baf2 meeting - sscl - fermilab | internal...

Post on 15-Apr-2018

219 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

GEM TN-92-166

BaF2 Meeting - SSCL

August 31, 1992

Abstract:

Presentations of the GEM BaF2 Meeting held at the SSC Laboratory on August 31, 1992.

Prof. Z. W ·Yin... , SlC. ur. M. Stro....ihma...n, CEG\-A

'Dr. C. Wu..Q.st LL/JL J

Prof. H. NQ.W'Mtl..t\ • C.~t""~

:Dr. R. Y. 2hl-L • Co....liQc..h... Hr. R .C. Shcu-.5 . lsin5h\,{_~ ~\/.

'Dr. y IA J ko.Al\.Q sh ke1 v'. 0 R. tJ L

( 3

8120192 SIC, ~hanghai

PROGRESS ON BaF 2 R6'D IN SIC

Z. W. YIN

August 20,. 1992

SHANGHAI INSTITUTE OF CERAMIC.S CHINESE ACADEMY OF SCIENCES

5

8/20/92 SIC, Shanghai

EHoeriment of BaF2 Crystal Growth

1. Test of Raw Materials from Different Uendors

The effect of barium fluoride raw materials produced by different vendors on the quality of crystals has been investigated. The vendors are:

• Sha-gang Chemical Works, Haian County, Jiangsu Province (Haian)

• Yong-kang Chemical Works, Jinhua City, Zhejiang Province (YKCW)

• Beijing General Chemical Works (BGCW)

• School-run workshop of Beihai Middle School. Shanghai (Beihai)

7

8/20/92 SIC, Shanghai

Table l Cation impurities in raw materials (wt.ppm) analyzed with Atomic Absorption Spectroscopy.

Haian YKCW BGCW Beihai

Fe 2.5 3.0 2.0 2.0 Co 0.4 0.5 0.3 0.3

Mn 0. l 0.1 0.4 <0.1 Ni l .O 0.7 3.0 1.0 Cr 0.6 2.0 l .0 Pb 0.55 0.5· 0.2 0.2 Ca 0.35 0.2 5.0 0.6 Mg 1.0 2.0 0.4 30 Sr 300 83 46700 700

• No rear-earth impurities were detected in these raw materials

• Sr content in BGCW raw material is greater than that in the others by a factor of 2 orders

• Mg content in Beihai raw material is 30 times greater than that in the others

• The contents of the other impurities in raw materials from these four vendors are similar to each other

8

8/20/92 SIC, Shanghai

Fig. 1 shows the transmission spectra before and 20 hours after 1 MRad 60co gamma ray irradiation for crystals produced under the same condition using raw materials from the above four vendors.

Fig. · 2 and Fig. 3 demonstrate the transmission spectra after irradiation of the crystals which were grown under different conditions with the different batches of raw materials of Haian and YKCW respectively. These figures show:

• In spite of the different transmitting lengths of crystals, the one grown with Haian raw material has the best radiation hardness.

• Although the transmission spectra after irradiation are numerically different for crystals grown with the same raw material, the configurations of the curves are essentially identical.

9

100

90

80

f - - - - -

~~ - - .. -.

- .....-"""f'" a- Halan_b (260mm) ,, • • Halan_a (260mm)

70 • BGCW_b (258mm)

~ eo 'II!. ........ c 0

50 ';; .!! E .. c 40 I! I-

30

i--- 20 0

BGCW_a (258mm) -

/ ~ YKCW_b (255mm) -YKCW _a (255mm)

/ ""' /7 Beihal_b (230mm) ~ . .,/ - -- ....... - - ........_

II ~ -..... - -..._ .....

/ '.,,/ ~ ~ - . ~ ,,. -----....._ r----_ ~

10 -

.• 0 . . . . . . . . . . . . . . . . . . . . . . . 200 250 300 350 400 450 500 550

Wllvelenglh (nm)

Fig. 1 Translossion spectra before and 20 hrs after irradiation for crystal produced under the same condition with the raw materlcals from four vendors

-

_..........

--600

it ....... c .2 .. .. e .. c

~

i-i-

100 )

• • • 90 •

80 • Halan_1_a (260mm)

- Halan,J!_a (255nvn)

70

60 7

• ~

~

//- ~~ "'-.... 50

A / ........ ........_ - -- _,,,/

"" - --.-.... • - --40 • "'a... - --._, ..._

30 • • 20

' ' ' 10

• I to • • - - - - - - . . . . . . . - - -0 200 250 300 350 400 450 500

Wavelength (nm)

Flg.2 Transmission spectra after Irradiation of the crystal grown under different condition with different batches of Halon raw materlcal

••

-~ --

-

550 600

ii' -c .2 .. ., e .. c

~ ._. N

••

100

' 90

' BO

• YKCW_1_a (255mm)

• YKCW_2_a (243mm}

70

I ~ ......_ // -...

I"-. ' ---. ........

..._ ~

I ·~ ~ ' -............

__..,,, ~

......__, ..__......_ - - -

-

60

so

40

30

20 ......._ -"-1 ~

10

. . . . . . . . . . . . - - - - - . . . . . . . . 0 200 250 300 350 400 450 500

. Wavelength (hm)

Flg.3 Transmission spectra after Irradiation of the crystal grown under different con'dition with different batches of YKCW raw materical

~

____.....-

. . . . 550 600

8120192 SIC, Shanghai

2. Annealing Test

The effect of annealing process on radiation hardness of large size BaF2 crystal after irradiation was studied.

• Crystal grown with Haian raw material

• Crystal size: (3x3) x 26 x (4x4) cm3

• Irradiating before annealing: 1 MRad 60Co gamma ray

• Annealing condition: soo0 c under high vacuum for four hours, then slow cooling to room temperature

• Lapping and re-polishing of the two ends of the crystal, with the total length reduced from 260 to 257mm

• Irradiating the annealed crystal again with 60Co, l MRad

Fig. 4 shows that the measured transmission spectra of the crystal before and after annealing coincided very well.

13

100

90

80

70

i 60 -i: 0

50 ·;;; . !! e .,

40 i: f! ...

30

I-' .::..

20

10

•• 0 200

······-· ·-···

•• ..• _ . •• ..

'· .. '· ..

600 ....------------,

~ 500

I::: I-

+25C/tY ·20C/tY

100 o', I' I I I, I 'I 'I • I I I el

0 10 20 30 Time (hr)

Annealing Process

... -.....;..:_······-·····

........ before annealing (280rrm)

alter annealing (257mm)

260 300 350 400 450 500

Wavelength (nm)

Flg.4 Transmission spectra of irradiated crystal before and after annealing process

550 600

8/24/92 SIC, Shanghai

.i.

3. I mprouement on the Uacuum System of Growth Furnace

• A set of liquid nitrogen cooling trap was designed and manufactured by Shanghai Institute of General Machinery and installed onto growth furnace in the early June of 1992

• Under the case of unheating and non­loading, the vacuum in the furnace was 3.6xl Q-3 Pa before the liquid nitrogen being injected,and down to 6xlo-• ~a after iniected,that means the system has fulfilled the design requirements

• For the time being, the comparative experiments of crystal growth are under way with and without the cooling trap

• The leak-up-rate test was carried out with No. l growth furnace at room temperature. The result indicated that its leak up rate was less than that of normal vacuum system, i.e., 10-6 Torr/sec

15

22

20 l ••

18

18

'ii' Q,

14 ~ ... 0 0

' 0 12 )(

E :J 10 :J Q

~ 81 -~ y = 5.2819 + 0.5624Bx R"2 = 0.996

~ C':l

8

• 4

•• 2' I I It e It I I I e It I I I I JI e ( e e f' t f I 1 f 1 e ft ff I Ifs I J t e J e $ J $ 1 I es I et I e e I I I I I I I It I I I I e I I I I I

0 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26

)

Time (min)

r

Flg.5 Leak-up rate otgrowth furnace No.1 at room temperature t.i :

8120192 SIC, Shanghai

I nuestigation on Mechanism of Radiation Damage

1. Effect of OH- on Radiation Damage in Barium Fluoride t

By the theory of Localized Spin-state Density (LSD), the electronic structures of the impurities in BaF2 crystal have been calculated and the location of absorption peaks caused by color centers, hydroxyl and oxygen impurity centers were determined. In the mean time, transmission spectra of BaF2 sample with and without heat

·treatment of 90o0 c in atmosphere (7G°k R.H.) were measured .under the condition of vacuum ultra­violet, UV and IR.

tThis work was carried out by Pohl Institute of Solid State

Physics, Tongji University, Shanghai.

17

8/20/92 SIC, Shanghai

,;,

• Sample: JBl-9112 (Haian)

• Hydrolytic process during crystal growth or •

treatment:

BaF2 + 2H20 --> Ba(OH)2 + 2HF

OH-: 192nm

• Radiolytic process during irradiation:

OH- > H~ + o; or

U: 204nm 793.75cm-l in IR absorption spectrum

-0 5: -240nm

Fig.6, 7 and 8 show that the wavelengths of the absorption peaks appeared in the spectra corresponding to those arisen from the hydroxyl and the oxygen impurities introduced by the hydrolytic and the radiolytic process of BaF2

crystal. Thus it may be considered that the restraint •

of hydrolysis of BaF2 crystal will enable its radiation hardness to be improved or controlled.

18

I /f

2 . (l l I

untreated 1 # BaF2 .. OH-hydrolysed 1 # BaF2 ( 15 .

) lo • -:.....-- nun . • • •

hydrolysed 1# BaF2 (1 lLour) • -·-:.>-<

.... -• • •••• hydrolysed 1# BaF2 (12 hour) [:--I •

H • •

Ci) • z •

w • \ •

~ • • 1 . 0 ...\ • -• ....:t • •

<1! \ •

0 • • \ •

H . • E--t \ •

P-i . . • ' • 0 " • l... .

' • • •

I\ " • . \ ' • .

\ ' . ' • .... . -- ....... - ..... - . . - - -........ _,: .· .. # •• - -.• • - •• - • .......__ - - -•-. ..._.

u.o • •

190 230 280 330

WAVELENGTH (nm)

Fig. {,. Absorption spectra for different hydrolysed 1 # llaF2

19

~ 0

••

2or-~-r~-.~~.-~-.~--,.----

........ "'-;- 16

z E o~ - I- 12 I- . a.. z a: w 0 0 8 (f) LL CD LL <( w

0 4 0

0 .

