apache mahout tutorial - recommendation - 2013/2014

Post on 08-Sep-2014

8.349 Views

Category:

Technology

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

SWAP Research Group - Mahout Tutorial on Recommendation. Based on Apache Mahout 0.8

TRANSCRIPT

Apache Mahout – Tutorial (2014) Cataldo Musto, Ph.D.

Corso di Accesso Intelligente all’Informazione ed Elaborazione del Linguaggio Naturale

Università degli Studi di Bari – Dipartimento di Informatica – A.A. 2013/2014

08/01/2014

Outline

• What is Mahout ?

– Overview

• How to use Mahout ?

– Hands-on session

Part 1

What is Mahout?

Goal

• Mahout is a Java library

– Implementing Machine Learning techniques

Goal

• Mahout is a Java library

– Implementing Machine Learning techniques

• Clustering

• Classification

• Recommendation

• Frequent ItemSet

What can we do?

• Currently Mahout supports mainly four use cases: – Recommendation - takes users' behavior and tries to find

items users might like.

– Clustering - takes e.g. text documents and groups them into groups of topically related documents.

– Classification - learns from existing categorized documents what documents of a specific category look like and is able to assign unlabelled documents to the (hopefully) correct category.

– Frequent itemset mining - takes a set of item groups (terms in a query session, shopping cart content) and identifies, which individual items usually appear together.

Why Mahout?

• Mahout is not the only ML framework

– Weka

– R (http://www.r-project.org/)

• Why do we prefer Mahout?

(http://www.cs.waikato.ac.nz/ml/weka/)

Why Mahout?

• Why do we prefer Mahout?

– Apache License

– Good Community

– Good Documentation

Why Mahout?

• Why do we prefer Mahout?

– Apache License

– Good Community

– Good Documentation

–Scalable

Why Mahout?

• Why do we prefer Mahout?

– Apache License

– Good Community

– Good Documentation

–Scalable • Based on Hadoop (not mandatory!)

Why do we need a scalable framework?

Big Data!

Use Cases

Use Cases

Recommendation Engine on Foursquare

Use Cases

User Interest Modeling on Twitter

Use Cases

Pattern Mining on Yahoo! (as anti-spam)

Algorithms

• Recommendation

– User-based Collaborative Filtering

– Item-based Collaborative Filtering

– SlopeOne Recommenders

– Singular Value Decomposition-based CF

Algorithms

• Clustering – Canopy

– K-Means

– Fuzzy K-Means

– Latent Dirichlet Allocation (LDA)

– MinHash Clustering

– Draft algorithms • Hierarchical Clustering

• (and much more…)

Algorithms

• Classification – Logistic Regression – Bayes – Random Forests – Hidden Markov Models – Draft algorithms

• Support Vector Machines • Perceptrons • Neural Networks • Restricted Boltzmann Machines • (and much more…)

Algorithms

• Other

– Evolutionary Algorithms

• Genetic Algorithms

– Dimensionality Reduction techniques

• Principal Component Analysis (PCA)

• Singular Value Decomposition (SVD)

– Frequent ItemSet Pattern Mining

– (and much more.)

Mahout in the Apache Software Foundation

Mahout in the Apache Software Foundation

Original Mahout Project

Mahout in the Apache Software Foundation

Taste: collaborative filtering framework

Mahout in the Apache Software Foundation

Lucene: information retrieval software library

Mahout in the Apache Software Foundation

Hadoop: framework for distributed storage and programming based on MapReduce

General Architecture

Three-tiers architecture (Application, Algorithms and Shared Libraries)

General Architecture

Data Storage and Shared Libraries

General Architecture

Business Logic

General Architecture

External Applications invoking Mahout APIs

In this tutorial we will focus on

Recommendation

Recommendation

• Mahout implements a Collaborative Filtering framework – Popularized by Amazon and others

– Uses historical data (ratings, clicks, and purchases) to provide recommendations • User-based: Recommend items by finding similar users. This is

often harder to scale because of the dynamic nature of users.

• Item-based: Calculate similarity between items and make recommendations. Items usually don't change much, so this often can be computed offline.

