dB

ExampleAlarmclock IncreaseofdBvalue

1 62dB

2 62+3=65dB

3 62+5=67dB

4 62+6=68dB

5 62+7=69dB

10 62+10=72dB

15 62+12=74dB

20 62+13=75dB

50 62+17=79dB

100 62+20=82dB

Soundpressureleveldifference 0to1 2to3 4to9 morethan10

Levelincrease(tobeaddedtothehighervalue) +3dB +2dB +1dB +0dB

8

3.5FREqUENCY

Thefrequencyofasoundwavedescribesthenumberifpressurechangesoroscillationspersecond.Itisoftenabbrevi-atedbytheletterfandhastheunit1Hertz(short:Hz).Afrequencyof1000Hzmeans1000oscillationspersecond.Thesoundpressureorsoundlevelisperceivedasloudnessandisoneimportantdimensionfortheperceptionofsound.Equallyimportantisthefrequencycontentofthesoundorspectrum.Puretonesaresoundwithonlyonefrequency.

Thesensitivityofthehumanauditorysystemishighlydependentonfrequency.Itisparticularlypronouncedinthefrequencyrangeofhumanspeechbetween250Hzand2000Hz.Thisisveryusefulwhenwelistentosomeonespeak,butdisruptionsinthisfrequencyrangeareperceivedasparticularlyannoyingandcanstronglyaffectcommunication.Withtoohighorlowfrequencies,ourhearingabilitydecreases.

Anoiseloudnessratingwhichistomeetthedemandsofthehumanauditorysystemneedstotakeintoaccountthefrequencycharacteristicofthehumanauditorysystem.Themediumfrequencies,atwhichthehumanauditorysystemisparticularlysensitive,areweightedmoreheavilythanthehighandlowfrequencies.ThisweightingresultsinthetermdB(A)forsoundpressurelevels,i.e.theso-calledA-weightedsoundpressurelevel.Nearlyallregulations,guidelines,standardvalues,limitvalues,recommendationsandreferencestosoundpressurelevelsusevaluesexpressedindB(A).

Infrasound Audiblerange[ 20–20.000Hz] Ultrasound

Frequencies–measuredinHertz(Hz)

10Hz 100Hz 1.000Hz 10.000Hz 100.000Hz

Bat

Triangle

Organ

Violin

Contrabass

Grandpiano

Malevoice

Femalevoice

Phone

9

3.6FREqUENCYRANGESRELEVANTFORROOMPLANNING

Thefrequencyrangetobetakenintoaccountwhenplanningaroomisbasedonthehumanauditorysystemontheonehandandwhatistechnicallysensibleandfeasibleontheother.Frequenciesabove5000Hzareattenuatedbytheairtosuchadegreethatitisnotsensibletotakethemintoaccountwhenplanningtheacousticsofaroom.Below100Hz,otherphysicalimplicationsofsoundpropagationneedtobetakenintoaccount.

Theinternationallystandardisedtestmethodsfordeterminingthesoundabsorptionbyparticularmaterialsarebasedonthefrequencyrangefrom100Hzto5000Hz.Correspondinglyithasbeendecidedtofocusroomacousticplanningonthefrequencyrangebetween100Hzand5000Hz,asarule.

Infrasound Audiblerange[ 20–20.000Hz] Ultrasound

Relevantfrequencyranges

10Hz 100Hz 1.000Hz 10.000Hz 100.000Hz

Bat

Triangle

Organ

Violin

Contrabass

Grand piano

Male voice

Female voice

Phone

Relevantfrequencyrangesfrom100upto5.000Hzforroomplanning.

3.7WAVELENGTHSOFSOUND

Eachfrequencyofsoundisassociatedwithasoundwaveofaparticularwavelength.Inair,a100Hzwavehasanextensionof3.40meters,whereasa5000Hzwavehasanextensionofonlyabout7centimeters.Accordingly,thesoundwavesrelevantforroomacousticshavealengthofbetween0.07mand3.40m.Aswecansee,thedimensionsofsoundwavesarewellwithintherangeofthedimensionsofroomsandfurnishings.Thefollowingfigureshowstherangeofallsoundwavelengthsrelevantforroomacoustics.

Wavelengthsl

l

l

Time(sec)

SoundpressureinPascal

10

3.8LEVELVALUES

Therelevantparameterforanobjectiveassessmentofthenoiseimpactataworkstationistheso-calledratinglevel,whichconsists,ontheonehand,ofthemeasured,time-averagedsoundpressurelevelinaroomand,ontheotherhand,ofadjustmentsinaccordancewiththecharacteristicofthenoiseaswellasitsdurationofimpact.