I I

' \ \ \

\

- Before Irradiation ---Alter Irradiation

\ ... \ I \ U ' ( \ \ I \ \ I \ , .. , \

\ \

o· \ .... ' -~ '

' " ----120 150 180 210 240 270 300

WAVELENGTH (nm)

Fig. /~ Absorption spectra of hydrolysed t# BaF2

before and after irradiation

::-. E--< H U'J z µ:i 0

..J N <I! f"""' (.)

H E--< µ,, 0

·'

o 1-1cn rq o.e ti 101 S7• .c7 . N

- Before Irradiation --- Alter Irradiation

ti) -

co . 0

u I

11

II fl!

I I.

1 I 0 --~ J . ~= ----- /,J --~ - - .,.,,., o ~ I :; = =; == - -c~ I ~ 9 I I

4-000. 0 3200.0 2~00.0 1600.0 800.0

\i A VE NUMBER (cm - I )

Fig. 8· IR Absorption spectra for hydrolysed 1# BaF2\ before

and after irradiation

8/24/92 SIC. Shanghai

;.

2. Electron Diffraction Study

This work was to study the change of electron diffraction pattern after the electron bombard­ment. The experimental condition was:

• 200 kV, 20-30µA and vacuum of l o-7 Torr

• . BaF2 crystal was ground to powder with particle size of 00.1- l µm

• Electron beam of diameter of 1 OOOA was focused onto the BaF2 powder

• Two pictures were taken: one at the beginning of bombardment and the other after two minutes of bombardment.

• Different BaF2 crystal samples labeled as

No. l, 2 and 3 were powdered. The amount of oxygen content was:

No.2 > No.3 > No. 1

However, No.3 was a fast cooling sample, that means there were more imperfections in its crystal structure.

22

8/20/92 SIC, Shanghai

,;,

Fig. 9 Change of electron diffraction pattern of three different BaF2 crystal samples at the beginning and after two minutes of electron bombardment. The transmission of 25cm long crystal at 220nm after l 06 Rad 60co irradiation of the above three crystal samples were 42% (No. l),

25% (No.2) and <5% (No.3) respectively. In the patterns, the regular spots belong to BaF2 lattice,

rings and extra spots belong to BaO lattice. Halo in No.3 pattern shows that after two minutes of electron bombardment I crystal transformed into glassy state.

23

/./". l

11/0. L

/\lo. 3

24

8120/92 SIC, Shanghai

;.

3. Electron Energy Loss Spectrum Study

• Instrument: Phillips CM~ 12 Analytical Electron Microscope (AEM)

• Functions: TEM + EDS + PEELS PEELS (Parallel Electron Energy Loss Spectrum)

- Gaton 666, USA

• Experimental condition: lOOkV, 20µA

• Samples: same as for electron diffraction study·

• Two' curves were taken for each sample: one at the beginning of bombardment and the other after twenty minutes of bombardment.

25

J -~.~. •.;

l.3-.JUL-92 l.4: 23: 29 EELS/PD OF 0DWELL:800.000MSEC SCAN

OFFSET­LBL:

-3~. 50EV,....CH-- 0. 5000

FS:

I --1------l

J

( I

MEM: A

r r t--f-1 i r r

I

DE:R"fr"sh/l'lormal -32. 500EV

l. 3-.TUL-92 .l.4: 31: 30 SCAN 1 OF .10DWELL: OFFSET- ~Bl..56EV/CH­

LBL: FS: 3368 MEM: A

i i ' I I I '

.... J

'-· \. II

' .... '-'--·

I ! """-._ A! -' I

f I I I I

t J J J f 1 000.00 7'e.e. oo 800. v.ie MOOC: R~ fr~sh-'Norm.5. l •·.3.l.. 56.l.E:V

No· I 26

CNT: 2341

I ' I

I I

, I I I

EDAX

EELS/PD !3.000<SEC

0.5366

CNT: 2265 i i I

' -....__ ~-

I

EDA><

EELS/PD 13-JUL-92 14: "'10: 05 SCAN 1 OF 1DWELL: OFFSET- Q~Q.73EV/CH­

LBL:

S. !2li00 SEC 0. 50:33

MEM: E I I

CNT:

I 6760

i ' . l- -·--+-'r.---+-----t----·~.11-! ----t l rr

J I soo.oo MODE:Refr~sh/l'brmal

'

I I J I

600. i3ei 7'0i5. 60 4l.4.?34EV EDAX

l. 3-.TUL-92 .1.4: 43: 35 EELS/PO SCAN 1 OF • 00WELL:S00.000MSEC OFFSET- 4~4.73EV/CH- 0.5033 LBL: FS: a1a2

\! \ i

MEM: A CNT: i I

J\J\--1---1---.1 \

I J I "\.

I n 111 r rr 111

i

5655

i I

I I r

t I ,-----r-~~--r--.;;)..,,o;:---t---~1--+-~~""<:;::--\­i i-- -... --~---- ·--·-- ---!--·· ·--

i I ~----;--! I

.I { I ! I . i

G~.00 700.00 4l.4.7'34EV

t/tJ . .l... 27

n

EOAX

OFFSET­LBL: FS: 3905

: :

MEM:

·- ·- -· ··--t-------- ·-+-· -; r ' '

i --~---;

'

ia.51.81=1

CNT: 2756 t r ' I

--{ ---- ---- .. - --f '

r r \ " r __ r ____ _.

\ i I I f

-~ __ "'\:___ - _,_ - -- -- -It - ----!--···- - _ _. - ---1

i 'st 11"' ~ !

I l ~I l --.:::;:::= -J ,;l:"~'- 11'7' 7V.a71. ~"''.1 .S&.",.:t. f.a!i 5P•'.r. V•?!

~-2:::rl£:Po:f:·e!h-··t·'v1·;,i.!l 500. 350E 1v

1 EDA><

13-J'UL-92 l.4:.1.7:22 SCAN i OF ~~DWELL:

EELS/PD S.000 SEC --...----­ur r- oc.. 1 - .. ..-- ~--'' ·-'' ~ ~-c--i.-

LBL: ~-s.-.:

!( ,. II

~~o.~iCV'~~- ~.o~oo

3Si6

I I

MEM:

-1------· I

A

! I

. 1--, I f

CNT: 2904

11 r \!.-------P..----- . -/ ,. . ·1 I -' . ; I

'.'. I ' -f · l fl I . i l) ------·- --t-:s:::J .. --~--j·------~-~ I ,, ~- I

H I l~f>. I ti J J j J ~ t E-i!i0.~ 700.'ei3 &'30.\1t?:i ~i3.n€hZi 1

n

f'K>DE:f::efresh-'l·lorr."5.l 4 9 6 • 2 06 EV ED A><

No- 3

28

8120192 SIC, Shang

With refer results and m BaF2 crystals,

raw materiai technology, w· quality of large-

New Progress

8e to the above experimental 1anism of radiation damage of "ic.;ient measures were made on

rocessing and crystal growth 1 have given new progress on the JF2 crystal.

Fig. 11 she transmission curves of several newly grown c. ·:Jls after 1 MRad 60co irradiation.

Fig.12 sho· newly grown c crystal grown t

Fig.13 shov annealing of nf

that the radiation hardness of :-al is better than that of the best )re with the same length.

·he experimental result of optical y grown crystal.

29

c.,, 0

••

'i -C· 0 'iii Ill ·e Ill c e t-

100

. .. - - -- - - - - - -90

- -~ ~ ~ - ~ - - - - - - - - -

~~ u

80

70 -- ~ ~

~ ........ ~

,_._, -...... ~ ~ ~ ._...._ .,,,,_

60

50 - -~ ~

40

30

' 20

10

0 200

-~

~ J81·9210b (2001'ilm) ._,,,.,__

• JB1·9210a

~ JB1·9202b (200mm)

- JB1·9202a

A JB2·9215b (255mm)

JB2·9215a

. . . . . . . . . . . . . . 250 300 350 400 . 450 500

Wavelength {hltl)

Flg.11 Transmission spectra of several new grown crystals before and after 1 MRad 60Co lrrddlatlon

-

.

I - - - -

___.-::::::.. ~ -

. . . 550 600

~

-a'. ~

c 0 ·;; .. ·e .. c I! I-

c,.., f-olo

...

100

-- - - - - - -- - - -90

80 k-

70

60

50 ..... 11 / -0..... - -,., ~

40

30

20

10

0 200

- -

. . 250

- - / - - -- / - - -..

--

/.' -~ v ~~ ~

........, ,......._

""' ~ ........

............._ .... • JB2·9215b (255mtn)

a- JB2·9215a (2!;5mm)

- JB1_9112b (280mm)

o--- JB1·9112a (260mm)

. . . . . . . . . . . . . .

300 350 400 450 500

Wavelength (nh\)

Flg.12 Radiation hardness of new grown crystal compared with that of the best crystal grown before

.

- - -

-~ ~

-- ~ -

. .

550 eoo

~

'I-~

c

·~ Ill ·s Ill c I! I-

c:,.., l\j

..

100

>

90

80 :/_

-~

~

70 :~-'

60

50

40

30

20

10

0 200

-

.

/ /

,,,-.--..

. . .

250

- -- -/ - - - - - - - - - -- ~ - -

~ - - -- - - -- -,,. -- -- - - - - - -~

-r ~ .......... ~

- --........, ~

• before Irradiation

2 days after lrrad. -a--- 0.5 hr UV _bleach - 1 hr UV _bleach

- 3.5 hr UV _bleach

. . . - . . . . . . 300 350 400 450 500

Wavelength (ntn)

Fig. 13 Experimental result of optical annealing of new grown crystal (UV _bleach with 80W high voltage Hg lamp)

- - - - --

-

~ -

.

550 600

llJork tq be Done in the NeHt Stea

• Do comparative experiments on crystal growth with and without adopting the cool trap - to study its effect on radiation hardness.

• Ameliorate crystal growth and annealing techniques to produce crystals with less defects and more perfect structure, so that the radiation hardness can be improved.

• Design and build a new vacuum furnace with performance better than existing ones.

• Test for drying raw materials with gas flow.

• Continue to study the mechanism of radiation damage and impurity effect on it.

Spectroscopy and Paramagnetic Resonance studies

Electron Diffraction study

Electron Energy Loss Spectrum (EELS) study

33

,/J, I · I f Ji... a f ~"', et : 5

C ~ovoe-f-Y,.Zoi~'t..-{3 et Fz

· JU,·e { ~ ~( /J.. ~ fYo-ftwre1'l ... ·/··· .. ,,._,., .. · ...... , .... , .... :.: ... , ...... ····c_~;.·l~s····r:.;;.~;····'t···;,ir-c~ ··· · ·····

. 35

I ~ ~ V'··~s ~ !( • .,, 1e~1 ~cc..->"'

+-<; S "- &-- .: IQ. S E.- l.o 4.1 ,(a c/ /)~

B~ -fl low 1

1

-t 11/'oee._

s-

. 36 ..

