analysis of subdivision surfaces at extraordinary vertices

Post on 24-Feb-2016

55 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

Analysis of Subdivision Surfaces at Extraordinary Vertices. Dr. Scott Schaefer. Structure of Subdivision Surfaces. Structure of Subdivision Surfaces. Structure of Subdivision Surfaces. Structure of Subdivision Surfaces. Structure of Subdivision Surfaces. Structure of Subdivision Surfaces. - PowerPoint PPT Presentation

TRANSCRIPT

1

Dr. Scott Schaefer

Analysis of Subdivision Surfaces at Extraordinary Vertices

2/50

Structure of Subdivision Surfaces

6)(31 32 uuu

6

3u6

364 32 uu 6

)1( 3u6

)1( 3v

6364 32 vv

6)(31 32 vvv

6

3v

3/50

Structure of Subdivision Surfaces

4/50

Structure of Subdivision Surfaces

5/50

Structure of Subdivision Surfaces

6/50

Structure of Subdivision Surfaces

7/50

Structure of Subdivision Surfaces

8/50

Structure of Subdivision Surfaces

9/50

Structure of Subdivision Surfaces

10/50

Structure of Subdivision Surfaces

If ordinary case is smooth, then obviously entire surface is smooth except possibly at extraordinary vertices

11/50

Smoothness of Surfaces

A surface is a Ck manifold if locally the surface is the graph of a Ck function

Must develop a local parameterization around extraordinary vertices to analyze smoothness

12/50

Subdivision Matrices

Encode local subdivision rules around extraordinary vertex

13/50

Subdivision Matrix Example

0

12

3 4

56

7 8

9

10

11

12

33 31 31 31 3164 256 256 256 2563 3 1 18 8 8 83 31 18 8 8 83 31 18 8 8 83 31 18 8 8 8

51 1 1 1 1 116 8 16 16 16 16 16

51 1 1 1 1 116 16 8 16 16 16 16

51 1 1 1 1 116 16 8 16 16 16 16

51 1 1 116 16 16 8 16

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 0

S

1 116 16

3 31 18 8 8 8

3 31 18 8 8 8

3 31 18 8 8 8

3 31 18 8 8 8

0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

14/50

Subdivision Matrix Example

Repeated multiplication by S performs subdivision locally

Only need to analyze S to determine smoothness of the subdivision surface

S0

12

3 4

56

7 8

9

10

11

12

15/50

Smoothness at Extraordinary Vertices

Reif showed that it is necessary for the subdivision matrix S to have eigenvalues of the form where for the surface to be C1 at the extraordinary vertex

A sufficient condition for C1 smoothness is that the characteristic map must be regular and injective

,...,,,1 211 11 j

16/50

The Characteristic Map

Let the eigenvalues of S be of the form where .

The eigenvectors associated with provide a local parameterization around the extraordinary vertex

,...,,,1 211 11 j

111

111

tt

ss

vSv

vSv

1

17/50

The Characteristic Map

81

83

83

81

81

83

83

81

81

83

83

81

81

83

83

81

161

161

161

85

161

161

161

161

161

161

161

85

161

161

161

161

161

161

85

161

161

161

161

161

161

161

85

161

83

81

81

83

81

83

81

83

81

83

81

83

81

81

83

83

25631

25631

25631

25631

6433

000000000000000000000000000000000000

000000000000000000

00000000000000000000000000000000000000000000000000

S

18/50

The Characteristic Map

161

161

161

161

81

81

81

81

81

649

83

83 ,,,,,,,,,,,,1

81

83

83

81

81

83

83

81

81

83

83

81

81

83

83

81

161

161

161

85

161

161

161

161

161

161

161

85

161

161

161

161

161

161

85

161

161

161

161

161

161

161

85

161

83

81

81

83

81

83

81

83

81

83

81

83

81

81

83

83

25631

25631

25631

25631

6433

000000000000000000000000000000000000

000000000000000000

00000000000000000000000000000000000000000000000000

S

19/50

The Characteristic Map

5.75.75.75.7

5.75.75.75.7

130013

13001350

05500500

5.75.75.75.7

5.75.75.75.7

130013

13001350

05500500

000000000000000000000000000000000000

000000000000000000

00000000000000000000000000000000000000000000000000

83

81

83

83

81

81

83

83

81

81

83

83

81

81

83

83

81

161

161

161

85

161

161

161

161

161

161

161

85

161

161

161

161

161

161

85

161

161

161

161

161

161

161

85

161

83

81

81

83

81

83

81

83

81

83

81

83

81

81

83

83

25631

25631

25631

25631

6433

20/50

The Characteristic Map

0 1

2

3

4

5

6

7

8

910

11 12

s t

5.75.75.75.7

5.75.75.75.7

130013

13001350

05500500

21/50

Analyzing Arbitrary Valence

Matrices become very large, very quickly Must analyze every valence independently