• Slope-One: A very fast and simple item-based recommendation approach applicable when users have given ratings (and not just boolean preferences).

Slope-One Recommender

• Brief Recap

• Sample Rating database (from Wikipedia)

Slope-One Recommender

• Brief Recap

• Sample Rating database (from Wikipedia)

• Is a variant of item-based CF

• Compute predictions by taking into account the average differences between item’s ratings

Slope-One Recommender

• Step One: simplification – Just two items

– Goal: to compute Lucy’s rating for item A

– Algorithm: compute the average difference between ratings fro Item A and B

– difference: +0.5 for Item A

– Rating(Lucy,ItemA) = Rating(ItemB) + difference = 2.5

X

Slope-One Recommender

X • Step One: simplification

– Just two items

– Goal: to compute Lucy’s rating for item A

– Algorithm: compute the average difference between ratings fro Item A and C

– difference: +3 for Item A

– Rating(Lucy,ItemA) = Rating(ItemC) + difference = 8

Slope-One Recommender

• Step One: combining partial computations

– Lucy’s rating for item A is the weighted sum of the estimation based on item B and the estimation based on item C

Slope-One Recommender

• Step One: combining partial computations

– Weight: #users that voted both items

• John and Mark voted both Item A and Item B

• Just John voted both Item A and Item C

(comin’ back to Mahout)

Recommendation - Architecture

Recommendation - Architecture

Inceptive Idea:

A Java/J2EE application invokes a Mahout

Recommender whose DataModel is based on a set of User Preferences that are

built on the ground of a physical DataStore

Recommendation - Architecture

Physical Storage (database, files, etc.)

Recommendation - Architecture

Data Model

Physical Storage (database, files, etc.)

Recommendation - Architecture

Data Model

Recommender

Physical Storage (database, files, etc.)

Recommendation - Architecture

External Application

Physical Storage (database, files, etc.)

Data Model

Recommender

Recommendation in Mahout

• Input: raw data (user preferences) • Output: preferences estimation

• Step 1

– Mapping raw data into a DataModel Mahout-compliant

• Step 2 – Tuning recommender components

• Similarity measure, neighborhood, etc.

• Step 3 – Computing rating estimations

• Step 4 – Evaluating recommendation

Recommendation Components

• Mahout key abstractions are implemented through Java interfaces : – DataModel interface

• Methods for mapping raw data to a Mahout-compliant form

– UserSimilarity interface • Methods to calculate the degree of correlation between two users

– ItemSimilarity interface • Methods to calculate the degree of correlation between two items

– UserNeighborhood interface • Methods to define the concept of ‘neighborhood’

– Recommender interface • Methods to implement the recommendation step itself

Recommendation Components

• Mahout key abstractions are implemented through Java interfaces :

– example: DataModel interface

• Each methods for mapping raw data to a Mahout-compliant form is an implementation of the generic interface

• e.g. MySQLJDBCDataModel feeds a DataModel from a MySQL database

• (and so on)

Components: DataModel

• A DataModel is the interface to draw information about user preferences.

• Which sources is it possible to draw? – Database

• MySQLJDBCDataModel, PostgreSQLDataModel • NoSQL databases supported: MongoDBDataModel, CassandraDataModel

– External Files • FileDataModel

– Generic (preferences directly feed through Java code) • GenericDataModel

(They are all implementations of the DataModel interface)

• GenericDataModel – Feed through Java calls

• FileDataModel – CSV (Comma Separated Values)

• JDBCDataModel – JDBC Driver – Standard database structure

Components: DataModel

FileDataModel – CSV input

Components: DataModel

• Regardless the source, they all share a common implementation.

• Basic object: Preference

– Preference is a triple (user,item,score)

– Stored in UserPreferenceArray

Components: DataModel

• Basic object: Preference

– Preference is a triple (user,item,score)

– Stored in UserPreferenceArray

• Two implementations

– GenericUserPreferenceArray

• It stores numerical preference, as well.

– BooleanUserPreferenceArray

• It skips numerical preference values.

Components: UserSimilarity

• UserSimilarity defines a notion of similarity between two Users. – (respectively) ItemSimilarity defines a notion of similarity

between two Items.