Table 6. GDMS analysis results of l Barium Fluoride sample. I s 52 I 14.

Analyzed by W.A. Vieth 8/25/92

Elem.e:-:t Concentration Element concentration {ppm except (ppm except as noted) as noted)

Li <. 0.15 Pd ... 9.1 Be < 0.0024 Ag .... 55 % B <. 0.056 Cd .<, 6.8 c <. 220 In < 0.011 N <.. 330 Sn .:. o. 36 0 .<:. 0.19 % Sb < 33 Na .:. 0.27 Te .<, 84 Mg <. 0.082 I L... 43 Al <. 0.43 Cs .c: 0.61 Si <. 1.9 Ba F"z. 100 % p <:.. 0.24 La L. 2.9 s ..:: 34 Ce < 0.011 Cl - 120 Pr ..:: 0.037 .K .<:. 0."77 Nd < 0.11 Ca .::. 5.3 Sm <. 1.8 Sc < 0.0010 Eu .(. 280 Ti <:. 0.041 Gd < 0.084 v < 0.0046 Tb < 0.0066 Cr < 0.026 Dy < 0.0083 Mn < 0.0031 Ho <. 0.0093 Fe "' O.l.8 Er < 0.0054 Co < 0.0079 Tl11 < 0.038 Ni < 0.011 Yb < 0.037 Cu ~ 0.58 Lu < 0.015 Zn < 0.32 Hf < 0.0099 Ga < 0.023 Ta .::. 24 Ge < 0.014 w ..:. 0.096 As "' 0.22 Re < 0.020 Se < 0.44 Os < 0.0095 Br < 0 .14 Ir < 0.0081 Rb < 0.10 Pt < 0.021 Sr 270 Au < 0.077 y < l.1 Hq < 0.069 Zr < 0.0058 Tl <. 0.13

.Nb .. ..:: . .·.-··.·. .3~4 . : '. :-. ·~ ; Pb <.. 0.082 ·. ~:··· ~: . .. ·. Bi Mo < 0.040 < ... 0.0087

Ru < 0.016 Th < 0.0014 Rh .::. 2.6 u < 0.0053

Jotes: c, N, 0 wel.l.-known source contaminants Ag - conductinq binder Ta - source material F, Ba - matrix el.ements Na, Al, s, Fe, As, Mo, Sn, w - impurities detected in Ag powder Rh, Pd, Cd, Sb, I, Te, cs, La, Sm, Eu - unresolved from interfering Si - mortar material. signals. Li, Nb - memory.

37

.-... -. __ .. __

Notes:

....

Table 1. GDMS analysis results of l Barium Fluoride sample. # T 1.

Element Concentration (ppm except as noted)

Li Be B c N 0 Na Mg Al Si p s Cl K Ca Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Rb Sr y ·zr Nb Mo Ru Pd

-< .<,

< < < < < < < < < < < < < c

1. 0.0059 0.19

250 260

1700 1. 0.32 8. 6.1 o. 3'.

82 140

1. lO 0.0016 0.17 0.0017 0.079 0.0044 0.27 0.0052 0.021 0.29 0.15 0.039 0.066 0.15 0.47 0.22 0.069

11000 1.0

" .... ··0.0090 3 0.038 0.030

50

:· -.; .. ; ...

Analyzed by W.A. Vieth 8/24/92

-:- .;

Element Concentration (ppm except as noted)

Rh 4

Ag ~ Cd 4 In < Sn < Sb <: Te < I <:. cs < Ba F2 La L.

Ce 4

Pr 4 Nd < Sm <:. Eu <: Gd < Tb < Dy < Ho < Er < Tm < 'lb < Lu < Hf < Ta ..c:. w < Re < Os < Ir < Pt < Au < Hq < Tl ..:.

·"'Pb ···<· Bi < Th < u <

72 68

2.0 0.016 0.23

26 17

2.3 o •. 44

100 2.8 0.025 0.069 0.14 1.9

250 0.13 0.014 0.019 0.016 0.0084 0.0063 0.030 0.023 0.032

31 0.36 0.033 0.016 0.015 0.083

. 0.22 0.17 0.21 0 •. 020 0.018 0.0027 0.010

c, N, O well-known source contaminants Ag - conducting binder Ta - source material F, Ba - matrix elements Na, Al, S, Fe, As, Mo, Sn, W - impurities detected in Ag powder Rh, Pd, Cd, Sb, I, Te, cs, La, Sm, Eu - unresolved from interfering Si - mortar material. signals. ,Li, Nb - memory •

38

.:0

0

-0 c:: .,, ,, -~

" E 0 z

SIMS Bulk Analysis 0.4

0.35

0 . .3 I I

! -.. ;c: . .,, ..... w l'

I

.·.: 1 T

~.

' \.

0.1

0.05 0

-

O Hydrogen

Normalized SIM§ Yields

1' Series: April 1,. 1992 AVG

S1'D

H

0.037 0.016

• ·-·Junil'8;·i992 .,··· "AVG"·.· S1'D

0~056' 0.009

852 Series: May 18! 1992

June 1, 1992

Leco AVG (ppm) S1'D

AVG S1'D

AVG STD

0.031 0.011

0.036 0.011

Leco AVG (ppm) STD

39

0

0.134. 0.038

· 0·~15i · -' 0.019

52.346 15.392

0.244 0.088

0.228 0.095

44.500 9.309

Figure it2

§ 0 .. ..

§ 0 .. .. 3 _,

• "

% 0 ..

i • "

% 0 ..

• "' ,. • 0

• O> ,. • 0

40 -, -, ..

~

-.c "

.. •

.. • i-• ..

·.··

~ 0 ... ..

41

·.

' ,, "' "' • ~ • ,.

Ki)~ I L. q ./le va.-1 ( k~ "'""< f~J/ S CQ' ~

/!~

1~ Lill

13 12

y Ill

,_ 11 18 3>

[

E iii

9

Ii L lll D

I

',: 4 ;3

0 I " 'II I • ~a I

2 1111

1 y Ill

I E ill

L lll 0

I

D D

" 'II II [Hi\NNa

61 II

S~z...

-· . ·:··-···-·.

42

/' e-1·· ( .

;Jy o/- ~

4u;t~ei )

t) 5 EM

·.... z) Cc:.L.o ...... .../, .. ·····

43

·-' • -. . , · __ :i...· . . • \ .. , . . ,.

45

_,

·' ..•.

: ::

i

~---

..

...-,,_. I ' ~ .

~\

46

... '

• .-;-

.~-

.•

47

..

..

48

I ~~ 13 12

: 11 . 18

9

Ii 4

~ 3 . 2

1

'.: .. -...

C kav. ... , l~cf !. c,./.c//'c,/ RBs s c. C( vt.

L ~~ r .... "7" c11zt.)

~:::;;;!,<'.:·~·::'. ::.:·~-::: ·::· :;_·-~-~;~-~~~~?_·. ..··

.-: ·.· .-·

·---.~~~-~.j;f..::1 --~~

'":~,~~1 ~ .. "'-~

L o 1 !-• ! '- ( Ah )

r,...., " ~ ............

y I E L 0

y I E L 0

10.IID

B.IID

6.IID

~.IID

llID

D 0

10.IID

B.IID

6,IID

~.IID

2.IID

a o

~ QI BO OWtlB.

10

JI BO 10

( Nz. )

Ft;"'

!<"i55 ~+

30,000 ANALYSIS DATE 00JIQ/q2

y 24.000 S SERIES

I 18.000

E L 12.000

~ ....

0 6,000

D D .··mo 200 300 ~DD 5[ CHANNEL

~ODr---r--t---------,

y 21-.DD

] 18.DD E l 12.0D

D 6.DD

. ·.·. . • y :J:.DD

I II.DD E L 12.DD D

6.DD

5 SER !ES CRYST .I.I. R R

\ !DI

I

i '·

llJ :m CHANNEL

llD !DI

y I E L

Ill

D ·.Ill

5 9:R!ES DER!VITl\'E OF RR

r -.m""o__.......,,,__....,.~,,,.......-a_:m~-llD ............ .......,.!D

lllr---___;;;._..;;;;;;... ___ __,

.. y . IJJ . '! .. ·. T SE"P.IES !iEPt~rnve tJF RR .· . !

I Ill ! E --; L -*! D

-.Ill

-.lll 0 llD !D

ID.DOD

v 8.000 '

I 6.000

E L 4.000 D

2.000

D

ID.Im

y 8.IIE

I 6.IIE

E L ~.IIE

D 2.llD

· ... Du

10.llD

y B.llD I 6.llD E l ~.llD

D 2.llD

D D

ANALYSIS DATE 08/ 18/92 RUN 2

S SERIES

0 100 200 300 400 5[ CHANNEL

....._:: i:rIE •:?'5'f'L ;"

----.~._ ., !

!

1m JD :m llD CHANNEL

·r1· - t.J '

y I E L D

y I E l D

JD

IJI S 9:RIES DERIVITIVE OF RR

ID

-ill

·,IJI

:i •1' ,Jn~~

..... . l . J.1~~"f'"'{ I ' ,I , .. ~.Mr, . 1, 1

-.IJI t

·.JI D

r . llD !D

µJ~! 1: LUU 1'-11'-Al'I l ~ infrored glass material

BOH ·e Zp! ?* E G '" "°· - R ·M ?~i

BARIUM FLUORIDE Fibre Grode Product Number 58155

BoF2 MW 175.34

SG 4.89

Mp 1368°C

Bp 22n·c Melt grown; crystal fragments.

Mass-Spectrographic Analysis Uranium u Thorium Th Bismuth Bi Leed Eb 1hoU1um Tl Mercury Hg Gold Au Platinum Pt Iridium t Osmium Os Rhenium Re Tungsten w Tontolum To Hafnium Hf Lutetium Lu Ytterbium Yb Thulium Tm Erbium Er Holmium Ho Dysprosium Dy Terbium Tb Gadolinium Gd Europium Eu Somorium Sm Neodymium r<ld Proseodymium Pr Cerium Ce Lonlhonum Lo eam..n Ba Caesium Cs locfrne I Tenutium Te Antimony Sb Ton Sn Indium In Cadmium Cd s;1ver Ag Palladium Pd Rhodium Rh

Harmful

< .01 Ruthenium <.01 Molybdenum <.01 Niobium < !l4 Zirconium < .01 Yttrium <.03 Str~ntium <.03 Rubidium <.03 Bromine <.02 ~11nium <.02 Arsenic <.02 Germanium <.1 GoUlum <.1 Zinc < .1 Copper <.1 Nickel <.4 Cobolt < .01 Iron <.03 Manganese <.01 Chromium <.4 Vanadium <.1 Titanium

Scandium <.6 Calcium <.04 Potossium < .04 <.1

Chlorine ~uigb1 ir

< .1 Phosphorus < 1 smcon Bose Aluminium < .01 Magnesium < .01 Sodium < .3 Ruorine <.06 Oxygen < .1 N°ltrogen < .01 Corban <.03 Boron <.02 Beryllium <.05 Lithium < .01

AU figures ore quoted in ppm atomic

Harmful by inhalation and if swallowed. Avoid contact with skin and eyes.