Theratinglevelisusuallybasedonaratingperiodof8hours.Highbackgroundnoiselevelsinofficeroomswilllikelyaffecttheintellectualefficiency.Forthisreason,severalregula-tionsandstandardscontainrecommendationsregardingthemaximumpermissiblebackgroundsoundpressurelevel.

ThefollowingtableshowsthevaluesoftherecommendedbackgroundnoiselevelinaccordancewithDINEN11690:

Conferenceroom Officeroom Openplanoffice

dB(A)

100

50

30-35dB(A)30-40dB(A)

35-45dB(A)

65-70dB(A)

Industrialworkplace

11

4. ROOM ACOUSTIC PARAMETERS

4.1REVERBERATIONTIME

Thereverberationtimeisthebasisforratingsofroomacousticquality.Putsimply,thereverberationtimeindicatestheperiodoftimeittakesforasoundeventtobecomeinaudible.Technically,thereverberationtimeThasbeendefinedasthetimerequiredforthesoundpressurelevelinspacetodecayby60dB.Thismeansthat,ifaroomisexcitedwithabangof95dB,thereverberationtimeindicatestheperiodoftimewithinwhichthenoiseleveldropsto35dB.Thiscanbeafewtenthsofaseconduptoseveralseconds.Thereverberationtimecanbedeterminedforeachenclosedspace.

Thisobjectivelymeasurablequantityallowsdifferentroomstobecomparedwitheachotherandtheirroomacousticqualitytobeassessed.Whileareverberationof4to8secondsisquitenormalforachurch,thevaluesaimedatforthereverberationtimeinconferenceorofficeroomsarequitedifferent.Thefollowingtableprovidesanoverviewofthetypicalreverberationtimesofdifferentroomtypes.

Ithasadirecteffectonspeechintelligibilityinaroom.Ingeneral,speechintelligibilityinaroomdecreaseswithin-creasingreverberationtime.Thisdoesnotmean,however,thattheshortestpossiblereverberationtimeisalwaysthebestsolution!Verypoorspeechintelligibilityusuallydoessuggest,though,thatthereverberationtimeistoolong.

Thesubjectiveimpressionofthesoundqualityofaroomallowseventhenon-experttodrawconclusionsastohowthereverberationtimeprogresseswithinthedifferentfrequencyranges.If,forexample,speechinaroomsoundsblurred,andifitisverydifficulttounderstandeachother,itcanbeassumedthatthereverberationtimeistoolong.Acoustically“dry”inthiscontextmeansthatthesoundisabsorbedunnaturallyfast.Ifthishappensonlyathighfrequencies,theroomsounds“hollow”or“booming”,whereasatlowfrequenciesitsounds“piercing”and“sharp”.

Reverberationtime

0 1,0 2,0Time(sec)

typicalreverberationtimeforofficerooms:0,5–0,8sec

Reverberationtime:1,8sec

60dB(A)

100

50

in(dB)Soundpressurelevel

Typeofroom Reverberationtime(exemplary)

Church approx.4–8seconds

Classroom–mediumsized 0,6seconds

Officeroom–dependingonsize 0,5–0,8seconds

Concerthallforclassicalmusic approx.1,5seconds

Performance Reverberationtimeatlowfrequencies

Reverberationtimeathighfrequencies

Subjectiveimpression

speech toolongtoolongtooshorttooshort

toolongtooshorttoolongtooshort

blurred,difficulttounderstandhollow,buteasytounderstandpiercing,clanking,sharp,difficulttounderstanddry,buteasytounderstand

12

Onwhichfactorsdoesthereverberationtimedepend?Thereverberationtimedependsmainlyonthreefactors:-thevolumeoftheroom,-thesurfacesoftheroomand-thefurnitureintheroom.

Aroomusuallybecomesmorereverberantwithincreasingheight.Absorbingsurfaces–suchascarpets,curtainsandsoundabsorbingceilings,butalsofurnitureorpeoplepresentintheroom–reducethereverberationtime.