• Which definition of similarity are available?

– Pearson Correlation – Spearman Correlation – Euclidean Distance – Tanimoto Coefficient – LogLikelihood Similarity

– Already implemented!

Example: TanimotoDistance

Example: CosineSimilarity

Different Similarity definitions

influence neighborhood formation

Pearson’s vs. Euclidean distance

Pearson’s vs. Euclidean distance

Components: UserNeighborhood

• Which definition of neighborhood are available? – Nearest N users

• The first N users with the highest similarity are labeled as ‘neighbors’

– Thresholds • Users whose similarity is above a threshold are labeled as ‘neighbors’

– Already implemented!

Components: Recommender

• Given a DataModel, a definition of similarity between users (items) and a definition of neighborhood, a recommender produces as output an estimation of relevance for each unseen item

• Which recommendation algorithms are implemented? – User-based CF – Item-based CF – SVD-based CF – SlopeOne CF

(and much more…)

Recommendation Engines

Recap

• Many implementations of a CF-based recommender! – 6 different recommendation algorithms – 2 different neighborhood definitions – 5 different similarity definitions

• Evaluation fo the different implementations is actually very time-consuming – The strength of Mahout lies in that it is possible to save

time in the evaluation of the different combinations of the parameters!

– Standard interface for the evaluation of a Recommender System

Evaluation

• Mahout provides classes for the evaluation of a recommender system

– Prediction-based measures

• Mean Average Error

• RMSE (Root Mean Square Error)

– IR-based measures

• Precision, Recall, F1-measure, F1@n

• NDCG (ranking measure)

Evaluation

• Prediction-based Measures

– Class: AverageAbsoluteDifferenceEvaluator

– Method: evaluate()

– Parameters:

• Recommender implementation

• DataModel implementation

• TrainingSet size (e.g. 70%)

• % of the data to use in the evaluation (smaller % for fast prototyping)

Evaluation

• IR-based Measures

– Class: GenericRecommenderIRStatsEvaluator

– Method: evaluate()

– Parameters:

• Recommender implementation

• DataModel implementation

• Relevance Threshold (mean+standard deviation)

• % of the data to use in the evaluation (smaller % for fast prototyping)

Part 2

How to use Mahout? Hands-on

Download Mahout

• Download – The latest Mahout release is 0.8

– Available at: http://apache.fastbull.org/mahout/0.8/mahout-distribution-0.8.zip

- Extract all the libraries and include them in a new NetBeans (Eclipse) project

• Requirement: Java 1.6.x or greater.

• Hadoop is not mandatory!

Exercise 1

• Create a Preference object

• Set preferences through some simple Java call

• Print some statistics about preferences (how many preferences, on which items the user has expressed ratings, etc.)

Exercise 1

• Create a Preference object

• Set preferences through some simple Java call

• Print some statistics about preferences (how many preferences, on which items the user has expressed ratings, etc.)

• Hints about objects to be used: – Preference

– GenericUserPreferenceArray

Exercise 1: preferences import org.apache.mahout.cf.taste.impl.model.GenericUserPreferenceArray;

import org.apache.mahout.cf.taste.model.Preference;

import org.apache.mahout.cf.taste.model.PreferenceArray;

class CreatePreferenceArray {

private CreatePreferenceArray() {

}

public static void main(String[] args) {

PreferenceArray user1Prefs = new GenericUserPreferenceArray(2);

user1Prefs.setUserID(0, 1L);

user1Prefs.setItemID(0, 101L);

user1Prefs.setValue(0, 2.0f);

user1Prefs.setItemID(1, 102L);

user1Prefs.setValue(1, 3.0f);

Preference pref = user1Prefs.get(1);

System.out.println(pref);

}

}

Exercise 1: preferences import org.apache.mahout.cf.taste.impl.model.GenericUserPreferenceArray;

import org.apache.mahout.cf.taste.model.Preference;

import org.apache.mahout.cf.taste.model.PreferenceArray;

class CreatePreferenceArray {

private CreatePreferenceArray() {

}

public static void main(String[] args) {

PreferenceArray user1Prefs = new GenericUserPreferenceArray(2);

user1Prefs.setUserID(0, 1L);

user1Prefs.setItemID(0, 101L);

user1Prefs.setValue(0, 2.0f);

user1Prefs.setItemID(1, 102L);

user1Prefs.setValue(1, 3.0f);

Preference pref = user1Prefs.get(1);

System.out.println(pref);

}

}

Score 2 for Item 101

Exercise 2

• Create a DataModel

• Feed the DataModel through some simple Java calls

• Print some statistics about data (how many users, how many items, maximum ratings, etc.)