Ru Mo Nb Zr y Sr Rb Br Se As Ge Go Zn Cu Ni Co Fe Mn Cr v Ti Sc Co K

~I p Si Al Mg No F 0 N c 8 Be u

ine sole of mcte~iots described in this c!cto sheet will be covered by the General Conditions ot Sele of BDH Limited. o copy of wl'lich ~ ovcitcbte on rec::uest.

<.02 <.03 <.01 3 < .1 30 <.01 0.6 <.02 .3 <.03 <.03 .02 .01 <.03 <.1 .3 <0.01

. < .01 < .01 < .01 < 1 10 .3

~ ·1 3 1 < .01 < .01 Base

.03 <.01 <.01

BDH Limited. Broom Rood. Poole. BH12 4NN. England. Telephone: Notional (0202) 745520 International +44 202 745520 Telex: 41186 and 418123 TETRA G. Cables: Tetrodome Poole. Fox Group Ill: (0202) 738299

5 2 .... , "''

Notes;

Table 2 GOMS analysis of BaF~(Chinese Powder) ;.

F.L. 8/5/92

Element Concentration (PPlD except as noted)

Li Be B c: N 0 Na Mg Al Si p s Cl :K

Sc Ti v er Mn Pe Co Ni cu Zn Ga Ge As Se sr Rb Sr y Zr Nb Mo Ru Rh

< 0.00062 < O.OOl.l.

0.078 < 1 30 < 160Q

""' 4 •. 0.10 .i·o

33 0.67

- 51. .. 78 < 0.!5!5 < 0.68

0.020 .c:, 0. l.l.

0.0039 0.2 0.027

.( 0.92 < O.Ol.4 "' 0. l.l.

0.2 < 0.11

o.is ..::. 0.15 < l.. l.

360 ~ 0.62 < o.oas

71

< 0.22 .c:: 0.026 .:: 0.028 .c: o4. "' o. 093 ~ 0.60

Element Concentration (ppm except as noted)

Pd Aq Cd In Sn Sb 're I cs La ce Pr Nd Nd Siii

Gd Tb Dy Bo Er 'rm !):)

LU 'Bf 'l'a w Re Os :tr pt AU liq 'l'l

R Th u

4 2.0 l.20

!: 0.90 0.23

~ 0.74 < 67 < 140 ..::. 9.8 <: 0. 62" .(. l.l.

<:. o. 00'1 <:. 0.10 < O. Ol.5 < 0.085 < l.2 < 280 < 0.063 < 0.0074 < 0.054 < 0.0024 < 0.0010 < 0.0032 < 0.04l. < 0.0046 < o. 016 <. l..5 (, 0.082 < 0.0090 < o. 0023 < 0.0023 < 0.084 < 0.12 ~ 0.46 < o. 041

l.400 E u.02r < 0.00035 < o. 0030

c, N, o well-lcl'lown source contaminants Aq - concluctinq l:linr:ler Ta - source material F, Ba - matrix elements Na, Al, s, Fe, As, Mo, Sn, W - impurities detected Rh, Pd, Cd, Sb, I, Te, Cs, La, Sm, Eu - unresolved Si - mortar material.

53

in Aq powder from interferinc

siqna.ls:

oa/211s2 u: oa .............

Notes:

-

Table l GDMS analysis cf BllF~(Chinesa crystal) F.L. 8/5/9

Element Concentration (ppm except as noted)

Li Be :B c N 0 Na M9 Al Si p s Cl x ca Sc 'I'i v er Mn Fe Co Ni cu Zn Ge Ga As Se

Sr y Zr Nb Mo Ru Rh

< <

< < <

---<

< <

< <

< <

< < ~

' < <

0.00095 0.0043 0.,15 Q 019 t 0 , 3 i

38 2.6

1'. 58 0.68

.ifo, 72 1.2

13 0.018 O.l.7 0.017 0.096 0.088 o.~ 0.021 0.10 i.o 0.46 0.070 0.082 1.0 7.5 0.074 0.085

420 0.76 0.0060 0.028 ~-0. 0046 8~

Element concentration (ppm except as noted)

Pd Aq Cd In Sn Sb Ta r cs La Ce Pr Nd SJ! JP.11

.. Gd '!'))

Dy Ho Er Tm ~ LU Hf Ta w Ra Os Ir pt

AU Hq 'I'l Ph Bi 'I'h tJ

<

c < < < < <; < < < < < < < < < < < <. < < < < < ~ < < < <

0.59 l.10

0.87 0.079 l.. 8

5l. ES 34.

0.22 5.2 0.093 o.088 0.48

6& +200

0.15 0.020 0.068 0.011 0.033 0.0061 O.l.9 0.24 o. 017

13 0.095 0.011 0.012 O.Ol.5 0.034 0.19 0.46 0.041 1.3 0.0071 0.0024 0.0028

c, N, o wel.l-ltnown source cont1U11inants Aq - conductinq binder 'I'a - source material F, Ba - matrix elements Na, Al, S, l"e, As, Mo, sn, Rh,.Pd, Cd, Sb, I, 'I'e, Cs, Si - mortar material.

w - impurities detected in Aq powder La, Slll, Eu - unresolved from interfe.r

siqna

Notes:

-

............. __ - ··-·-

Table 3 GDMS analysis Of BaP~(BDH-651232/001) l".L. 8/5/92

Eleinent Concentration (ppm except as noted)

Li Be B

N 0 Na Mq Al Si p s Cl. IC Ca Sc 1'1 v c:r Mn Fe Co Ni cu Zn Ge Ga As Br Sa Rb Sr 'i Zr Nb Mo Ru Rh

0.038 < 0.00088

o.qsi < '6 < 2000 < 2400 .... 14.

1.3 :r..

.., 58 o. 63

,.. tr1. ... 80 ~ 0.4 < 0.35 < o.001s L 0.26

0.026 0.2. 0.067

< 1.2 < 0.010 <. 0.1l. $ 0.1 < 0.23 < 0.063

o.is 4. l..3 < 0.12

299 < 0.091

18 < 0.32 < 0.0040 .(. 0.017 ~ "1. .(. o. 092 <. 0. 36

Element Concentration (ppm except as notec!)

Pd Aq Cd :tn sn Sb Te I Cs La Ce Pr Nd Sm Bu Gd 1'b 1)y Ho !r Tm Yb Lu Hf 'l'a w Re OS Ir pt

Au Bq 'rl Pb Bi 'rh tJ

<

<.

' < < <. < < < <. < < < < < < < < < < < < < < < < < .:. <

"' -<;

< < <

0.58 120 %

1. 2 0.39 0.54

68 230

l.8 J.. 1

13 0.0076 0.096 O.OJ.2 4.5

280 0.055 O.OOSJ. 0.0066 0.0017 0.00<!7 0.0020 0.0079 0.0024 0.0060

20 0.12 0.0075 0.0023 O.OOJ.3 0.031 0.083 0,43 0.046 1,5 0.013 0.00084 0.0018

c, N, O well•known source contaminants Aq - ccnductinq binder Ta - source material F, Ba - 111atrix elements Na, Al, s, Fe, As, Mo, Sn, Rh, Pd, Cd, Sb, I, Te, Cs, Si - 111ortar material.

55

w - impurities detected in A~ powder La, Sm, E:u - unresolved from interferinc

siqnals·

Figure 1

11- ) 2..

i. ' _.l,__ _L __ L__L_ __ _.J. ___ -l-

1e•e1 -r --·--'--·-· ' i '

-1 f-I

-1 ' ". r ..... hc:...\ t-' !

·~· f- b. A.rhr c:.o Ci:) e.,.f <>";,Qfe... ' '' '' ; I ' ... ' 2-~ ~ 2. °' h ... ~ 1

'; I! >< = g't }<., .... I .:,c:: ':

... ._, 1-,,..

-j ~ w1+i-. u 'v' I \u,..,t\G. ti~

-i L- 2£''1 ....... (i) .OO'/ %-'"I"",_; '

t::.,..,-·..:..--' '

....... -i- --_;,-- - - ' -; ~ --- ' / I c. Af~r 'f de...'/:. ~f"r'j~ ' : -< ~ sie1

! '" J ...... ,·<: ... f,,.,,.. w/ t- '0""'1., I (oo~ I I-' i r I I

.... ~ :::5

-i r -< ~

I I

-1 I-I

I -t t- :::0

-i ~ i I

.... ~ !

...J ~ ' I

---t ~~-r--r-,-- 1' -·

')1?1 ~i.•i..- 12-

3C1(1 56 4(1(:

Figure 2

8.A-P:z.- Ii

Ci1;::1 !_.. __ .._ ___ _,,L __ _._ ___ .._ __ .L_, _ __. __ _._ _ __i__,_~--t

'' ! : . . ' '' .

''.

' I . ''

''

I'' ' I

. '•I

''

'. I.

j

I-i I

~ .~

'.

: '. '

. ~ ·• :;:.;. 'I:.

: : ~ . ; .

-= ( ·-'

. i

.Ii ' ,

. '

. i

h.

''. ' . ' . ' I•

' ' . l .. • ! ••I

. . ' . ; : ' ~ . ! : .. I . :

. . . I''. 1·

. , ·I,,: l: ·: · . I · ~ : I ~ I ; . ;

: ; ; .

. ' '

'.

' . ;

. i

. ' '

I.

~ r ~ I r ! r-~-

t

~ . I

f-

------.,.-·1---r-1----r----r----r-.·--t . - - ( f'7

85

I' ....

a.) .I. .. , ~,· .... t. T

b) Afl~r (oc., <1-f"Wf<L

z. q J:~:: le 29 hr~.

= 8'lf k...-..el ·

(}lo u.v exf'~s.,rt.) c) /).S h.- w+. 1,1~1-

d)

e)

wh,~.._

; 11 v- ;,,.,,./,17Y'-

20 W1>. +t +v4-:.+t1' b.._\.b

I ,,.., F.D. a,._b/e (~; ''~O....)