Need tools for somehow analyzing eigenvalues/vectors of arbitrary valence easily

22/50

Structure of Subdivision Matrices

81

83

83

81

81

83

83

81

81

83

83

81

81

83

83

81

161

161

161

85

161

161

161

161

161

161

161

85

161

161

161

161

161

161

85

161

161

161

161

161

161

161

85

161

83

81

81

83

81

83

81

83

81

83

81

83

81

81

83

83

25631

25631

25631

25631

6433

000000000000000000000000000000000000

000000000000000000

00000000000000000000000000000000000000000000000000

23/50

Structure of Subdivision Matrices

81

83

83

81

81

83

83

81

81

83

83

81

81

83

83

81

161

161

161

85

161

161

161

161

161

161

161

85

161

161

161

161

161

161

85

161

161

161

161

161

161

161

85

161

83

81

81

83

81

83

81

83

81

83

81

83

81

81

83

83

25631

25631

25631

25631

6433

000000000000000000000000000000000000

000000000000000000

00000000000000000000000000000000000000000000000000

Circulant matrix

24/50

Circulant Matrices

Matrix whose rows are horizontal shifts of a single row

210001121000012100001210000121100012

i

iixcxc )(

52)( xxxc

25/50

Eigenvalues/vectors of Circulant Matrices Given an circulant matrix with rows

associated with c(x), its eigenvalues are of the form and has eigenvectors where and

nn

nij

ewˆ2

132 ,...,,,,1 nwwww)(wc

1,...,0 nj

210001121000012100001210000121100012

26/50

Eigenvalues/vectors of Circulant Matrices Given an circulant matrix with rows

associated with c(x), its eigenvalues are of the form and has eigenvectors where and

nn

nij

ewˆ2

132 ,...,,,,1 nwwww)(wc

1,...,0 nj

11

1

)(

1

210001121000012100001210000121100012

nn w

w

wc

w

w

27/50

Eigenvalues/vectors of Circulant Matrices Given an circulant matrix with rows

associated with c(x), its eigenvalues are of the form and has eigenvectors where and

nn

nij

ewˆ2

132 ,...,,,,1 nwwww)(wc

1,...,0 nj

210001121000012100001210000121100012 xxxc 2)( 1

2cos4)( njwc

28/50

Block-Circulant Matrices

Matrix composed of circulant matrices

410001000000141000000000014100000000001410000000000141000000100014000000100000210001010000121000001000012100000100001210000010000121000001100012

29/50

Block-Circulant Matrices

Matrix composed of circulant matrices

410001000000141000000000014100000000001410000000000141000000100014000000100000210001010000121000001000012100000100001210000010000121000001100012

30/50

Block-Circulant Matrices

Matrix composed of circulant matrices

410001000000141000000000014100000000001410000000000141000000100014000000100000210001010000121000001000012100000100001210000010000121000001100012

xxxx

4012

1

1

31/50

Eigenvalues/vectors ofBlock-Circulant Matrices Find eigenvalues/vectors of block matrix

101

4002

101

4012 2

1

1

121

1

1

xxxx

xxxx

eigenvectors eigenvalues inverse of eigenvectors

32/50

Eigenvalues/vectors ofBlock-Circulant Matrices Find eigenvalues/vectors of block matrix Eigenvalues of block matrix are eigenvalues

of expanded matrix evaluated at

101

4002

101

4012 2

1

1

121

1

1

xxxx

xxxx

eigenvectors eigenvalues inverse of eigenvectors

nij

ewˆ2

33/50

Eigenvalues/vectors ofBlock-Circulant Matrices Find eigenvalues/vectors of block matrix Eigenvalues of block matrix are eigenvalues

of expanded matrix evaluated at Eigenvectors of block matrix are multiples of

times eigenvectors of block matrix

101

4002

101

4012 2

1

1

121

1

1

xxxx

xxxx

eigenvectors eigenvalues inverse of eigenvectors

nij

ewˆ2

1,...,,1 nww

34/50

Eigenvalues/vectors ofBlock-Circulant Matrices

101

4002

101

4012 2

1

1

121

1

1

xxxx

xxxx

410001000000141000000000014100000000001410000000000141000000100014000000100000210001010000121000001000012100000100001210000010000121000001100012