Exercise 2

• Create a DataModel

• Feed the DataModel through some simple Java calls

• Print some statistics about data (how many users, how many items, maximum ratings, etc.)

• Hints about objects to be used: – FastByIdMap

– Model

• PreferenceArray stores the preferences of a single user

• Where do the preferences of all the users are stored? – An HashMap? No.

– Mahout introduces data structures optimized for recommendation tasks • HashMap are replaced by FastByIDMap

Exercise 2: data model

Exercise 2: data model import org.apache.mahout.cf.taste.impl.common.FastByIDMap;

import org.apache.mahout.cf.taste.impl.model.GenericDataModel;

import org.apache.mahout.cf.taste.impl.model.GenericUserPreferenceArray;

import org.apache.mahout.cf.taste.model.DataModel;

import org.apache.mahout.cf.taste.model.PreferenceArray;

class CreateGenericDataModel {

private CreateGenericDataModel() {

}

public static void main(String[] args) {

FastByIDMap<PreferenceArray> preferences = new FastByIDMap<PreferenceArray>();

PreferenceArray prefsForUser1 = new GenericUserPreferenceArray(10);

prefsForUser1.setUserID(0, 1L);

prefsForUser1.setItemID(0, 101L);

prefsForUser1.setValue(0, 3.0f);

prefsForUser1.setItemID(1, 102L);

prefsForUser1.setValue(1, 4.5f);

preferences.put(1L, prefsForUser1);

DataModel model = new GenericDataModel(preferences);

System.out.println(model);

}

}

Exercise 3

• Create a DataModel

• Feed the DataModel through a CSV file

• Calculate similarities between users

– CSV file should contain enough data!

Exercise 3

• Create a DataModel

• Feed the DataModel through a CSV file

• Calculate similarities between users – CSV file should contain enough data!

• Hints about objects to be used: – FileDataModel

– PearsonCorrelationSimilarity, TanimotoCoefficientSimilarity, etc.

Exercise 3: similarity import org.apache.mahout.cf.taste.impl.similarity.*;

import org.apache.mahout.cf.taste.impl.model.*;

import org.apache.mahout.cf.taste.impl.model.file.FileDatModel;

class Example3_Similarity {

public static void main(String[] args) throws Exception {

// Istanzia il DataModel e crea alcune statistiche

DataModel model = new FileDataModel(new File("intro.csv"));

UserSimilarity pearson = new PearsonCorrelationSimilarity(model);

UserSimilarity euclidean = new EuclideanDistanceSimilarity(model);

System.out.println("Pearson:"+pearson.userSimilarity(1, 2));

System.out.println("Euclidean:"+euclidean.userSimilarity(1, 2));

System.out.println("Pearson:"+pearson.userSimilarity(1, 3));

System.out.println("Euclidean:"+euclidean.userSimilarity(1, 3));

}

}

Exercise 3: similarity import org.apache.mahout.cf.taste.impl.similarity.*;

import org.apache.mahout.cf.taste.impl.model.*;

import org.apache.mahout.cf.taste.impl.model.file.FileDatModel;

class Example3_Similarity {

public static void main(String[] args) throws Exception {

// Istanzia il DataModel e crea alcune statistiche

DataModel model = new FileDataModel(new File("intro.csv"));

UserSimilarity pearson = new PearsonCorrelationSimilarity(model);

UserSimilarity euclidean = new EuclideanDistanceSimilarity(model);

System.out.println("Pearson:"+pearson.userSimilarity(1, 2));