1. i5" Jirs VV

BaF2 EM CALORilv.1ETER REQUIREMENTS FOR 8/92 GEM

DECISION:

DEMONSTRATE CAPABILITY TO MAINTAIN

THE IITGH RESOLUTION IN SITU

RADIATION HARD CRYSTALS

(i) Demonstrate Substantial Improvement in 20 - 25 cm Crystals. A.> 60 cm After 1 M~d By 8/92.

(2) Produce Small Rad Hard Crystals: ,\ > 95 cm After 1 MR.ad. Show There are No Fundamental Limitations. (Recommended By Expert Panel).

LIGHT COLLECTION UNIFORMITY

(1) Develop Detailed Plan for Obtaining Uniform Crystals After Wrapping Or Coating.

(2) Demonstrate Stability, Or Specify Max. Non-Uniformity (and Time Dependence) Induced By Irradiation.

I

(3) Pre-Irradiation Question: Method; Time Dependence Due To Incomplete Saturation, or Annealing In Situ.

(4) Cosmic Ray Measurements With Transverse Muons

58

~ +.. -· :ii-~ ...,

"'o ... ,.. -0

0 -·-· -· ....9 ~

-1 ..,.. ·~

--. (t-

n c.:. ~ ...

- ~

!";

~ V' -- c--'1;

) :'. - !. :\ .........

.i.

CONCLUSIONS

• BaF2 is an intrinsically radiation-hard material, especially in the ultraviolet.

• Radiation-induced ultravi9let absorption bands are due to small concentrations of hydrogen/oxygen and transition-metal ions (Mn2+).

Two ways to minimize radiation damage in BaF2:

1. Continue to improve crystal growth procedures (progress is being made in this direction) .

..,... 2. Develop a post-growth procedure to remove unwanted impurities. One possibility is electrodiffusion, where an external electric field applied during irradiation drives impurities out of the crystal.

. --------------- -·------ ---

Required • Since the focusing effect and light absorption

compete in the tapered crystals there is a minimal light attenuation length exist which can be compensated by focusing effect (plus crystal coating) ·

• For any light attenuation length larger than minimal the corresponding coating can be. appliec such that crystal response will be uniform·

• If the· light attenuation length would be the sam1 for all crystals (minimal spread from crystal to crystal) and coating pr.operties would be

_ perfectly reproducible it would be the simplest way to obtain uniform crystal response

• If light attenuation length is different from crystal to crystal the coating that match this particular attenuation length should be applied in a controlled way to obtain required uniformi·

-. • It needs to be demonstrated that crystals in mas production have uniform properties (attenuatior

. .length) and/or that coating is controlable to the accuracy that will allow to compensate variations of light attenuation length

• C'x~~·~~·cE: CR.)J ,PrAL B-AL!. 60 ~.~

CL.~r.. Ir

'

Uniformity for different A..u .'and· transparent front facet (for side face ts F=l.)

MgF2(thin film) + Al coating

L"ight_cullection .efficiency (%) 10.------~--~--~--~~--~~~~---,

9.8

9.6

9.4

9.2

9 · A..,t 8.8 - 70 cm

-!- 72 cm 8.6 ~ 74 cm

. 8.4 ··G·· 16· ·cm

. ~ 18 c~ r .... s Q 86°/o, p-fo-p 3Yo 8•2 -+- 80 cm

0

3t..__-----1-.--~_;,J------....l------J..~-----'

. 0 10 1 20 30 40 50 Distance from PM (cm)

61

-

BaF2 ( NKK at PS l 100

· f7luRA.S./-llT,A Before - . •• ~----------·-,,. .,.. . .. . . .,,,,.,.,,,,. . . ~ Irr. "' •• ..-·- -........ -e-t 80 . ,,,"' ... . . -..... ,,, . I I ..._,,- 2 ,l

1J1ro -o /12x10 l I i)' , :

)\ - . B r T=R. RA ' ••· ,. · a, i. . . tJ 60 , , I I \ ,: I . Z I I ' ' '

J;v·, 11, 1 ~ Gf.V i:! : 1/ \ ... .: / I- I V 75 103 ' TR.vroN·r ~ 40 1 1 • x / After Irradiation V> I I . ~ I ~ I

;(.f.A'h Ul~So~'P- g: l ~ i 5 l'ft>)'/f>~A'<. 20 1? ·12x10 Grays I ,, I .

I !1 I I"" '

I :t • · / , :I j \. i_.

R5 ° 200 300 400 500 600 700

WAVELENGTH (nm)

Percent transmittance of BaF2 (NKK) as a function of the wavelength with the radiation near the 12 GeY proton beam line. The lines are solid {before irradiation), dashed (7.2x10 2 Gy), dotted {7.5x103 Gy) and dash-dotted (1.2 X

10 5 Gy).

.. -isf. eQ.(6( U?~ J;vn·µ UY

~ ~

80F2 ( NKK at PS) too I I I J i I i I I I I I I I I I I I I I J I I I I I I I I

80 -~ -~ 60 z ~ I-~ 40 (/')

:z <( a: I- 20

---~·-·-·-·-·-·-

12 h • .,.,,,,. .•• -·· ____ ... -- ... - - - ...............

/ •' ----/" •' ,-,-.__,· ,•' I . •' I

//.\ // / 5 days ofter i ·····1 hour / ! Mercury lamp / i I I luminoted / : I : I

·~ r I

,.., I

I

/t.2 x105 Grays Irradiation I I

I I

I ' ~ 0 r. , ,, 1. ". , r= J.-1 . . . 1 • • , , 1 • • • , 1 , , , , 1

200 300 400 500 600 700

WAVELENGTH l nm)

Recoveries of the transmittance in BaF2 (NKK) with illumination of the mercury lamp after irradiation by 1.2x10 5

Gy. The lines are solid (before irradiation), dash-dotted (after illumination of 12 h), dolled (after illumi~ation of 1 h) and dashed (before illumination.)

K w .......... L..J

1.2

1

0.8

SCENARIO - all crystals were NOT preradiated

and were uniform with t.=200cm I I

50 GeV 7

b 0.6 ---------------------------------------------------o . ..c.

0.2

0 100 120 140 160 180 200

Attenuation length(cm) ofter irradiatio·n

1.1

~ 1.05 •,:.._.r 1 -- -- - - -- -- ---- - - - ---- - - - - - - --- -------------------------- --------~-i 0.95 ~

~ 0.9

.~ ~ 0.85 E :.....-------. l i 0.8 E::

··~ :". 0.75 ~·~ .. .... 0.7 0 .. ~ 10 20 30 40 50 ';. '-... ~ ....

Distance from small end (cm)

Non uniformity for A=1 OOcm (at saturation]

64

5 TYPES of nonuniformities

1.B ~------------------

1.7

1.6 - --------------------

1.5 r----------.A

1.4 j:_j'..-------

1.3

1.2

1.1

1

0.9

0.8 0

--------- --- --- --

- - - - - - - - - - - - - - - - - - - - -~ - - -

10 20 30 v

40 .. 50

Distance from small end of BaF2 (cm)

65

ALL 5 TYPES of nonuniformities with positive slope .1

~ I

IJJ 1.2

....... IJJ b

/T 1

O.B

0.15

0.4

0.2

0 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

Maximum A(+) for nonuniformity, 3

66

;;i 1 C./.IT CuJ...LEcrto.J( "Jto~?.u/tFOR.Nt.. 1T Cf CG >l"'f"1l 1 B lt. -r·1 ~/II bN'&c.

... .A• -=le-Ge)\'> ... ~/.5"0 c ~ • C&.n--tre>f(~J. bJ ~:tR.-t Q.,,,e4f,~ • Co 'Wlft."..S-4.Ti°'t. 6f E°Jt?Crrt;I ~4.(~

+ ~,, (tt..,,c~l' 7(e4r '1?..t!.Jp&~

.... Ove.rQ..ee J,Nll.. ~ o.~s%

67

8oF2 resolution vs nonuniformity slope (6)

~ 2

LLJ 1.8

' 100 GeV i' LLJ b 1.6

1.4 BaF2 only

1.2 I hadron colorimeter front section with

e-m resolution 307.IVE:

1

\ 0.8

0.6

0.4

0.2 - ' + 0

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10

Nonuniformi_ty 63

68

DETAIL-B

BRACKET VALL

COPPER F'OIL DETAIL-A

OPTICAL F'IBER CABLES

-- LIGHT MIXING PR!ZM

BF'2 CRYSTAL

BF'2 CRYSTAL BF'2

CRYSTAL

PRIZH RETAINER VIEV VITHOUT CELL IJALL

'• !

F'IRST TYPE OF' CRYSTAL F'IXJ'> TION

69

ORNL

OPTICAL F"!BER

DETAIL-B

CELL IJALL

F'RIZM

VIE:\J 'WITHOUT CELL 'WALL

SECOND TYPE: OF CRYSTAL FIXATION

70

AG-~

!«-----;!

.. -: .,.- -.: . .-.. --- :;_-_ --:.~-E---c ""•'\ ,,,_r;::;.t_i.' ~~

::!:'-- S ., • ~ .. ~ .. + 2.4 6c.V pAo'tof'\S ..., 3 .S l<M /(,y . ll I / - o.~- f.o 1<tO rsp,11

/ / (_"" I· "Z. .\ ec. e11c.111.y z. S" .S·uJ

-·- . - - -- - -

I ,.., B' ~~~~~---.al I //II/.// . . I

e ::I:t<~11t.atM'f-t1J/15 "r°D'lt:. p/Pt.C... /,e.'f1t.1t..C.'1 6/tS-- 7-/2f:&

• I111+ec.,,.,,1ffo,,"f" he~.., (!011J1-l-10,,,s (lle-.l /,A!)

• /Jec.cs.r 1ie.,1u1etof slrw.J..dt1ftlllll o.P e,,,~1.tt... A6-~ (t!Af(CJtpC.#t..1tN1eri.J.$ .. ..,.< 1-U'°/J~•""# ,Vl/lY UAJP!JP-JtA~!)

• T".s 1-.t{A'l-10/lt #11,,.,l lic,.,,1JVA<.. cl .rdH111'l's 1ui.1u1r:eJ. Acc.e;.; TO J115l. llAl/1t11-l-10111 eriC.tO\. (+1p1c.ll1 -Aw R/ltf.. · OA~(jf"RO!itS ~}

• Tl11.: ~--! fl/OT ~ C•~ -J1uvo~ e~po.a Sl~C. '"ID puAe.. ~-~~on~ ( l#lt)f-f."-t~~ .,p .,,.~, .,,.-, p; ,,, * ... -<. a--~ - '".,.,,,, 1~'"" ,.. .... J

• Av:1!4'6~" ~f>!t.~3 ,e.s ..., 4lew ~'' ( ... c.ccJ .. l~·~c.c. -r.t.e."' s.sc.)