0 0,5 1,0 1,2 Time(sec)

Reverberationtime:0,5secWITHproductsofCréationBaumann

Reverberationtime:1,2secWITHOUTproductsofCréationBaumann

100

50

SoundlevelindB

13

Theshapeofaroomisusuallyofminorimportanceforthereverberationtime.Onlyiftheroomacousticrequire-mentsareveryhigh(e.g.inconcerthalls)oriftheshapeisveryunusual,e.g.vaultedsurfacesorheavilyvaryingroomheights,doesshapebecomeanessentialfactor.TherecommendationsgiveninDIN18041shouldalwaysformthebasisforanyroomacousticplanning.DIN18041“Acousticqualityinsmalltomedium-sizedrooms”formsthebasisfortherecommendationsregardingtheacousticdesignofsmalltomedium-sizedrooms.Withregardtotheoptimumreverberationtime,DIN18041distinguishesbetweenthreedifferentroomcategories:“music”,“speech”and“communicationandteaching”.Roomsoftheusagetype“music”aremusicclassroomsandhallsformusicpresentations.“Speech”inthebroadestsensecomprisesallroomswhereaspeakerspeaksinfrontofanaudience.“Communicationandteaching”comprisesalltypeswhereseveralpeoplespeakatthesametime,i.e.teachingroomsaswellasconferencerooms,multipleoccupancyoffices,servicepoints,callcentersandroomswithaudiovisualpresentationsorelectroacousticuses.

Twoexamples:

Example1:Aconferenceroom(usagetype:“communicationandteaching”)withavolumeof250m3shouldhaveareverberationtimeof0.60s.

Example2:Achambermusichall(usagetype:“music”)withavolumeo550m3shouldhaveareverberationtimeof1.30s.

2,6

2,4

2,2

2,0

1,8

1,6

1,4

1,2

1,0

0,8

0,6

0,4

0,2

30 100 1.000 5.000 10.000 30.000

Rev

erbe

ratio

n tim

e TS

OLL in

s

Roomvolume V in m3

MusicSpeechTeaching, Communication

14

4.2SOUNDABSORPTION

Thesoundabsorptioncoefficientαdescribesthepropertyofamaterialtoconvertincidentsoundintootherformsofenergy–e.g.thermalorkineticenergy–andthustoabsorbit.

Case1:Soundcompletelyabsorbed(soundabsorptioncoefficientα=1)noreflection

Theotherextremeisfullsoundreflection.Alltheincidentsoundisreflected.

Case2:Soundcompletelyreflected(soundabsorptioncoefficientα=0)

Case3:Soundpartlyabsorbed(soundabsorptioncoefficientα=between0and1)

Soundcompletelyabsorbed

Soundcompletelyreflected

Soundpartiallyabsorbed

Thefrequency-dependentsoundabsorptioncoefficientofamaterialisdeterminedbymeansofaspecialacousticmaterialtestmethod–theso-calledreverberationroommethod.Forthistest,amaterialsampleisplacedintothereverberationroom,whosereverberationtimehasbeendeterminedpreviouslywithoutthesample.Fromthechangeinthereverberationtimewiththesamplepresentintheroom,thesoundabsorptioncoefficientαScanbedeterminedforeachone-thirdoctavebetween100Hzand5000Hz.Thisyields18one-thirdoctavevalueswhichuniquelydescribetheabsorptionbehaviorofthematerial,i.e.towhatextentandatwhatfrequenciesthematerialabsorbsthesound.

Solvingroomacousticproblemswithmeasurementsshouldalwaysuseon-thirdoctavebandresolutioninfrequencyasmanyproblemsoccurinsmallfrequencybandsandrequireadequatesolutions.

15

Octaveaveragefrequency

one-thirdoctavebandstep octavebandstep

400 500 630 800 1.000 1.250 1.600 2.000 2.500 3.150 4.000 5.000200 250 315100 125 160

Itisnotonlythechoiceofmaterial,however,whichisresponsibleforthesoundabsorptioninaroom.Whatismostimportantisthetotalareaofthismaterialpresentintheroom.Theequivalentsoundabsorptionareahasbeenintro-ducedtoprovideameasureforthesoundabsorbingperformanceofasoundabsorberactuallypresentintheroom.ItisdefinedastheproductofthesoundabsorptioncoefficientαSofamaterialandthesurfaceofthismaterial.

