antibiotic accumulation and efflux in eukaryotic cellscraig (1998) cid 26:1-10. isap classical view...

Post on 30-Sep-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Antibiotic Antibiotic accumulation and effluxaccumulation and effluxin eukaryotic cells:in eukaryotic cells:

a journey at the frontier a journey at the frontier of pharmacokinetics of pharmacokinetics and and pharmacodynamics

“corpora non agunt nisi fixata”

Ehrlich’s “magic bullet” theory

pharmacodynamics

Unité de Pharmacologiecellulaire et moléculaire

F. Van Bambeke

Magic bullets need to reach their target

Magic bullets need to reach their target

glycopeptides

β-lactams

quinolones

macrolides aminoglycosides

for appropriate time and in sufficient concentration …

Birth of antibiotic “PK-PD”

Concentrationversus timein tissues andother body fluids

Pharmacologicor toxicologiceffect

Concentrationversus timein serum

Dosageregimen

Concentrationversus timeat siteof infection

Antimicrobial effect versustime

absorptiondistributionelimination

PHARMACOKINETICS PHARMACODYNAMICS

Craig (1998) CID 26:1-10

ISAP classical view of PK/PD

but classical PD predicts concentration-effectsfor all drugs ….

but classical PD predicts concentration-effectsfor all drugs ….

ampicillingentamicin

S. aureus; 24 h Barcia-Macay et al, submitted; Lemaire et al (2005) JAC in press

Can we conciliate both theories ?

Cmin Cmax

conc.-dependent

Cmin Cmax

PD profile in the clinics

time -dependentampicillingentamicin

S. aureus; 24 h Barcia-Macay et al, submitted; Lemaire et al (2005) JAC in press

Target accessibility becomes critical for intracellular activity

Main routes of drug entry in cells

passive

diffusionchannel

transporter transporterendocytosis

active

Intracellular “PK-PD”

Concentrationversus timein non-infectedcells

Pharmacologicor toxicologiceffect

Concentrationversus timein cells

Dosageregimen

Concentrationversus timeat intracellularsite of infection

Antimicrobial effect versustime

penetrationdistributionefflux

PHARMACOKINETICS PHARMACODYNAMICS

Intracellular “PK-PD”

Concentrationversus timein non-infectedcells

Pharmacologicor toxicologiceffect

Concentrationversus timein cells

Dosageregimen

Concentrationversus timeat intracellular site of infection

Antimicrobial effect versustime

penetrationpenetrationdistributiondistributionefflux

glycopeptides

PHARMACOKINETICS PHARMACODYNAMICS

Intracellular “PK-PD”

Concentrationversus timein non-infectedcells

Pharmacologicor toxicologiceffect

Concentrationversus timein cells

Dosageregimen

Concentrationversus timeat intracellular site of infection

Antimicrobial Antimicrobial effect versuseffect versustimetime

penetrationpenetrationdistributiondistributionefflux

glycopeptides

PHARMACOKINETICS PHARMACODYNAMICS

Intracellular “PK-PD”

Concentrationversus timein non-infectedcells

PharmacologicPharmacologicor or toxicologictoxicologiceffecteffect

Concentrationversus timein cells

Dosageregimen

Concentrationversus timeat intracellular site of infection

Antimicrobial effect versustime

penetrationpenetrationdistributiondistributionefflux

glycopeptides

PHARMACOKINETICS PHARMACODYNAMICS

Intracellular “PK-PD”

Concentrationversus timein non-infectedcells

Pharmacologicor toxicologiceffect

Concentrationversus timein cells

Dosageregimen

Concentrationversus timeat intracellular site of infection

Antimicrobial effect versustime

penetrationdistributioneffluxefflux

macrolidesquinolones

PHARMACOKINETICS PHARMACODYNAMICS

Intracellular “PK-PD”