• Dc~c. ll~k. MUL.trJIJ. ul. ,,., l1 f dcJ1rw1 c.-kc .fo.,_ J) ft, f'J!· ~~ ... ,.c.

• ht~ [) "'>IC~ !!.~- I 'i="C. _, ...._ ..L... I I c - -.¥<-,, ... _ ·n~~ U.:.c.-.. .-.. e'I<~.:¥~ !:CK f.1 .,I.::-~.

D:.-.c.. c-~,_·111~~.l Iv-. f;',.,C'~ "' 4 }< cf.n .. t.,. ''"' Lt{:.

71 •

,;,

.8 & {) ~ttM ,;/ l:AklE<t/

I<./. -&k i3A~ E.r-J;- f((c;A~# sscL

A~.,.;/ JI~ 11/~

~ ~~t.k .. - SZC;

- Of7oVAC;

- R. M-$&(.A. • • •

f)pu c.J.. •

72

(I)

100

3

50

(a) SIC/BGRI --..... 4 ~ __, 6 Q)

100 ()

~ cu fo...l .-< s [/)

~ 50 cu ~ --;

4

20~ 400 600 800

tM:t(;."'.f""W:Vel ength (nm)

cl: /~Q ~~.; f'. loo ~~

3: tKl4Ja .. l 6. I M~, 4f ~ Ir>~~· '!

'13

,,--....

~ ......._..,

Q) ()

~ ctl

-+-' -+-' ·~ s Ul ~ ctl ~

"'1 ~ .ti.

••

100 ..

S302 Crystal: 3x3, 4X4, ~b cm J;..c~ If//

50

0 200 400 600 800

Wavelength (nm}

Sequence of Spectra in above figure: Up to down: Before Irradiation, 100, lk, lOk, lOOk and lM Rad

S402: 3.6x3.6, 4.6x4.6, 25 cm

,..........._

~ ...__,, CL> ()

~ ro

100

::3 50 ~ ·~

E~ rn ~ ro ~

E--t ••

0 200

U.V. Anealled after 1M Rads

lk, 100k and 1M Rad

400 600 800

Wavelength (nm)

7~ '1/oi

C-t'~~ t .s/c e;s1'~ SIC Crystals' Development:

~

~ "-"

Q) ()

~ aj

100

~

~ '1 50 s '1'

f/l ~ ro ~-· ~ ./

0 200

I

:r ,.ll, 1 I.. ' o to 11. q. c~ --r@!.lb~ "Pe.Q,.9{: 4i.!fo ~1:.1~ _,.....__ :T ~ !H : ~f. f. '(o <r4..6 c..,..

IC_400

- -.. /.

' SIC-300 / / '\ ·- -, SIC-3 /

..........

400 600 800

Wavelength (nm) r-

vr I ...... y l\J"- "-""'I ... • 'U \,._ (I;. 2 OPT Crystals: ¢2.5 x 2.5 cm r '>'1T ~

~ 100 . 4. ~.,111. ............

0 ~ 100

0 200

OPT 1/1:

Before Irradiation

1k, 100k, 1M Rad

OPT 3/1:

Before Irradiation

lk, 10 k, 1M Rad

400 600

Wavelength (nm)

77

. '·

800

~~ ' --i 0

"' \\ 0 ~~ c:o ~ ~

' ~ ~ ~

.......-...

~~ 08 " ~ oc

... 0 co....._....

i~ ... -.... •t"""4 ~ ~

\} ro b.O

~ ~ -0 7 -~ ~ .......-... '"d e ro Q)

.--I

~ i ~~ ~ Q)

C"J ~ o> ~ ~ ~ '- ~ ~ t----4

'"(j o ro N . Q) ~~ ~~o ro 0-i ~ p::; Oo do s 2 \- ~ ro Q)

(/) o:l .,--f

0 L.-1---L....:-=---L---L-___.i____.i___J.___J.____l__J 0

0 0 ~

0 LO

78 (%) a~u:e++JUISUB.lJ..

C\2 0

~A.,_...., {.,'-v ~~VS" 7~ S',f?

100 I

50 BaF 2 from Russia

100

200

(;2'x1') (0.100.lk, 10k,100k.1M Rads)

BaF 2 :from RusZiia [~t'x1')

(0.100. k,10k,100 ,1M Rad:3)

400 600 BOO

79

,,...-... ~ "'-/

Q) C)

s:: ctl ~ ~ ....... E CJ)

s:: cd h

E-t

/<"-$$~-- c-r-f~ . ·· f'<~~v.d ~A)!~ 1/'J .J

RUl Crystal: 13x31x290 JJrr{'

100

50

0 200 400 600 800

Wavelength (nm)

Sequence of Spectra in above figure: Up to down: Before Irradiation, 100, lk, lOk, lOOk and lM Rad

80

...-~ '-.../

Q) ()

i:: ro +' +' ...... s Ul i:: ro H

E-<

100

50

0 200 400 600 800

Wavelength (nm)

Sequence of Spectra in above figure: Up to down: Before Irradiation, lk, lOk, lOOk and lM Rad

81

,.-....

~ '-"

Q) ()

i:: ro +l +l ....... s I'll i:: ro h

E-<

(_ 7.s ( llwf.

CZ 1 Grystal:

100

50

0 200 400 600 800

Wavelength (nm)

Sequence of Spectra in above figure:

Up to down: Before Irradiation, 100, lk, 10k, 100k and lM Rad

_82

~ ~ •

~ ·..o

• 0

s • I

~· ~-, "" '1 ~

~ -.a

• 83

~f.J\::\,ll UI I l"''""J"-•·--

0. 7 (Typ. at 2s·c)

0.61 I I I I I I · ;kz c '-~ . I

-~ 0.5 ........ ;

>-I-~ 0.4 I--(/)

CX) z w .i:.. ~ 0.3

z s. I 81122-02 ~ 0.2 S1723-05

S1721,S3071,S3072

0.1 ,... ..... ;t'A J I 5189-01 I I I I \\'1 81722-01 81723-04,-06,-08

O l f 82551,:01 I I I I I I 100 400 600 800 1000

~

.u

' .i.J b

'

--~ "';..

' ~

J

~ to I>

-.t'. ~ ,...

~ "',,;:

.1-j 1-1 I" '? (A I_ • i.. l~

( ,,,S,-k:, \ s I . ...

SCENARIO - all crystals were preradiated to )\=150cm

1.2

1

o.s 0.6

0.4

0.2

0

1.1

1.0S

1.06

1.04

1.02

1

0.98

0.96

0

··and were uniform with A= 150cm

50 GeV7

-----------------------------------------------------------------. . .

100 120 140 160 180 200

Attenuation length(cm)

---------------------------------------------------------------­. .

-10 20 30 40 50

. Distance from small end (cm).· .

Nonuniformity for A=200cm (after full recovering)

85

42

---··--. -··-·· --·· ....... ..,""'.""' \....:::_.IL..J"-i II II ::-JI --,~·:_:.·:·;·~-:_;-:·~·;·;•:••;__;:;_::._:=._;..;_;:_::,.,;.._;::...;:.:_;:::;_::,_;:;...~...:....;_..;;;-"....;;;;...;-".;;.;:....:..~~~-.._

The absolute output spectra reproduced here were run in the Oriel Calibration Laboratory using spectral irradiance and thermopile standards traceable. to N.B.S. Standards. This data should be regarded as typical and subject to variation from lamp to lamp. The instrument bandwidth is 2 Nanometers.

TO ESTIMATE IRRADIANCE FROM OTHER LAMPS

6251 75 watt Xenon: multiply 150 WXenon by0.30

6281 100 watt Mercury: multiply 200 W Mercury by 0.26

6285 500 watt Mercury: multiply 200 W Mercury by 2.85

POWER OUTPUT IN COLLIMATED BEAM

The units shown on the ver­tical axis are microwatts per cmt-nm at a distance of SO cm. from the bare lamp. To convert this to power in the collimated beam from the source multi­ply by the factors listed below:

Ta alltJin 111proxlmate Saun:ll Lens Calli"""" Bum Model f/na. Power In milllwllts

No. per N1nameter muHI· ply units shown by:

1-::::=,j---!i-'-'~ 66006 f/1.5 0.65(F) 66007 f/1.C 1.15(F) 66009 1/0.; 2.0(F'-') ____ _,

F gives effect to the lens focal length shortening at shorter wavelengths. This can betaken as 1.0 above 500. Below 500 nm it varies as fotlows:

, ' .. -- ( "•-· )' -- ..

U - N -- '

Ut-i~,+-+-t--..._t-i--!

Ut-i-l~,+-1-1-f-l--l

illlll - ... - .. WAVELENGTH (NenometeraJ

This data does not include power recovered by the spher­ical reflector which will add 25 to30%

TYPICAL OUTPUT SPECTRA

""-===:-r.-=::-:r~~,-.,~..,...~-,.~~,.....,-.,,.,,.-,~-,.~~.-~..,...--,.~-,.--.,----, ... J ~ I I I : -·- -------~ -- ·-·-r:, 200W -: -· ~-. ATTMERCUR_Y_'=:Af. -·--+·----l-

1s.D ---- -- ·- --- t.- tSOWATTXENONLAMP•

" 1 ::==i1t~~!t:l~*f~~1'f r·· :·. · - · 8.01

· · ·~~-. ___ ..:..;_ --- .-..:=- .: . .::·:-~--=k~1U~~~ &.O ·- • · .: .:::::::J11=~:::l·::··:::·-~..:.. .:..:. -· -· -· I-··- -•O •0 - . ·. ~ '' 2.0 ,_ ....... _, _ _,_ - - ~- -~ "" ~ .. .a, u . \ V' -:.;.- ;.I •

.,E u1~1i··-~--~---~---~--~--~l':1!.L~'.~~~~-~~r;,~~---·-~~ 1.0 £ .. _ _:,'":; ...:: .,, 0.8 _._JO' __ .·-::::::;:_ _:_-. ·- •• :..: '. - • ..:. ·- ::

iS • o.& • ~- - ·-- .:.-_:_ X _ ~ .. -· · ·- · ·-· ... . -·--· - -- -...:: ... o.s _,,.. -- ·- - --a::• 0·' l .h

i j :~~-~:1~·--~~l~-~--1·~--~-·!~+~·~-~-~~v~:~:-~ ~~~·~oo~-~=~A~~~;~~-~~UIA~-~~~TZ~~~~-.·Hf-~A~L·O~-~~~~~~N~(~:~.·LA~-~~-M~~ --~E-NT)~':.~· -~-~LA§M~-~~~-;-;;-i-i; 0.. E O.Oli -~ 0.05 ~ --= ~'--'-4-"·-'~.1-~+~-1-~1---1.-J-~-I-;; -r 1--41-450WATT

0DEUTERIUM

0LAMP

• 0021-~-1---+ .... _,1-~+---+---IH--+----+--·411--l~-4,· ' ·-2 o.i;;,s t--+--+-.,.,':+--+--t--il+--+--+--~1--1--+--+--4--l

.!!o~·~~lm~~I 2 o.ooe 0.000 0.005 0.QO& IA

0.003

O.Q021-::::j:::::t::::::j:::::j::::t:::::l'::s:::;;~:::~t:::::il:l::±:::::t:::jt::::±:::j o.oots 1- "' o.001~,..~-'---'---'---... -'---'--,..'---'---000-L..l----'--'-7001---'---000.l----'--000-'

i 70 -; .. ;; AO

30 fi ~ ~ 20

~ ~ 10 ii ~ 8 o( ~ 6 "' • 5 a: E 4

~ ! 3 .: !. 2

"'"'' t e 1.0 "" u 0.8 ca. .... 0.6 .. . .