Calculationoftheequivalentsoundabsorptionofsurfacesinaroom:

A=s1α1+s2α2+s3α3+…+sn+αn+A1+A2+…+An

A–totalequivalentsoundabsorptionareainarooms1–surfacesizeofmaterial1,e.g.acousticceilingα1–soundabsorptioncoefficientofmaterial1s2–surfacesizeofmaterial2,e.g.carpetα2–soundabsorptioncoefficientofmaterial2…Sn–surfacesizeofmaterialnαn–soundabsorptioncoefficientofmaterialn

10Hz 100Hz 1.000Hz 10.000Hz 100.000Hz

Organ

Infrasound Audiblerange[ 20–20.000Hz] Ultrasound

Bat

Triangle

Violin

Contrabass

Grand piano

Male voice

Female voice

Phone

Relevantfrequencyrangesfrom100upto5.000Hzforroomplanning.

16

4.3SOUNDABSORPTIONCOEFFICIENTANDREVERBERATIONTIME

Inafullyfurnishedroomwithdifferentsurfaces,forexample,eachmaterial(e.g.carpets,plaster,acousticceiling,cur-tains,windows,shelves,etc.)canbeallocatedasoundabsorptioncoefficient,andbymultiplyingthiscoefficientbythesurfaceofthismaterial,theequivalentsoundabsorptionareacanbecalculated.Theequivalentsoundabsorptionareasofallmaterialsarethenaddedtodeterminethetotalequivalentsoundabsorptionareaoftheroom.ThereverberationtimeofaroomcanbederivedfromthecalculatedtotalequivalentsoundabsorptionareausingtheSabineformula.

Sabineformula:

T–ReverberationtimeV–VolumeoftheroomA–Totalequivalentsoundabsorptionarea

Asoundabsorberof10m2withasoundabsorptioncoefficientof0.50hasanequivalentsoundabsorptionareaof5m2andthushasthesameeffectasasoundabsorberof20m2withasoundabsorptioncoefficientof0.25orasoundabsorberof5m2withasoundabsorptioncoefficientof1.00.Inafullyfurnishedroomwithdifferentsurfaces,forexample,eachmaterial(e.g.carpets,plaster,acousticceiling,curtains,windows,shelves,etc.)canbeallocatedasoundabsorptioncoefficient,andbymultiplyingthiscoefficientbythesurfaceofthismaterial,theequivalentsoundabsorptionareacanbecalculated.Theequivalentsoundabsorptionareasofallmaterialsarethenaddedtodeterminethetotalequivalentsoundabsorptionareaoftheroom.

4.4RATINGOFSOUNDABSORPTION

Intheprevioussectionstheadvantagesoflookingatthesound,thereverberationtimeandthesoundabsorptioncoef-ficientinafrequency-dependentcontexthavebeenexplainedingreatdetail.Severalinterestedpartieshave,however,expressedtheirdesireforsimplifiedvalues,whichmightnotpermitdifferentiatedplanning,butwouldallowroughcomparisonstobemadebetweendifferentsoundabsorbersorpreliminarystatementsregardingthebasicsuitabilityofproductsforparticularapplications.Suchvaluesshouldalsoenableasimplifiedplanningofroomswithlowrequire-mentsregardingtheiracousticquality.Againstthisbackdrop,singlevaluesofsoundabsorptionhavebeendefinedinEuropeandtheUSwhichdifferslightly.ThemostcommonsinglevalueofsoundabsorptioninEuropeistheso-calledweightedsoundabsorptioncoefficientαw,whereasintheEnglish-speakingworlditistheNoiseReductionCoefficient(NRC)ortheSoundAbsorptionAver-age(SAA).

Allprocedurestodetermineofsinglenumberratingsrelyontestsinthereverberationchamberwithon-thirdoctavebandresolution.

Weightedsoundabsorptioncoefficientαw(DINENISO11654):Inordertodeterminetheweightedsoundabsorptioncoefficientαw,themeanvaluefortheoctavecentrefrequencybetween125Hzand4000Hzisdeterminedfromthreeone-thirdoctavevalues.18one-thirdoctavevaluesarethusconvertedinto6octavevalues.Themeanvalueoftherespectiveoctaveisthenroundedtothenearest0.05;itisreferredtoasthepracticalsoundabsorptioncoefficientαp.Thepracticalsoundabsorptioncoefficientαpbetween250Hzand4000HziscomparedtothereferencecurvegiveninDINEN11654.Thiscomparisongivesasinglevalueoftheweightedsoundabsorptioncoefficientαw.Deviationsbymorethan0.25betweenthecurveandthereferencecurveareindicatedbymeansoftheshapeindicatorsL,MorH,dependingonwhethertheyoccurat250Hz(L),at500Hzor1000Hz(M),orat2000Hzor4000Hz(H).Theresultingvaluesare,forexample,αw=0.65(H),αw=0.20orαw=0.80(LM).