Concentrationversus timein non-infectedcells

Pharmacologicor toxicologiceffect

Concentrationversus timein cells

Dosageregimen

Concentrationversus timeat intracellular site of infection

Antimicrobial Antimicrobial effect versuseffect versustimetime

penetrationdistributioneffluxefflux

macrolidesquinolones

PHARMACOKINETICS PHARMACODYNAMICS

Accumulation of magic bullets in eukaryotic cells

glycopeptides

Vancomycin, the parent compound

O O

NH

HN

NH

HN

NH

O

HOCl

O

O

O

O

HOOH

ONH CH3

H N

O

HOOC

OH

CONH2

Cl

O OH

HOHO

OO

H3C

CH3H2NHO

OH

O O

NH

HN

NH

HN

NH

O

OCl

O

O

O

O

HOOH

ONH CH3

H N

O

HOOC

OH

CONH2

Cl

O OH

HOHO

OO

H3C

CH3HN

OH

Cl

O

H2N

CH3

HOH3C

OH

The glycopeptide oritavancin, a voluminous, amphiphilic molecule

From vancomycin to oritavancin

O O

NH

HN

NH

HN

NH

O

HOCl

O

O

O

O

HOOH

ONH CH3

H N

O

HOOC

OH

CONH2

Cl

O OH

HOHO

OO

H3C

CH3H2N

OHepi-vancosamine

OH

From vancomycin to oritavancin

O O

NH

HN

NH

HN

NH

O

OCl

O

O

O

O

HOOH

ONH CH3

H N

O

HOOC

OH

CONH2

Cl

O OH

HOHO

OO

H3C

CH3H2N

OHO

H2N

CH3

HOH3C

OH4-epi-vancosamine

self-association capacity

LY264626

From vancomycin to oritavancin

O O

NH

HN

NH

HN

NH

O

OCl

O

O

O

O

HOOH

ONH CH3

H N

HOOC

OH

CONH2

Cl

O OH

HOHO

OO

H3C

CH3HN

OH

Cl

lipophilic side chainactivity including against resistant enterococci

OHO

O

O

H2N

CH3

HOH3C

Cooper et al (1996) J Antibiot 49: 575-81

Oritavancin, a cationic amphiphile

O O

NH

HN

NH

HN

NH

O

OCl

O

O

O

O

HOOH

ONH CH3

H N

O

HOOC

OH

CONH2

Cl

O OH

HOHO

OO

H3C

CH3HN

OH

Cl

O

H2N

CH3

HOH3C

OH

lipophilic side chain

additional protonable amine

Oritavancin, a cationic amphiphile

New chemical entity

New pharmacodynamic properties ?

New pharmacokinetic profile ?

But also ... new potential side effects ?

Spectrum of activity

bacteria resistance vancomycin oritavancin

enterococci susc.VanAVanB

1-2>1288-128

0.06-0.25 1-4

0.125

S. aureus Methi-SMethi-RGISAGRSA

1-21-48

> 128

1 1-21-80.5

•highly active on susc. enterococci•active on VAN-resistant strains

Van Bambeke et al. (2004) Drugs 64:913-36

Pharmacodynamic profile

VANCOMYCIN: modestly bactericidal • slow • no or little conc. effect

oritavancin

0 6 12 18 24time (h)

ORITAVANCIN:highly bactericidal:• rapid• conc. dependent

vancomycin

0 6 12 18 24-6

-4

-2

0

2

4

time (h)

∆lo

g C

FU fr

om ti

me

0

1 X MIC10 X MIC

control

40 X MIC

S. aureus Barcia-Macay et al. submitted

Pharmacokinetic properties

parameter Vancomycin(15 mg/kg)

Oritavancin(3 mg/kg)

peak (mg/L)

trough (mg/L)

protein binding

terminal t½ (h)

20-50 31

5-12(24 h)

1.7 (24 h)

10-55 % 90 %

4-8 360

• daily administration• retention in the organism ?

Van Bambeke et al. (2004) Drugs 64:913-36

Aim of the study

• activity against (multi-resistant) Gram-positive (S. aureus)• rapid bactericidal activity• retention in the organism

any place for intracellular infections?

accumulation and subcellulardistribution in eukaryotic cells

cellular pharmacokinetics:

activity against intracellular S. aureus

cellular pharmacodynamics:

morphological and biochemical alterations

cellular toxicity:

Aim of the study

• activity against (multi-resistant) Gram-positive (S. aureus)• rapid bactericidal activity• retention in the organism

any place for intracellular infections?

accumulation and accumulation and subcellularsubcellulardistributiondistribution inin eukaryotic cellseukaryotic cells

cellular pharmacokinetics:cellular pharmacokinetics:

activity against intracellular bacteria

cellular pharmacodynamics:

morphological and biochemical alterations

cellular toxicity:

Kinetics of accumulation-efflux

Oritavancin accumulation and release are slow

J774 macrophages; extracell. conc. 25 mg/L; 24 h Van Bambeke et al. (2004) AAC 48:2853-60

Comparison with other antibiotics

Oritavancin reaches exceptional cellular accumulation levels

vancomycin azithromycin0

100

200

300

400

accu

mul

atio

n ra

tio

oritavancin

J774 macrophages; extracell. conc. 25 mg/L; 24 h Van Bambeke et al. (2004) AAC 48:2853-60

Subcellular localization

lysosomes

mitochondria

membrane

N-acetyl-β-glucosaminidase

cytochrome c-oxydase

inosine diphosphatase

Van Bambeke et al. (2004) AAC 48:2853-60

Subcellular localization

Oritavancin is a lysosomotropic antibiotic

lysosomes

mitochondria

membrane

N-acetyl-β-glucosaminidase

cytochrome c-oxydase

inosine diphosphatase

Van Bambeke et al. (2004) AAC 48:2853-60

Mechanism of cellular accumulation

chloroquineazithromycin

+++

HRPlatex beads

Mechanism of cellular accumulation

Oritavancin kinetics of accumulation are very similar to those of tracers of (adsorptive) endocytosis

accu

mul

atio

n ra

tio

kinetics of accumulation

Van Bambeke et al. (2004) AAC 48:2853-60

Aim of the study

• activity against multi-resistant Gram-positive (S. aureus)• rapid bactericidal activity• retention in the organism

any place for intracellular infections?

accumulation and distribution in eukaryotic cells

cellular pharmacokinetics:

activity against activity against intracellular bacteriaintracellular bacteria

cellular pharmacodynamics:cellular pharmacodynamics:

morphological and biochemical alterations

cellular toxicity:

Intracellular activity on S. aureus

cont

rol

orita

vanc

in

Oritavancincan destroy intracellular bacteria

THP-1 macrophages; extracell. conc. 25 mg/L; 24 h Barcia-Macay et al. submitted

Time-effect for intracellular activity

0 5 10 15 20 25101

103

time (h)

CFU

/mg

prot

105

107 vancomycinoritavancin

Oritavancin shows time- and concentration-dependent intracellular bactericidal effects

2.5 µg/ml

25 µg/ml

0.25 µg/ml

10 µg/ml

50 µg/ml

control

J774 macrophages Seral et al (2003) AAC 47: 2283-92

Dose-effect for extracell. vs intracell. activity

intracellular activity < extracellular activity

extra intra

staticconc. 0.3 X MIC 4.8 X MIC

max. effect - 5.55 log - 3.15 log

THP-1 macrophages; 24 h Barcia-Macay et al. submitted

Dose-effect

intracellular activity < extracellular activity, but bactericidal effects reached at clinically-relevant concentrations

Cmin Cmax

Barcia-Macay et al. submitted

Comparison with other antibiotics

MIC10 X MICCmax

oritavancin is one of the most active drugs against intracellular S. aureus

THP-1 macrophages; 24 h Barcia-Macay et al. submitted

Aim of the study

• activity against multi-resistant Gram-positive (S. aureus)• rapid bactericidal activity• retention in the organism

any place for intracellular infections?

accumulation and subcellulardistribution in eukaryotic cells

cellular pharmacokinetics:

activity against intracellular bacteria

cellular pharmacodynamics:

morphological and biochemical alterations

cellular toxicity:

Morphological studies

macrophages fibroblastspolar lipids

Rat embryo fibroblasts; 25 mg/L; 3 daysJ774 macrophages, 25 mg/L; 1 day Van Bambeke et al. (2005) AAC – in press

Biochemical studies : time-effects

accumulation of phospholipids and cholesterol develops in parallel with oritavancin cellular concentration

drug-free medium

drug-free medium

drug-free medium

Rat embryo fibroblasts; 25 mg/L Van Bambeke et al. (2005) AAC – in press

Biochemical studies : dose-effects

Rat embryo fibroblasts, 3 daysJ774 macrophages, 1 day Van Bambeke et al. (2005) AAC – in press

Model of the interaction of oritavancin with eukaryotic cells

S. aureus

polar lipids

oritavancin

undefined material

Can we dissociate activity from toxicity ?

cellular alterations co-exist with destroyed bacteria ….