System.out.println("Euclidean:"+euclidean.userSimilarity(1, 2));

System.out.println("Pearson:"+pearson.userSimilarity(1, 3));

System.out.println("Euclidean:"+euclidean.userSimilarity(1, 3));

}

} FileDataModel

Exercise 3: similarity import org.apache.mahout.cf.taste.impl.similarity.*;

import org.apache.mahout.cf.taste.impl.model.*;

import org.apache.mahout.cf.taste.impl.model.file.FileDatModel;

class Example3_Similarity {

public static void main(String[] args) throws Exception {

// Istanzia il DataModel e crea alcune statistiche

DataModel model = new FileDataModel(new File("intro.csv"));

UserSimilarity pearson = new PearsonCorrelationSimilarity(model);

UserSimilarity euclidean = new EuclideanDistanceSimilarity(model);

System.out.println("Pearson:"+pearson.userSimilarity(1, 2));

System.out.println("Euclidean:"+euclidean.userSimilarity(1, 2));

System.out.println("Pearson:"+pearson.userSimilarity(1, 3));

System.out.println("Euclidean:"+euclidean.userSimilarity(1, 3));

}

} Similarity Definitions

Exercise 3: similarity import org.apache.mahout.cf.taste.impl.similarity.*;

import org.apache.mahout.cf.taste.impl.model.*;

import org.apache.mahout.cf.taste.impl.model.file.FileDatModel;

class Example3_Similarity {

public static void main(String[] args) throws Exception {

// Istanzia il DataModel e crea alcune statistiche

DataModel model = new FileDataModel(new File("intro.csv"));

UserSimilarity pearson = new PearsonCorrelationSimilarity(model);

UserSimilarity euclidean = new EuclideanDistanceSimilarity(model);

System.out.println("Pearson:"+pearson.userSimilarity(1, 2));

System.out.println("Euclidean:"+euclidean.userSimilarity(1, 2));

System.out.println("Pearson:"+pearson.userSimilarity(1, 3));

System.out.println("Euclidean:"+euclidean.userSimilarity(1, 3));

}

} Output

Exercise 4

• Create a DataModel

• Feed the DataModel through a CSV file

• Calculate similarities between users

– CSV file should contain enough data!

• Generate neighboorhood

• Generate recommendations

Exercise 4

• Create a DataModel

• Feed the DataModel through a CSV file

• Calculate similarities between users

– CSV file should contain enough data!

• Generate neighboorhood

• Generate recommendations

– Compare different combinations of parameters!

Exercise 4

• Create a DataModel • Feed the DataModel through a CSV file • Calculate similarities between users

– CSV file should contain enough data!

• Generate neighboorhood • Generate recommendations

– Compare different combinations of parameters!

• Hints about objects to be used: – NearestNUserNeighborhood – GenericUserBasedRecommender

• Parameters: data model, neighborhood, similarity measure

Exercise 4: First Recommender import org.apache.mahout.cf.taste.impl.model.file.*;

import org.apache.mahout.cf.taste.impl.neighborhood.*;

import org.apache.mahout.cf.taste.impl.recommender.*;

import org.apache.mahout.cf.taste.impl.similarity.*;

import org.apache.mahout.cf.taste.model.*;

import org.apache.mahout.cf.taste.neighborhood.*;

import org.apache.mahout.cf.taste.recommender.*;

import org.apache.mahout.cf.taste.similarity.*;

class RecommenderIntro {

private RecommenderIntro() {

}

public static void main(String[] args) throws Exception {

DataModel model = new FileDataModel(new File("intro.csv"));

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);

Recommender recommender = new GenericUserBasedRecommender(

model, neighborhood, similarity);

List<RecommendedItem> recommendations = recommender.recommend(1, 1);

for (RecommendedItem recommendation : recommendations) {

System.out.println(recommendation);