T=0,163× VA

17

Deviationsbymorethan0.25betweenthecurveandthereferencecurveareindicatedbymeansoftheshapeindicatorsL,MorH,dependingonwhethertheyoccurat250Hz(L),at500Hzor1000Hz(M),orat2000Hzor4000Hz(H).Theresultingvaluesare,forexample,αw=0.65(H),αw=0.20orαw=0.80(LM).

Basedontheαwvalue,soundabsorberscanbeclassifiedintodifferentsoundabsorberclasses.αwvaluesofmorethan0.90,forexample,belongtosoundabsorberclassA,valuesofbetween0.15and0.25belongtoclassE.

Single-numbervaluescommonlyusedintheUS

NRC(ASTM423):TheNRC(NoiseReductionCoefficient),whichiswidelyusedintheUS,isdeterminedbycalculatingthemeanvaluefromfourone-thirdoctavevaluesofthesoundabsorptioncoefficient(250Hz,500Hz,1000Hzand2000Hz)androundingtheresulttothenearest0.05.Ifthenumberisattheexactmid-pointofthenumbersdivisibleby0.05,thevalueisalwaysroundedup(example:0.625=>0.65;0.675=>0.70).

SAA(ASTM423):AnothervalueusedintheUSistheSAA(SoundAbsorptionAverage).Itisdeterminedbycalculatingthemeanvaluefromtwelveone-thirdoctavevaluesofthesoundabsorptioncoefficientbetween200Hzand2500Hzandthenroundingtheresulttothenearest0.01.

ADVANTAGEOFSINGLE-NUMBERVALUES:Soundabsorberscanberoughlyclassifiedandthuscomparedwithoneanother.

DISADVANTAGEOFSINGLE-NUMBERVALUES:Asingle-numbersoundabsorptionvalueisalwaysanextremelysimplifiedvalue.Soundabsorberswithverydifferentabsorptionspectracanhaveidenticalsingle-numbervalues.Thismaysometimesresultintheuseofasoundabsorberwhichisnotsuitablefortheexistingconditions.Frequenciesbelow200Hzarenottakenintoaccount.

Soundabsorberclass αw-value

A 0,90–1,00

B 0,80–0,85

C 0,60–0,75

D 0,30–0,55

E 0,15–0,25

notclassified 0,00–0,10

18

5. INDEx

A-WEIGHTEDSOUNDPRESSURELEVEL–dB(A)TheA-weightedsoundpressurelevelistheweightedaveragevalueofthesoundpressurelevel(dB)asafunctionofthefrequencyofasound.Theweightingtakesintoac-counttheabilityofthehumanauditorysystemtoperceivesoundpressurelevelsortonesofdifferentfrequenciestoadifferentdegree.Thissensitivityisparticularlypronouncedinthemediumfrequencyrange,i.e.therangeofhumanspeech.NearlyallregulationsandguidelinesindicatevaluesexpressedindB(A).

EqUIVALENTSOUNDABSORPTIONAREATheequivalentsoundabsorptionareaAisdefinedastheproductofthesoundabsorptioncoefficientαofamaterialandthesurfaceSofthismaterial.

AURALISATIONAuralisationisamethodforsimulatingtheacousticproper-tiesofaroom.Withthismethod,theeffectsofcertainacoustictreatmentscanbe“auralised”asearlyasthedesignstage.

BUILDINGACOUSTICSBuildingacousticsisabranchofbuildingphysics,oracous-tics,whichdealswiththeeffectofthestructuralconditionsonthepropagationofsoundbetweentheroomsofabuild-ingorbetweentheinteriorofaroomandtheoutsideofthebuilding.

RATINGLEVEL(Lr)TheratinglevelLr(Lfor“level”,rfor“rating”)istherelevantparameterforobjectivelyassessingthenoiseimpactataworkplace.Apartfromweightingthesoundpressurelevelasafunctionofthefrequency(seeA-weightedsoundpressurelevel),adeterminationofthesoundpressureleveltakesintoaccountcertainadjustmentswhichdependonthecharacteristicofthesound(e.g.impulsivenessorclearprominenceofindividualtones)anditsdurationofimpact.TheratinglevelisalsoexpressedindB(A).