THP-1 macrophages; 25 mg/L; 24 h

Can we dissociate activity from toxicity ?

comparison with two other lysosomotropic cationic antibiotics

O

O

O

CHH2N

NH2

OH

HNH3C

CH3OH

HO

H2NO HN

R1

R2

gentamicin

• polycationic, hydrophilic• endocytosis• phospholipidosis

O

CH3

OH

OH

OH

CH3

CH2CH3 O

O

CH3

CH3

CH3

O

O

OOH

N(CH3)2

CH3

OH

N

CH3

CH3

CH3

OCH3 CH3

azithromycin

• dicationic• diffusion/segregation• accumulation of phospholipids

and cholesterol

Lysosomotropic antibiotics and activity on S. aureus

GEN and ORI are both conc.-dependent intracellularly

J774 macrophages

Lysosomotropic antibiotics and activity on S. aureus

GEN and ORI are both conc.-dependent intracellularly

J774 macrophages

Lysosomotropic antibiotics and activity on S. aureus

But GEN activity limited at clinically-relevant conditions

J774 macrophages

Lysosomotropic antibiotics and phospholipidosis

Phospholipidosis developing on a conc.-dependent manner

Rat embryo fibroblasts

Lysosomotropic antibiotics and phospholipidosis

Toxic potential variable at clinically-relevant conditions

Rat embryo fibroblasts

Lysosomotropic antibiotics and phospholipidosis

Toxic potential variable at clinically-relevant conditions

Rat embryo fibroblasts

Lysosomotropic antibiotics and phospholipidosis

Toxic potential variable at clinically-relevant conditions

Rat embryo fibroblasts

Can we dissociate activity from toxicity ?

both processes are dependent on cellular concentration …

-3-2-10100

120

140

160

180

intracellular activity

cellu

lar t

oxic

ity

GEN

AZM

ORI

… and develop in parallel

Conclusion amphiphilic glycopeptides, a new type of « magic bullets»

pharmacokinetics:lysosomotropic accumulation

bactericidal, conc-dep.activity

pharmacodynamics:

conc. and time-dependentcellular toxicity

cellular toxicity:

Morphological studies

Rat embryo fibroblasts; 25 mg/L; 3 daysJ774 macrophages, 25 mg/L; 1 day

macrophages fibroblastspolar lipids

Van Bambeke et al. (2005) AAC – in press

conc. and time-dependentbactericidal activitytowards extra AND intraS. aureus

cellular pharmacodynamics:

Dose-effect

intracellular activity < extracellular activity, but bactericidal effects reached at clinically-relevant concentrations

Barcia-Macay et al. submitted

Cmin Cmax

Questions for future work

S. aureus

polar lipids

oritavancin

undefined material

?

binding site?

reasons for reduction in activity

intracellularly

in vivo

? mechanismof accumulation

?

Take home message

cellular accumulation, the best and the worse of properties…

drug developmentactivity

toxicity

Intracellular “PK-PD”

Concentrationversus timein non-infectedcells

Pharmacologicor toxicologiceffect

Concentrationversus timein cells

Dosageregimen

Concentrationversus timeat intracellular site of infection

Antimicrobial effect versustime

penetrationdistributioneffluxefflux

macrolidesquinolones

PHARMACOKINETICS PHARMACODYNAMICS

Intracellular “PK-PD”

Concentrationversus timein non-infectedcells

Pharmacologicor toxicologiceffect

Concentrationversus timein cells

Dosageregimen

Concentrationversus timeat intracellular site of infection

Antimicrobial Antimicrobial effect versuseffect versustimetime

penetrationdistributioneffluxefflux

macrolidesquinolones

PHARMACOKINETICS PHARMACODYNAMICS

Efflux of magic bullets from eukaryotic cells

macrolidesquinolones

Why efflux transporters ?

polar drug

lipophilic drug

physico-chemical properties are inadequate for reaching an intracellular target !

Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

Why efflux transporters ?

amphipathic drug

most drugs are amphipathic by design,to be able to cross membrane barriers !

Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

Why efflux transporters ?