~ 0.4 • 0.3 0 :; 0.2 e·

0.1 200

I J' Ii ii

300 400

WAVELENGTH (NANOMETERS)

200WATT XENON-MERCURY LAMP CAT. NO.: 1291 OPERATED

AT 20 VOLTS, 9.5 AMPS.

' A /

.!. I - - ~

500 600 700 800 900

WAVELENGTH (Nanometers)

.._ ______ 250 LONG BEACH BLVD .. P.O. BOX 872. STRATFORD, CT. U.S.A. 06497-0872 • (203) 377-8282TWX 710-453-8719 ------"'

86

W"'e~f .. l•rntJ.4,.c.e f tu.., a,•11ec~1

ll•rt "''"J s ~,,, . Ts.~lettc. tln1;.:

cli.," j. ~ p l.A.t "'~ .• , r•reQ'"" u,,,;;,.

t:.A,,.-..1 ...

87

Aug 13,92

Dear Dr. Rencheng Shang,

Please find 3 crystals (BaF2l enclosed in the package, which are produced by Shanghai Institute of Ceramics (SIC) .Following is a description of these crystals.

#S7 Crystal:

1. Size: ~25x25 (mm3

) 2. 2 top surfaces polished by SIC and then polished again by

LLNL 3. Irradiated with the doses of 100,lk,lOk,lOOk and lOOOk Rad

at Caltech as well tested for transmittance at each step 4. Current status: lOOOk rads irradiated

#Sl05 Crystal:

:J l. Size: 25x25x25 (mm ) 2. 2 surfaces polished by SIC 3. No irradiated yet

#5211 Crysr.aJ:

l. Size: 25x25x25 (mm3 ) 2. All surfaces polished by SIC 3. No irradiated yet

Please give me a note if you have any question about it.

Best wishes,

Da-ari Ma

c.c. Dr. Renyuan Zhu

Addr. MS 256-48 California Institute of Technology Pasadena CA 91125

Tel: 818 356-6657 Fax 818 795-3951

89

100 ~--.-~.

I

200

#S7: </>25x2G (rn1n)

2 su.rfa.ces polished .~---.,,...,..,~~~ _,_

........,....A,,""'w-...,.,.,.,.rl .

Before Irradiation 100 and lk Rad

400 600

Wavelength (nm)

90

800

x·~

~ 1 ·~~ .. ~=4- f

e.t-n·llQJ1~ ~ .. · _ .. · __,- yotlti'tj i,t.Jt. 11.:>0li J I . ·' ·

')nai.to.Y;~ ~J.t. l.1_1 .. t"J

.91.

Bo

92

LASER ANNEALING RUN DATA

Run No. ,;,

I. 30Rnm position (3) 15mj/pulse measuring I (218 ) nm

Pulse Numher 0 1 5 10 20 30 40 60 80 llKl

Depositetl 0 15 75 150 300 450 60tl 900 1200 151Xl Encrov (mi)

Tot:tl Photon 0.0 2.3x1016 1.2xJ017 2.3xJ0 17 4.6x1017 6.9xl0 17 9.2x10 17 l.4xl0 18 l.9xJ01" 2.3xl0 .. Number

T% 83.0 83.J 85.0 85.5 86.7 87.0 87.0 87.1 88.6 88.0

2 590 nm POSlllOn (4) 5 ·1 I m1/pu se

Pulse Number 0 I 3 JO 15 20 30 50 JO() 21Kl 4(XI

Deposited 0 5 15 50 75 100 150 250 5m l()(XJ 2CXXJ Ener~v (mi)

Total Photon 0.0 l.5xl016 4.4xJ0 17 l.5x10 17 2.lxJ017 3.0xJ017 4.5xJ017 7.5x10 17 l.5x J018 3xJ011 6xJO" Number

T% 83.0 83.7 82.4 84.2 83.9 84.6 85.0 85.2 85.8 86.0 87.0

3 532 nm post non (2) 5 "/ I mJtPU se

Pulse Number 0 JO 30 60 120 180 240 300 500 700 IO(M)

Deposited 0 50 150 300 600 900 1200 1500 250tl 3500 SOtXJ Ener•v (mi)

Total Photon 0.0 l.3xJ0 17 4.0xJO'' 8.0xJ0 17 l.6xJ0 11 2.4xJ011 3.2xJ018 4.0xl0 11 6.7x10 11 9.3x1018 l.3xl0 .. Number

T% .83.0 84.0 84.0 83.8 84.4 85.0 86.0 85.9 87.0 87.8 8R.O

4. 270 nm POSttlOn (I) - 4 t'fll/Pulse

Pulse Number 0 1000 2000 3000 4000 5000 7000

Deposited 0 40 80 120 160 200 280 Ener•v (mi)

Total Photon 0.0 5.4xl017 I.Ix JO" l.6x10 11 2.2x1011 2.7xJ0 11 3.8x1011

Number

T% 82.6 83.8 85.2 86.0 86.2 86.1 87.2

5 1060 nm post non (I) 20 ·1 I m)IJ)U se

Pulse t>·•1mher 0 I 5 JO 20 40 60 JOO 200 500 llXXJ

Deposi1ed 0 20 JOO 200 400 800 1200 2CXJO 41)()(] llHXXI 200<Xl Enerav (mi)

Total Pho1on 0.0 I.Ix 1017 5.3xJ017 l.Jxl0 11 2.lxl011 4.2xJ011 6.3xJ0 11 I.Ix J0 19 2.lxl019 5.3xl019 l.lxJ020

Number

T% 82.6 R2.4 83.0 82.4 82.6 83.0 83.4 83.7 83.2 83.0 83.2

94

• .. B

' '°>;

l \ "• ' i

... ! • . • t

••

• 0 0 0 0 II\ N\

Q Q Q 0 0 --

95

}1f'~

I. i\J~F2 + 4 .I

@ atli..,,. s+~ 'lo/e. ~,..,~;+-!

'r'i... #(~""'1$h1:: ov A1.1.,. 3 I , 'l '2.

COkt;f 11t.1t t OV.C.>" fJ.it. (. 'l.f frlft. l '114¥f~ C.(

- -... •" ··. -· .. -····

99

Uniformity for different Aau and transparent front facet (for side facets F=l.)

MgF2(thin film) + Al coating

Light collection efficiency (%) 10 .

9.8 0

9.6

9.4

9.2 _ ... ---._ ..

* -···

* + * 9

Aatt

8.8 ~ 70 cm

• -+- 72 cm + 8.6 -.+ 74 cm

8.4 ··G-· 76 cm . ··-·-· .... ······.-· .. -:-. ..; ... · ·.··· -· . -:· .. :··-.-··. . . . . ·.· .. ·.·:· .. ·

8.2 --""-- 78 cm "

~ 80 cm

Y°!Nl S 0 &b 1o \ p-t:c -p 3 ~Q

s~~~-'-~~~-'-~~--'-~~~~~~---'

0 10 20 30 40 50 Distance from PM (cm)

f,· Ci I - 7 ( b _; I

tho

~ 0 ~

R e f 1 e c t a n

Reflectance of Al vs tl1iclc11ess at 220- nin for DaF2 co1nposite coating 1000 A MgF -I· Al layer (in Angstrc1ns)

.2

ex11ected thickness reproducibility +/- 25 angstrc1ns 100 --,

. ,... it. I c."'J fl, 90 1-------·------···--··--1~-- ro . --- --,-----• ·-- ·---·--··-·-·-·. -

8 o I ·. ----------------- -~!0 __ ___]'!__ _____ \----- --·-·---·--·---- ·-· -- · ····-·· - ··-· · ···· ··· : iz.o 0.8% per 25 nngstrems

7 0 !---~-----------··-·---·-·- ·-···---------·--··----··--------------·---··-··-·---··--·· --·- . .. ·-- - ..... ·- ·--; 'to• ? .

60 !-----:---·~-·-·- --··---·-----------'-------------·-··-····-·-------------·-·····-··-·····.

5 0 1----------1---.-----·-----·---·------·-------··-------·--------···-·. --··-. - .. -·- .... - .. ·····- -----· .

401-~-·

c 3 0 ,-·--:---·------ z---···--··----··---··----··-·--- -----·---. ----------- --· --·-- ·-·-··--· -- -------- . c : 1 -12% per 25 an11trems

2 0 -·--'----·· ----·-· -·-····-·--··---·-···---------------------·· -- ······-· -·····-·· ·-·-··· .. % •,

10 ~--7-------- L '--~ o•

----·-----· -------------

0 ·. 100 200 3-00 400 500 600 700 Aluminiutn layer thickness (Angstrc1ns)

800

\,

*********************************************** All uniform crystals, matrix 5 x 5:

20 GeV: 0.272+- 0.007 50 GeV: 0.230+- 0.006

100 GeV: 0.220+- 0.004 200 GeV: 0.249+- 0.011

*********************************************** Nonuniformity for LAMBDA = 200 cm, matrix 5 x 5:

20 GeV: 0.530+- 0.015 50 GeV: 0.394+- 0.011

100 GeV: 0.346+- 0.010 200 GeV: 0.264+- 0.012

*********************************************** Nonuniformity for LAMBDA = 150 cm, matrix 5 x 5:

20 GeV: 0.433+- 0.012 50 GeV: 0.312+- 0.009

100 GeV: 0.260+- 0.008 200 GeV: 0.204+- 0.025

*********************************************** Nonuniformity for LAMBDA= 100 cm, matrix 5 x 5:

20 GeV: 0.616+- 0.017 50 GeV: 0.464+- 0.013

100 GeV: 0.407+- 0.014 200 GeV: 0.304+- 0.013

*********************************************** Nonuniformity for LAMBDA = 78 cm, matrix S x S:

20 GeV: 0.268+- 0.006 SO GeV: 0.240+- 0.007

100 GeV: 0.221+- 0.006 200 GeV: 0.243+- 0.011

*********************************************** Nonuniformity for LAMBDA = 76 cm, matrix S x S:

20 GeV: 0.277+- 0.008 SO GeV: 0.212+- 0.004

100 GeV: 0.199+- O.OOS 200 GeV: 0.198+- 0.007

102

.-:.