DECIBEL(dB)Logarithmicallydefinedunitofmeasurementwhichex-pressesthesoundpressurelevel.Therelevantscaleforhumanbeingsis0dBto140dB.0dBreferstoasoundpressureof20µPa.

SINGLENUMBERVALUESOFSOUNDABSORPTIONSo-called“singlenumbervalues”areusedforasimplifiedrepresentationofthefrequency-dependentparameterofthesoundabsorptioncoefficientaswellasforaroughcomparisonofdifferentsoundabsorbers.InEurope,the“weightedsoundabsorptioncoefficient”αwinaccordancewithDINENISO11654iscommonlyused.IntheUS,theNRCandSAAvaluesarewidelyused.Alloftheabovevaluesarebasedonmeasurementsofthesoundabsorptioninone-thirdoctaveandoctaveincrements.Foradetailedacousticplanningofaroomitisnecessarytoknowthesesoundabsorptionvaluespreciselyinone-thirdoctaveoratleastinoctaveincrements(see“octaves”).

FREqUENCYFrequencyindicatesthenumberofsoundpressurechangespersecond.Soundeventswithahighfrequencyareperceivedbythehumanearashigh-pitchedtones,soundeventswithalowfrequencyaslow-pitchedtones.Soundssuchasnoise,roadtraffic,etc.,normallycompriseagreatnumberoffrequencies.Themeasurementunitoffrequencyishertz(Hz),1Hz=1/s.Humanspeechisintherangebetween250Hzand2000Hz.Theaudiblerangeofhumanbeingsisbetween20Hzand20000Hz.

REVERBERATIONROOMReverberationroomsarespeciallaboratoryroomswithwallswhichreflecttheincidentsoundwavestoaveryhighdegree.Reverberationroomshaveparticularlylongreverberationtimesacrosstheentirefrequencyrange.

REVERBERATIONROOMMETHODThereverberationroommethodisusedfordeterminingthefrequency-dependentsoundabsorptioncoefficient.Asampleofthematerialtobetestedisplacedintothereverberationroom.Thesoundabsorptionofamaterialcanthenbecalculatedfromthechangeinthereverberationtimeoftheroom.

BACkGROUNDNOISELEVELUsually,soundswhichdonotcontainanymeaningfulinformationarereferredtoasbackgroundnoise(e.g.noisefromairconditioningortraffic).ThebackgroundnoiselevelismeasuredindBor,byweightingitsfrequenciesinaccor-dancewiththehumanauditorysystem,indB(A).Thebackgroundnoiselevelindicatesthesoundpressurelevelwhichhasbeenexceededduring95%ofthemeasurementperiod.Ithasadirecteffectonspeechintelligibility.

19

ACOUSTICqUALITYTheacousticqualityofaroomreferstoitssuitabilityforaparticularuse.Itisinfluencedbythepropertiesoftheboundarysurfaces(walls,ceiling,floor)andthefurnishingsandbypersonspresentintheroom.

NOISENoisecomprisesallsoundswhich,duetotheirloudnessandstructure,areconsideredasharmfulorannoyingorstress-fulforhumanbeingsandtheenvironment.Itdependsonthecondition,preferencesandmoodofapersonwhethersoundsareperceivedasnoiseornot.Theperceptionofsoundsasnoiseandthewayinwhichpeopleareaffectedbyitdepend,ontheonehand,onphysicallymeasurablequantitiessuchasthesoundpressurelevel,pitchofatone,tonalityandimpulsiveness.Ontheotherhand,certainsubjectivefactorsalsoplayarole:atbedtimenoiseisper-ceivedasextremelyannoying.Thesameistrueforactivitieswhichrequireahighlevelofconcentration.Ifwelikecertainsounds,wewillnotperceivethemasannoyingevenathighvolumes;soundswhichwedonotlikeareannoyingtousevenatlowvolumes(e.g.certaintypesofmusic).Further-more,howwefeelataparticulartimealsoinfluencesoursensitivitytonoise.Ifanactivityisdisruptedordisturbedbyoneormoresounds,thisisreferredtoasnoisepollution.Weareparticularlysensitivetonoiseifverbalcommunica-tionisaffected,e.g.ifaloudconversationattheneighbor-ingtablemakesitdifficultforustolisten,andifwehavetoconcentrateorwanttosleep.

REVERBERATIONTIMEPutsimply,thereverberationtimeindicatestheperiodoftimeittakesforasoundeventtobecomeinaudible.Technically,thereverberationtimeThasbeendefinedasthetimerequiredforthesoundpressurelevelinspacetodecayby60dB.