}

}

}

Exercise 4: First Recommender import org.apache.mahout.cf.taste.impl.model.file.*;

import org.apache.mahout.cf.taste.impl.neighborhood.*;

import org.apache.mahout.cf.taste.impl.recommender.*;

import org.apache.mahout.cf.taste.impl.similarity.*;

import org.apache.mahout.cf.taste.model.*;

import org.apache.mahout.cf.taste.neighborhood.*;

import org.apache.mahout.cf.taste.recommender.*;

import org.apache.mahout.cf.taste.similarity.*;

class RecommenderIntro {

private RecommenderIntro() {

}

public static void main(String[] args) throws Exception {

DataModel model = new FileDataModel(new File("intro.csv"));

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);

Recommender recommender = new GenericUserBasedRecommender(

model, neighborhood, similarity);

List<RecommendedItem> recommendations = recommender.recommend(1, 1);

for (RecommendedItem recommendation : recommendations) {

System.out.println(recommendation);

}

}

}

FileDataModel

Exercise 4: First Recommender import org.apache.mahout.cf.taste.impl.model.file.*;

import org.apache.mahout.cf.taste.impl.neighborhood.*;

import org.apache.mahout.cf.taste.impl.recommender.*;

import org.apache.mahout.cf.taste.impl.similarity.*;

import org.apache.mahout.cf.taste.model.*;

import org.apache.mahout.cf.taste.neighborhood.*;

import org.apache.mahout.cf.taste.recommender.*;

import org.apache.mahout.cf.taste.similarity.*;

class RecommenderIntro {

private RecommenderIntro() {

}

public static void main(String[] args) throws Exception {

DataModel model = new FileDataModel(new File("intro.csv"));

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);

Recommender recommender = new GenericUserBasedRecommender(

model, neighborhood, similarity);

List<RecommendedItem> recommendations = recommender.recommend(1, 1);

for (RecommendedItem recommendation : recommendations) {

System.out.println(recommendation);

}

}

}

2 neighbours

Exercise 4: First Recommender import org.apache.mahout.cf.taste.impl.model.file.*;

import org.apache.mahout.cf.taste.impl.neighborhood.*;

import org.apache.mahout.cf.taste.impl.recommender.*;

import org.apache.mahout.cf.taste.impl.similarity.*;

import org.apache.mahout.cf.taste.model.*;

import org.apache.mahout.cf.taste.neighborhood.*;

import org.apache.mahout.cf.taste.recommender.*;

import org.apache.mahout.cf.taste.similarity.*;

class RecommenderIntro {

private RecommenderIntro() {

}

public static void main(String[] args) throws Exception {

DataModel model = new FileDataModel(new File("intro.csv"));

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);

Recommender recommender = new GenericUserBasedRecommender(

model, neighborhood, similarity);

List<RecommendedItem> recommendations = recommender.recommend(1, 1);

for (RecommendedItem recommendation : recommendations) {

System.out.println(recommendation);

}

}

}

Top-1 Recommendation for User 1

• Download the GroupLens dataset (100k) – Its format is already Mahout compliant

– http://files.grouplens.org/datasets/movielens/ml-100k.zip

• Preparatory Exercise: repeat exercise 3 (similarity calculations) with a bigger dataset

• Next: now we can run the recommendation framework against a state-of-the-art dataset

Exercise 5: MovieLens Recommender

import org.apache.mahout.cf.taste.impl.model.file.*;

import org.apache.mahout.cf.taste.impl.neighborhood.*;

import org.apache.mahout.cf.taste.impl.recommender.*;

import org.apache.mahout.cf.taste.impl.similarity.*;

import org.apache.mahout.cf.taste.model.*;

import org.apache.mahout.cf.taste.neighborhood.*;

import org.apache.mahout.cf.taste.recommender.*;

import org.apache.mahout.cf.taste.similarity.*;

class RecommenderIntro {

private RecommenderIntro() {

}

public static void main(String[] args) throws Exception {

DataModel model = new FileDataModel(new File("ua.base"));

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);

Recommender recommender = new GenericUserBasedRecommender(

model, neighborhood, similarity);

List<RecommendedItem> recommendations = recommender.recommend(1, 20);

for (RecommendedItem recommendation : recommendations) {

System.out.println(recommendation);