But a diffusible compound may have

potentially harmful effects !Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

Why efflux transporters ?

Extrusion by efflux pumps

Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

Why efflux transporters ?

Extrusion by efflux pumps

general mean of protectionagainst cell invasion by diffusible molecules

Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

Mechanisms of active efflux

ATP ADP+Pi

membrane insertion / release

vacuum cleaner

flippaseflip-flop

Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

Antibiotics as substrates of efflux pumps

Antibiotic bacteria fungi superiorclass Gram (+) Gram(-) eucaryotesβ-lactamsfusidic acidmacrolidesstreptograminstetracyclinesaminoglycosideschloramphenicolrifamycinssulfamidestrimethoprimfluoroquinolones

Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

Antibiotics as substrates of efflux pumps

O

H3C

OH

OH

OH

CH3

H3CH2C O

O

CH3

CH3

H3C

O

O

OHO(H3C)2N

CH3

OH

N

CH3

CH3

H3C

H3C

H3CO

azithromycin

ciprofloxacin

N

C

O

FOH

O

OCH3

HN N

moxifloxacin

N

O

OH

O

HNN

F

Macrolides and quinolones as cell-associated antibiotics

Aim of the study

amphiphilic antibiotics• accumulating in eucaryotic cells• considered as useful for treating intracellular infections• known substrates of efflux pumps in bacteria

efflux from macrophages ?

macrolides

• phenotypic characterization of the active efflux

• consequences for intracellular activity

quinolones

Aim of the study

amphiphilic antibiotics• accumulating in eucaryotic cells• considered as useful for treating intracellular infections• known substrates of efflux pumps in bacteria

efflux from macrophages ?

macrolides

•• phenotypic characterization phenotypic characterization of the active efflux of the active efflux

• consequences for intracellular activity

quinolones

Efflux pumps expressed in J774 macrophages

ABC multidrug transporters

ATP ADP

MDR-1 (P-glycoprotein) MRP1-10

cationic amphiphiles

anionic amphiphiles

How to inhibit ABC transporters ?

ATP ADP

MDR-1 (P-glycoprotein) MRP1-10

cationic amphiphiles

anionic amphiphiles

deoxyglucoseNaN3

How to inhibit ABC transporters ?OCH3

H3CO

CNCH(CH3)2

N

CH3

OCH3

OCH3

NH

C

OHN

H3CO

O

N

H3CO

H3CO

ATP

verapamil

cationic amphiphiles

MDR-1 (P-glycoprotein)

GF120918

ADP

How to inhibit ABC transporters ?

COOHSN

O

OC3H7

C3H7

NCl

S

S

HOOC

N(CH3)2

O

ATP

MRP1-10

anionic amphiphilesprobenecid

(CH2)3 C

CH3

CH3

COOHH3C

CH3gemfibrozil

MK571

ADP

Differential recognition by MDR pumps

Influence of ATP-depletion and pump inhibitors on accumulation at equilibrium

ciprofloxacin&

MRP

azithromycin&

P-glycoproteinextracell. conc. 5 mg/L; AZM 3 h; CIP 2 h Michot et al. AAC (2004) 48:2673-82

Aim of the study

amphiphilic antibiotics• accumulating in eucaryotic cells• considered as useful for treating intracellular infections• known substrates of efflux pumps in bacteria

efflux from macrophages ?

macrolides

• phenotypic characterization of the active efflux

• consequences for consequences for intracellular activityintracellular activity

quinolones

Models of intracellular infection

L. monocytogenes S. aureus

phagolysosomescytosol

Influence of pump inhibitors onintracellular activity

azithromycin and L. monocytogenes

L. monocytogenes

verapamil 20 µM; 24 h

AZMAZM

Seral et al (2003) JAC 51:1167-73

Influence of pump inhibitors onintracellular activity

azithromycin and S. aureus

S. aureus

AZMAZM

verapamil 20 µM; 24 h Seral et al (2003) JAC 51:1167-73

Influence of pump inhibitors onintracellular activity

ciprofloxacin and L. monocytogenes

L. monocytogenes

gemfibrozil 250 µM; 24 h

CIP

Seral et al (2003) JAC 51:1167-73

Influence of pump inhibitors onintracellular activity

ciprofloxacin and S. aureus

S. aureus

CIP

gemfibrozil 250 µM; 24 h Seral et al (2003) JAC 51:1167-73

Influence of pump inhibitors on antibiotic distribution

verapamil enhances azithromycin concentrationIn cytosol and vacuoles

L. monocytogenes

AZMAZM

S. aureus

Seral et al (2003) JAC 51:1167-73

Influence of pump inhibitors on antibiotic distribution

gemfibrozil enhances ciprofloxacin cytosolic content

L. monocytogenes

CIP

S. aureus

Seral et al (2003) JAC 51:1167-73

Are these effects clinically-relevant ?