Uniformity for different Aatt Polished surf ace

Light collection efficiency (%) 11.--~~--.,~~~~~~~~~~~~~~~

Aau - 100 cm

-+- 150 cm

+ 200 cm

10.S

10

* * ,./

\ . ' .. ..-···

9.S

... ,+ -r.:. ' . ' ' ,' ',, • -·+ ........ _ ..........

+ . ··- .•,·,. -·· ... -.-... · .... ;.. . .: . . · . .-•.. ·-;>: _ _,,_ - ·-·-;. -.· -· .-;- . -.-·.-.• :·

9'--~~--'--~~~--'-~~~-'--~~--'-~~~--'

0 10 20 30 40 so Distance from PM (cm)

103

I-" 0 ~

Optimization of surface coating Polished surf ace

Light collection efficiency RMS (%) s~~~~~~~~~~~~~~~~~~~~~~~~~~

4

3

2 /.. a-l:t:

• =100 c.m

1 r- * =lso e'm x =200 tm

x; . . .. • . . . ' . ' . ' . ' . ' . ' . ' . ' . ' • I

\ ,' . .. \ ,' * . '

x '

'

. .

·x. ___ x-'~ *·--'/ *

0'--~~~'--~~----'·~~~--'~~~-

' '

0.9 0.,91 o.92 o.93 o.94

*

Fraction of non-blackened surface area

I_ _____ _

0.95 0.96

.. - .·

-· ,_,.}., :-j :aoo l ·-j •:roo l

' --

-; _ .. ------. <··'-·

i\

• -.• ' -. • -·=·: ~ · • .:_; .. • ..... -.-.

~ 1.2

w 1

' 0.8 w b 0.6

0.4

0.2

0

1.1

"1.05

'""' 1 ~'j.. ~-.t 0.95 ~

·- ~ 0.9 ..:.;: -~ ~ 0.85 ~ i 0.8 ~~ 0.75

I,-, ' I . "" c~ c'i. , ()'. -c , :... l,r, J:; ~'"''°'::1 e

' c T L{::, -lq I s.

SCENARIO - all crystals were NOT preradiated

·and were uniform with i\=200cm

50 GeV I'

-.... -I I • • ' • : l" I I I . ' I ' ' I

100 120 140 160 180 200

Attenuation length(cm) ofter irradiation

----------------------------------------------------------------

. - .. . ·-······· .·. ·: .· e '(I

... 0.7 0 ~~

·-·· · ....

10 20 50 30 40

Distance from small end (cm)

· Nonuniformity for A=1 OOcm (ot saturation)

*********************************************** All uniform crystals Pure signals (without leakage subtraction)

50GeV 0.236+- 0.005 chi2 • 1.6885 lOOGeV 0.226+- 0.005 chi2 = 2.7321 200GeV 0.250+- 0.010 chi2 = 2.1566

****~****************************************** Pure signals (without leakage subtraction): At 200 cm (optimized)

SOGeV 0.283+- 0.008 lOOGeV 0.250+- 0.008 200GeV 0.221+- 0.009

chi2 = chi2 = chi2 =

1.1463 1.8367 1.1242

Transition 50GeV

lOOGeV 200GeV

from 200 cm to 0.420+- 0.012 0.386+- 0.012 0.306+- 0.023

150 cm, max shower chi2 • 1. 3091 chi2 • 1. 6577 chi2 • 0.9783

at 150 cm

At 150 cm 50GeV

lOOGeV 200GeV

(were optimized 0.663+- 0.021 0.589+- 0.017 0.500+- 0.022

for 200 cm) chi2 • 2.9053 chi2 • 2.3146 chi2 = 1.2756

***********************************************

**** h A A A"*********************·***************** Pure signals (without leakage subtraction) At 200 cm (assuming otimized to constant level)

50GeV 0.234¥- 0.005 chi2 • 1.6813 lOOGeV 0.226+- 0.005 chi2 = 3.1587 200GeV 0.249+- 0.010 chi2 - 2.3210

Transition from 200 cm to 150 cm, max shower at 150 cm SOGeV 0.230+- 0.005 chi2 • 1.0190

lOOGeV 0.213+- 0.005 chi2 - 1.3703 200GeV 0.189+- 0.029 chi2 - 1.4832

At 150 cm (were optimized for 200 cm) 50GeV 0.449+- 0.012 chi2 - 1.9911

lOOGeV 0.389+- 0.011 chi2 - 1.6223 -· 200GeV 0.326+- 0.013 chi2 - 1.1682

7 < •

.I

50GeV lOOGeV 200GeV

NEVENT NEVENT NEVENT

- 943 943 476

.-: .. · ·· ... · .. :.··:-· --

107

\,t ... '\.-~ k: ..... .,,~'"""" . . '.!

fc'-f tck c..c ~ +-. "") \Vt LA l -=loo c v--t

·· .. ;

Expected dose YC0fe S for I YJ

GE i'v1 1).e-t e cto r L 33 I = ID C.1'1'1 - ~s -

1) 01 \on.;~~ n.5 \_ ,.._, I o - I S" c ..,,,

po,_r--!: ;c \.es o...+ sh.o we.v

; ., S; of e. +"1.e. i?::A. I-'- )

(_ <,..; ~ I ""-v +,

~ -:: 0 e = So"

1~1 e = 4-o"' 'l.-,: 2.5

,..., 90 v ::.

2-\ by , ) Yl.'2 \/\ T l"O )1?

1 -= o ,G.:;.50°

1 - 9-=- 4-o"'

1. -=. 1.. $ g.: :JO

Co 60 .,,("'- '••--"-5 '-)

: ,...., 50 I< R&1ol /ye,,.. v

/"\, l 0 0 I<. R &\ ol. I y e.A v

r-v l tvl R t:t.J / 'j e.e:t.,,

1-v;+0 .eYle.r@y /'-./ I MeV

,...., 5"· ID 12 n / c,..,, 2 I '/ e.A, v

/'o..J I 0 13 n /CM i.; fu..v

10 I 4- . h I C>'Vi z. I 'I~ v

3) Nv-.Yl-'lbe.v of sp ...... JIA..fit?l1S

°'"' · fe L-r+·· ..... 4uf· · en · +t..e ·

108

r~7 ·l-t~ f-. . . •· <:v.f... ..LJ .. ...•. · . .fl... ·r··· ... . . I TkL ~he-

l . •

. . . •

/. .. .... "'­. . . . . . • •

• •

• •

• • •

)/ ,, I . -

• •

0 0 -

("') I

0 -<D

I

0 -.... ·-······ .·.

en I

0 -CD ~ C'\J o

L 3P/NP3

~~s~

~ ,:r i" "> -a

r~1~ " '="' 1 ~ ·~ 3 Ill "'

' I I

,-.

> Q)

~ -::>-r:r '-Q)

c w (.) -.., <D c ...... ~

c:: 0 '-

J...)

::> . .Q} ..•

z

CD ~ ("\)

3P/NP3 109

~ ~ . " ....J "'1.:l ~

~~ . -.l

I ' I

0 0 -

("') I

0 ~

<D I

0 .......

. ..

(J) I

0 ~

0

~ ~ ... -..,, r-~

,-.

> w E ._,

>-er '-<J)

c <D

u ..... l..)

<J)

c ...... ~

c 0 L ~ ::> .... """(])

z

. : . . ' ,_..r-'"""' .... ·"'~ J.. . •• ' ' o o I .., .. ,...', o ...... ,. 0 '"°• f o

-f·, +Ji 1. Expert

4., I 0 '1" f ~\ --! .,. -· ,,.. , ,\ ,•

I>._/ .-;.10-1 ....... -..~·-~ti_,,? C-.r. ./. J • -/· .. . . -· c.r·y.:: ~~~ S ( i 1-~·.f 1M··i 4-;i.~_;, j r<:> 'V; >l:J f' .... r c:~ .. . c,t. : ·~ : ,. " I <.n i: i 1-·::; ,,., -· • 'V ~ ., • ) • -... ,. •• -- •

~ ~ ~ .... ,.:.. .:>.J,.,c "" ? .-,.,. --· .) . • If s1,1,r. t.. •Jc f ~r:·;l:; '?Ce.

1- I LA.~

:'·-::- . I I ,o~ .:: : ''· ·~

-/::; C0>-1 .. 1"0, t I ,.. I"!~

~o..y 18C ± 20 ,,...._ ( prlc;..:st. v:..{1<.e.~ to he es-+~b !: :J.:e;il.)

by pto«1.4c:ficiY1. o.nc;/. H-i~iel"i°Pt/ f1A"2.1'fy -iC'}€Yt><>-tC€.>?

• La.n iJ...~ rr.qk.1'Y-e'1-te>-.ts P"' n-iP. +-er,AI /'\.ryrf;ci.( J::jJ.<t>..f,·+; b~ r.e.f~xecJ. [f UVLA ,·"'v~/,,,·~d?

• W,·!f ihe "cl-ti.eved. L~L fe.1;·t..! be +he -r-~;--'!€.

;,,,,. ;r, f, ri •>"r~d;~+1·.;11 ~ • How SfR.h le i b LA L ''f !.(l/ l. A c"i.i V?/v~ d '?

I> if l.r ;+ w: II

$p. f-~y~f.ed

s1.lf- ~hP?t;../tPI

-t/.ie ~i;J.._~ VY\ E:

w; ft, d(;:e ! i,.,,·..'fh -61.,...'f ~ 7

Pre. i Y,...:::. ~; ~ -t ,· c;: - f'>'"< U. VP.~ 'I e P. ! 1'.1 •• ~

.. <··- ;.· .•..

110

top related