}

}

}

Exercise 5: MovieLens Recommender

import org.apache.mahout.cf.taste.impl.model.file.*;

import org.apache.mahout.cf.taste.impl.neighborhood.*;

import org.apache.mahout.cf.taste.impl.recommender.*;

import org.apache.mahout.cf.taste.impl.similarity.*;

import org.apache.mahout.cf.taste.model.*;

import org.apache.mahout.cf.taste.neighborhood.*;

import org.apache.mahout.cf.taste.recommender.*;

import org.apache.mahout.cf.taste.similarity.*;

class RecommenderIntro {

private RecommenderIntro() {

}

public static void main(String[] args) throws Exception {

DataModel model = new FileDataModel(new File("ua.base"));

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);

Recommender recommender = new GenericUserBasedRecommender(

model, neighborhood, similarity);

List<RecommendedItem> recommendations = recommender.recommend(10, 50);

for (RecommendedItem recommendation : recommendations) {

System.out.println(recommendation);

}

}

}

Exercise 5: MovieLens Recommender

We can play with parameters!

Exercise 5: MovieLens Recommender

• Analyze Recommender behavior with different combination of parameters

– Do the recommendations change with a different similarity measure?

– Do the recommendations change with different neighborhood sizes?

– Which one is the best one?

• …. Let’s go to the next exercise!

• Evaluate different CF recommender configurations on MovieLens data

• Metrics: RMSE, MAE, Precision

Exercise 6: Recommender Evaluation

• Evaluate different CF recommender configurations on MovieLens data

• Metrics: RMSE, MAE

• Hints: useful classes – Implementations of RecommenderEvaluator

interface • AverageAbsoluteDifferenceRecommenderEvaluator

• RMSRecommenderEvaluator

Exercise 6: Recommender Evaluation

• Further Hints: – Use RandomUtils.useTestSeed()to ensure

the consistency among different evaluation runs

– Invoke the evaluate() method

• Parameters

– RecommenderBuilder: recommender istance (as in previous exercises.

– DataModelBuilder: specific criterion for training

– Split Training-Test: double value (e.g. 0.7 for 70%)

– Amount of data to use in the evaluation: double value (e.g 1.0 for 100%)

Exercise 6: Recommender Evaluation

Example 6: evaluation class EvaluatorIntro {

private EvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);

return new GenericUserBasedRecommender(model, neighborhood, similarity);

}

};

double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);

System.out.println(score);

}

}

Ensures the consistency between different evaluation runs.

Example 6: evaluation class EvaluatorIntro {

private EvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);

return new GenericUserBasedRecommender(model, neighborhood, similarity);

}

};

double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);

System.out.println(score);

}

}

Exercise 6: evaluation class EvaluatorIntro {

private EvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);

return new GenericUserBasedRecommender(model, neighborhood, similarity);

}

};

double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);

System.out.println(score);

}

}

70%training (evaluation on the whole

dataset)

Exercise 6: evaluation class EvaluatorIntro {

private EvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);

return new GenericUserBasedRecommender(model, neighborhood, similarity);

}

};

double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);

System.out.println(score);

}

}

Recommendation Engine

Example 6: evaluation class EvaluatorIntro {

private EvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();

RecommenderEvaluator rmse = new RMSEEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);

return new GenericUserBasedRecommender(model, neighborhood, similarity);

}

};

double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);

System.out.println(score);

}

} We can add more measures

Example 6: evaluation class EvaluatorIntro {

private EvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();

RecommenderEvaluator rmse = new RMSEEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);

return new GenericUserBasedRecommender(model, neighborhood, similarity);

}

};

double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);

double rmse = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);

System.out.println(score);

System.out.println(rmse);

}

}

Mahout Strengths

• Fast-prototyping and evaluation

– To evaluate a different configuration of the same algorithm we just need to update a parameter and run again.