OCTAVEBANDSAcousticparameterssuchasthesoundpressurelevelorthesoundabsorptioncoefficientareusuallyexpressedinincrementsofoctavesandone-thirdoctaves.Thepreciseknowledgeofacousticpropertiesinthesmallestpossiblefrequencystepsofsoundisaprerequisiteforadetailedacousticdesign.Forroomacousticstherelevantoctavefrequenciesare125Hz,250Hz,500Hz,1000Hz,2000Hzand4000Hz.Theoctaveincrementsareobtainedbydoublingthepreviousfrequency.Eachoctavecomprisesthreeone-thirdoctavevalues(seealso“singlevalues”).

POROUSABSORBERSPorousabsorberscomprise,forexample,mineralfibres,foams,carpets,fabrics,etc.Theeffectoftheporousabsorbersisduetothefactthatsoundisabletoentertheopenstructuresofthematerialwhere,bythefrictionofairparticles,thesoundenergyisconvertedintothermalenergyatthesurfaceofthepores.Porousabsorbersachievetheirbesteffectatmediumandhighfrequencies.

PSYCHOACOUSTICSBranchofacousticsornoiseeffectresearchwhichdealswiththesubjectiveperceptionofobjectivelypresentsoundsignals.Furthermore,psychoacousticsstudiestheinfluenceofalistener’spersonalattitudesandexpectationsontheperceptionofsoundevents.

RESONANCEABSORBERThistermcomprisesalltypesofabsorbersusingaresonancemechanismsuchasanenclosedairvolumeoravibratingsurface.Resonanceabsorbersaremainlysuitableforab-sorbingsoundofmediumtolowfrequencies.Themaximumeffectofresonanceabsorbersisusuallyrestrictedtoacer-tainfrequencyrange(seealso“porousabsorbers”).

SOUNDABSORBERSoundabsorbersarematerialswhichattenuateincidentsoundorconvertitintootherformsofenergy.Adistinctionhastobemadebetweenporousabsorbersandresonanceabsorbersorcombinationsoftheseabsorbertypes.

SABINEFORMULAIfthevolumeandthetotalequivalentsoundabsorptionareaofaroomareknown,thereverberationtimecanbeestimatedusingtheSabineformula,where“T”istherever-berationtime,“V”isthevolumeoftheroomand“A”isthetotalequivalentsoundabsorptionarea.Thecloserelationshipbetweenthevolumeofaroom,thesoundabsorptionofthesurfacesofthisroom,andthereverberationtimewasdiscoveredthephysicistWallaceClementSabine(1868-1919).Hefoundoutthattherever-berationtimeTisproportionaltotheroomvolumeVandinverselyproportionaltotheequivalentsoundabsorptionareaA:T=0,163xV/ATheequivalentsoundabsorptionareaAisthesumofallsurfacesSpresentintheroom,eachmultipliedbyitscor-respondingsoundabsorptioncoefficientα:A=α1S1+α2S2+α3S3+…+αnSn

SOUNDABSORPTIONCOEFFICIENTαThesoundabsorptioncoefficientαofamaterialindicatestheamountoftheabsorbedportionofthetotalincidentsound.α=0meansthatnoabsorptionoccurs;theentireincidentsoundisreflected.Ifα=0,5,50%ofthesoundenergyisabsorbedand50%isreflected.Ifα=1,theentireincidentsoundisabsorbed,thereisnolongeranyreflection.

SOUNDATTENUATIONSoundattenuationdescribestheabilityofmaterialstoabsorbsoundortoconvertthesoundenergypresentintootherformsofenergy,i.e.ultimatelyintothermalenergy(seealso“soundinsulation”).

20

SOUNDINSULATIONSoundinsulationreferstotherestrictionofthepropagationofsoundthroughtheboundariesofaroom.Soundinsula-tionis,therefore,ameasuretoseparateroomsacousticallyfromunwantedsoundfromadjacentroomsortheoutside.Thishasnothingtodo,however,withtherequiredacousticsoundattenuationwithinaroom(seealso“soundabsorp-tion”).Soundinsulationisafundamentalparameterofbuildingacoustics.Adistinctionhastobemadebetweenairbornesoundinsulationandimpactsoundinsulation.Airbornesoundiscreatedbysoundsourcespresentintheroomwhicharenotimmediatelyconnectedtotheboundarysurfaces,e.g.peoplewhoaretalking.Impactsound,ontheotherhand,resultsfromstructure-bornesound(footfalls,knocking),whichinturnexcitesthewallsorceilingstoradiateairbornesound.Airbornesoundinsulationandimpactsoundinsulationbothhavetofulfiltherequirementsestablishedinrelevantbuildinglaws.