constitutive efflux makes AZM and CIP activity suboptimalin a clinically-meaningful range of concentrations

Aim of the study

amphiphilic antibiotics• accumulating in eucaryotic cells• considered as useful for treating intracellular infections• known substrates of efflux pumps in bacteria

efflux from macrophages ?

macrolidesmacrolides

• cellular pharmacokinetics

• model of interaction with the transporters

quinolonesquinolones

Aim of the study

amphiphilic antibiotics• accumulating in eucaryotic cells• considered as useful for treating intracellular infections• known substrates of efflux pumps in bacteria

efflux from macrophages ?

macrolides

•• cellular pharmacokinetics cellular pharmacokinetics

•• model of interaction model of interaction with the transporterswith the transporters

quinolones

Kinetics of accumulation and effluxfor azithromycin

accumulation markedly increased; efflux marginally affected

extracell. conc. 5 mg/L; verapamil 20 µM Seral et al (2003) AAC 47:1047-51

Kinetics of accumulation and effluxfor ciprofloxacin

both accumulation and efflux markedly affected

extracell. conc. 17 mg/L; probenecid 5 mM Michot et al. AAC (2004) 48:2673-82

Kinetics of accumulation and effluxfor moxifloxacin

neither accumulation nor efflux affected

extracell. conc. 17 mg/L; probenecid 5 mM Michot et al. AAC (2005) – in press

Quinolones as inhibitors of ciprofloxacin efflux

• ciprofloxacin efflux inhibited by ciprofloxacin

Michot et al. AAC (2005) – in press

Quinolones as inhibitors of ciprofloxacin efflux

• ciprofloxacin efflux inhibited by ciprofloxacin• moxifloxacin not affected

Michot et al. AAC (2005) – in press

Quinolones as inhibitors of ciprofloxacin efflux

• ciprofloxacin efflux inhibited by ciprofloxacin

CIP

CIP

MXF

Michot et al. AAC (2005) – in press

Quinolones as inhibitors of ciprofloxacin efflux

• ciprofloxacin efflux inhibited by ciprofloxacinmoxifloxacin

CIP MXF

moxifloxacin also able

to interact with the transporter !

CIP

Michot et al. AAC (2005) – in press

Comparison of kinetic parameters

influx efflux

half-life (min) half-life (min)

control inhibitor

flux(pmol/mg prot/min) control inhibitor

AZM 1 44 71 1 49 53

CIP 5 8 8 6 1.2 7.2

MXF 68 0.2 0.2 66 0.6 0.6

flux(pmol/mg prot/min)

drug

Comparison of kinetic parameters

influx efflux

half-life (min) half-life (min)

control inhibitor

flux(pmol/mg prot/min) control inhibitor

AZM 1 44 71 1 49 53

CIP 5 8 8 6 1.2 7.2

MXF 68 0.2 0.2 66 0.6 0.6

flux(pmol/mg prot/min)

drug

Comparison of kinetic parameters

influx efflux

half-life (min) half-life (min)

control inhibitor

flux(pmol/mg prot/min) control inhibitor

AZM 1 44 71 1 49 53

CIP 5 8 8 6 1.2 7.2

MXF 68 0.2 0.2 66 0.6 0.6

flux(pmol/mg prot/min)

drug

Comparison of kinetic parameters

influx efflux

half-life (min) half-life (min)

control inhibitor

flux(pmol/mg prot/min) control inhibitor

AZM 1 44 71 1 49 53

CIP 5 8 8 6 1.2 7.2

MXF 68 0.2 0.2 66 0.6 0.6

flux(pmol/mg prot/min)

drug

Comparison of kinetic parameters

influx efflux

half-life (min) half-life (min)

control inhibitor

flux(pmol/mg prot/min) control inhibitor

AZM 1 44 71 1 49 53

CIP 5 8 8 6 1.2 7.2

MXF 68 0.2 0.2 66 0.6 0.6

flux(pmol/mg prot/min)

drug

Azithromycin, ‘kick-back’ modelGaj et al. (1998) Biochem. Pharmacol. 55:1199-211

Ciprofloxacin, classical modelKolaczkowski & Goffeau (1997) Pharmacol. Ther. 76:219-42