– Example

• Different Neighborhood Size

5 minutes to look for the best configuration

• Evaluate different CF recommender configurations on MovieLens data

• Metrics: Precision, Recall

Exercise 7: Recommender Evaluation

• Evaluate different CF recommender configurations on MovieLens data

• Metrics: Precision, Recall

• Hints: useful classes

– GenericRecommenderIRStatsEvaluator

– Evaluate() method

• Same parameters of exercise 6

Exercise 7: Recommender Evaluation

class IREvaluatorIntro {

private IREvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);

return new GenericUserBasedRecommender(model, neighborhood, similarity);

}

};

IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,

GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1,0);

System.out.println(stats.getPrecision());

System.out.println(stats.getRecall());

System.out.println(stats.getF1());

}

}

Exercise 7: IR-based evaluation

Precision@5 , Recall@5, etc.

class IREvaluatorIntro {

private IREvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);

return new GenericUserBasedRecommender(model, neighborhood, similarity);

}

};

IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,

GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1,0);

System.out.println(stats.getPrecision());

System.out.println(stats.getRecall());

System.out.println(stats.getF1());

}

}

Exercise 7: IR-based evaluation

Precision@5 , Recall@5, etc.

class IREvaluatorIntro {

private IREvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(500, similarity, model);

return new GenericUserBasedRecommender(model, neighborhood, similarity);

}

};

IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,

GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1,0);

System.out.println(stats.getPrecision());

System.out.println(stats.getRecall());

System.out.println(stats.getF1());

}

}

Exercise 7: IR-based evaluation

Set Neighborhood to 500

class IREvaluatorIntro {

private IREvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

UserSimilarity similarity = new EuclideanDistanceSimilarity(model);

UserNeighborhood neighborhood = new NearestNUserNeighborhood(500, similarity, model);

return new GenericUserBasedRecommender(model, neighborhood, similarity);

}

};

IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,

GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1,0);

System.out.println(stats.getPrecision());

System.out.println(stats.getRecall());

System.out.println(stats.getF1());

}

}

Exercise 7: IR-based evaluation

Set Euclidean Distance

Exercise 8: item-based recommender

• Mahout provides Java classes for building an item-based recommender system

– Amazon-like

– Recommendations are based on similarities among items (generally pre-computed offline)

– Evaluate it with the MovieLens dataset!

class IREvaluatorIntro {

private IREvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

ItemSimilarity similarity = new PearsonCorrelationSimilarity(model);

return new GenericItemBasedRecommender(model, similarity);

}

};

IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,

GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1,0);

System.out.println(stats.getPrecision());

System.out.println(stats.getRecall());

System.out.println(stats.getF1());

}

}

Example 8: item-based recommender

class IREvaluatorIntro {

private IREvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

ItemSimilarity similarity = new PearsonCorrelationSimilarity(model);

return new GenericItemBasedRecommender(model, similarity);

}

};

IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,

GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1,0);

System.out.println(stats.getPrecision());

System.out.println(stats.getRecall());

System.out.println(stats.getF1());

}

} ItemSimilarity

Example 8: item-based recommender

class IREvaluatorIntro {

private IREvaluatorIntro() {

}

public static void main(String[] args) throws Exception {

RandomUtils.useTestSeed();

DataModel model = new FileDataModel(new File("ua.base"));

RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();

// Build the same recommender for testing that we did last time:

RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {

@Override

public Recommender buildRecommender(DataModel model) throws TasteException {

ItemSimilarity similarity = new PearsonCorrelationSimilarity(model);

return new GenericItemBasedRecommender(model, similarity);

}

};

IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,

GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1,0);

System.out.println(stats.getPrecision());

System.out.println(stats.getRecall());

System.out.println(stats.getF1());

}

} No Neighborhood definition for item-

based recommenders

Example 8: item-based recommender

• Write a class that automatically runs evaluation with different parameters

– e.g. fixed neighborhood sizes from an Array of values

– Print the best scores and the configuration

Exercise 9: Recommender Evaluation

• Find the best configuration for several datasets

– Download datasets from http://mahout.apache.org/users/basics/collections.html

–Write classes to transform input data in a Mahout-compliant form

– Extend exercise 9!

Exercise 10: more datasets!

End. Do you want more?

Do you want more?

• Recommendation

– Deploy of a Mahout-based Web Recommender

– Integration with Hadoop

– Integration of content-based information

– Custom similarities, Custom recommenders, Re-scoring functions

• Classification, Clustering and Pattern Mining

top related