SOUNDPRESSUREAllsoundeventshaveincommonthefactthattheycauseslightvariationsinairpressurewhichcanpropagateinelasticmediasuchasairorwater.Wethereforerefertothesoundpressureofatone.Theheavierthepressurevariationsare,thelouderisthesoundevent.Thefasterthevariationsoccur,thehigheristhefrequency.

SOUNDEVENTSGeneraltermfortones,music,bangs,noise,crackling,etc.

SOUNDSHIELDINGAsoundshieldisbasicallyanobstaclewhichinterruptsthedirectpropagationofsoundfromasourcetoareceiver.Itcanconsistinamovablepartitionoranattachmenttobeplacedontopofadesk.Cabinetsandotherlarge-surfacepiecesoffurniturecanalsofunctionassoundshields.Soundshieldscanbeprovidedwithasoundabsorbingsurfacewhichadditionallyreducesthepropagationofsound.

SOUNDSPECTRUMThesoundspectrumdescribesthefrequencycompositionofthesound.Puretonesaresoundeventsofasinglefre-quency.Asuperpositionoftonesofdifferentfrequenciesisreferredtoasnoiseorsound.

SOUNDWAVESVariationsinairpressurewhicharecausedbysoundeventsarereferredtoassoundwaves.Thelengthofthesoundwavesdefinesthefrequencyandtheirheightdefinesthelevel.Longsoundwaveshavealowfrequencyandareper-ceivedaslow-pitchedtones.Shortsoundwaveshaveahighfrequencyandareperceivedashigh-pitchedtones.Inair,a100Hzwavehasanextensionof3.40meters,whereasa5000Hzwavehasanextensionofapproximately7centimeters.

SOUNDMASkINGSoundmaskingspecificallyusesnatural(e.g.birds’twitter-ing)orartificial(e.g.noise)soundsinordertoblanketothersounds.Thismethodcanbeused,forexample,todrownoutinformation-containingsoundsiftheotherbackgroundnoiseistooweaktomaskthem.

SOUNDPRESSURELEVEL(LP)Thesoundpressurelevel(Lforlevelandpforpressure)isalogarithmicquantityfordescribingtheintensityofasoundevent.Thesoundpressurelevelisoftenalsoreferredtoas“soundlevel”,whichisactuallynotquitecorrect.Thesoundpressurelevelisexpressedindecibels(abbreviatedasdB).Soundpressuresaremeasuredusingmicrophones.Themeasurablelevelrangestartsatjustbelow0dBandendsatapproximately150to160dB.

21

MANYTHANkSFORTHESUPPORTTOTHEAkUSTIkBüROOLDENBURG

ThephysicistsDr.CatjaHilgeandDr.ChristianNockefoundedanacousticconsultingcompanyinOldenburg(Germany)in2001.Theyworkasspecializedengineersforarchitects,expertwitnessesforcourtsandconsultantsinthefieldofacoustics.Architecturalacousticsforclassrooms,officesandotherfacilitieshasbecomeonemajorfocusofthecompany.

ContactdataAkustikbüroOldenburg,katharinenstr.10,26121Oldenburg,Germanyt+494417779041,f+494417779042,info@akustikbuero-oldenburg.de,www.akustikbuero-oldenburg.de

CopyrightEGGERHolzwerkstoffeGmbH&Co.OG,St.JohanninTirol,Österreich

22

CréationBaumannisrenownedforhighqualitytextilesforinteriordesign.Thankstoourin-housedesignstudioandourownproductionfacilities,unconventionalcreationsarepossible.Ouroffercomprisescustomizedsolutionsandinteriorshadingsystemsaswellaslightcontrol,dimming,andsoundabsorptionsolutions.CréationBaumannisalsosynonymouswiththeextravagant:600differentdesignsin6,000differentcolours.

Foracompletelistingofourshowroomsworldwide,pleasevisit:www.creationbaumann.com

CréationBaumannAGBern-Zürich-Strasse23|CH-4901LangenthalTelefon+41(0)629196262|Fax+41(0)629224547mail@creationbaumann.com|www.creationbaumann.com

top related