Moxifloxacin, ‘futile-cycle’ modelEytan et al. (1996) JBC 271:12897-902

Conclusion constitutive efflux of antibiotics in macrophages

pharmacokinetics:suboptimal cellular accumulation

suboptimal intracell.activity

pharmacodynamics:

resistance ?

wide spectrum transporters

pharmacokinetics:

drug interactions ?

differences in affinitywithin a AB class

pharmacology:

Questions for future research

?

mechanismof

transport?

identificationof

transporter

cooperation with bacterial efflux pumps

? ?

drug interactions

metabolicalterations?

Take home message

constitutive efflux is part of the game

Take it into account in the choice of your « magic bullets » …for their optimal targeting

Thanks toThanks to …

Thanks toThanks to …

Evaluating magic bulletsEvaluating magic bullets

•• pharmacokineticspharmacokineticsH.H. ChanteuxChanteux, M., M. HeremansHeremans, J.M., J.M. MichotMichot

•• pharmacodynamicspharmacodynamicsM. Barcia, N. M. Barcia, N. BlesBles, S., S. CarrynCarryn, S., S. LemaireLemaire, , A. Olivier, C.A. Olivier, C. SeralSeral, S. Van de, S. Van de VeldeVelde

•• toxicodynamicstoxicodynamicsJ.P.J.P. MontenezMontenez, H., H. ServaisServais, D., D. TytecaTyteca

•• biophysicsbiophysics & molecular biology& molecular biologyN.N. CaceresCaceres, N., N. Fa Fa

Thanks toThanks to …

New magic bulletsNew magic bullets

•• chemistrychemistryE.E. ColacinoColacino, C., C. DaxDax, L., L. EfronEfron, T., T. HappaertsHappaerts, M., M. RenardRenard

•• pharmacologypharmacologyI.I. TytgatTytgat, D. Van, D. Van AckerenAckeren

•• modelingmodelingM.M. PrévostPrévost, M., M. RoomanRooman, S., S. VandevuerVandevuer

Thanks toThanks to …

Resistance to magic bulletsResistance to magic bullets

•• effluxeffluxL.L. AvrainAvrain, N., N. MesarosMesaros

•• glycopeptidesglycopeptidesP.P. CourvalinCourvalin and his teamand his team

Thanks toThanks to …

Clinical use of magic bulletsClinical use of magic bullets

•• clinical pharmacyclinical pharmacyE.E. AmpeAmpe, V., V. BasmaBasma, A., A. SpinewineSpinewine

Thanks toThanks to …

Playing with magic bulletsPlaying with magic bullets

•• technical stafftechnical staffN. Aguilera, M.C.N. Aguilera, M.C. CambierCambier, O., O. MeertMeert, , F.F. RenoirdRenoird, M., M. VergauwenVergauwen

•• secretarysecretaryM.M. BreugelmansBreugelmans

Thanks toThanks to …

Ehrlich’s colleaguesEhrlich’s colleagues

Thanks toThanks to …

Inspiring research on magic bulletsInspiring research on magic bullets

Thanks toThanks to …

Evaluating research on magic bulletsEvaluating research on magic bullets

P. Courvalin, A. Dalhoff, M. Delmée,P. Courvalin, A. Dalhoff, M. Delmée,H. Derendorf,Y. Glupczynski, H. Derendorf,Y. Glupczynski, E. Sonveaux, F. ZechE. Sonveaux, F. Zech

Thanks toThanks to …

Paying for research on magic bulletsPaying for research on magic bullets

Thanks toThanks to …

Managing research on magic bulletsManaging research on magic bullets

M.P. MingeotM.P. Mingeot--LeclercqLeclercq

P.M. TulkensP.M. Tulkens

Thank you Thank you for your attentionfor your attention

top related