35/50

Eigenvalues/vectors ofBlock-Circulant Matrices

101

4002

101

4012 2

1

1

121

1

1

xxxx

xxxx

410001000000141000000000014100000000001410000000000141000000100014000000100000210001010000121000001000012100000100001210000010000121000001100012 n

jnj 22

cos22,cos4

)6,5,5,4,3,3,3,3,2,1,1,0(

)1,()0,1(

21

2

1

vv

),,,,,1,,,,,,(

)0,0,0,0,0,0,,,,,,1(54325

214

213

212

21

21

21

2

54321

wwwwwwwwwwv

wwwwwv

36/50

Example: Loop Subdivision

81

83

83

81

81

83

83

81

81

83

83

81

81

83

83

81

161

161

161

85

161

161

161

161

161

161

161

85

161

161

161

161

161

161

85

161

161

161

161

161

161

161

85

161

83

81

81

83

81

83

81

83

81

83

81

83

81

81

83

83

25631

25631

25631

25631

6433

000000000000000000000000000000000000

000000000000000000

00000000000000000000000000000000000000000000000000

81

83

83

81

1611

161

161

161

851

161

161

81

831

81

83

6431

6433

0

0000

xxxx

xx

37/50

Example: Loop Subdivision

81

83

83

81

81

83

83

81

81

83

83

81

81

83

83

81

161

161

161

85

161

161

161

161

161

161

161

85

161

161

161

161

161

161

85

161

161

161

161

161

161

161

85

161

83

81

81

83

81

83

81

83

81

83

81

83

81

81

83

83

25631

25631

25631

25631

6433

000000000000000000000000000000000000

000000000000000000

00000000000000000000000000000000000000000000000000

81

83

83

81

1611

161

161

161

851

161

161

81

831

81

83

6431

6433

0

0000

xxxx

xx

Some parts of the matrix are not circulant

38/50

Example: Loop Subdivision

Eigenvectors/values for block-circulant portion are eigenvectors/values for entire matrix except at j=0

vvx

xxxxx

81

83

83

1611

161

161

161

851

161

81

831

81

0

00

vvx

xxxxx 00

0

0000

81

83

83

81

1611

161

161

161

851

161

161

81

831

81

83

6431

6433

39/50

Example: Loop Subdivision

81

83

83

1611

161

161

161

851

161

81

831

81

0

00

xxxx

xx n

j 281

161

81 cos23,, 1,...,2,1 nj

40/50

Example: Loop Subdivision

81

83

83

1611

161

161

161

851

161

81

831

81

0

00

xxxx

xx n

j 281

161

81 cos23,, 1,...,2,1 nj

81

43

81

81

161

43

161

85

83

6431

6433

0

0000

161

81

649 ,,,1

41/50

Example: Loop Subdivision

81

83

83

1611

161

161

161

851

161

81

831

81

0

00

xxxx

xx n

j 281

161

81 cos23,, 1,...,2,1 nj

81

43

81

81

161

43

161

85

83

6431

6433

0

0000

161

81

649 ,,,1

4for,,,,,,,,,,,,1 161

161

161

161

81

81

81

81

81

649

83

83 n

42/50

Example: Loop Subdivision

Subdominant eigenvalue is Corresponding eigenvector is

n 2

81

1 cos23

nivn

tanˆ33,,1 2

1cos45221

21

1 2

43/50

Example: Loop Subdivision

Subdominant eigenvalue is Corresponding eigenvector is

Plot real/imaginary parts to create char map

n 2

81

1 cos23

nivn

tanˆ33,,1 2

1cos45221

21

1 2

83

1 2

ˆ323

513

1 ,,1 iv

44/50

Example:Loop Subdivision

25.01 375.01 452.01 5.01 531.01

45/50

Application: Exact Evaluation

S

46/50

Application: Exact Evaluation

Subdivide until x is in ordinary region

xPS i

47/50

Application: Exact Evaluation

x

Subdivide until x is in ordinary region

PS i

48/50

Application: Exact Evaluation

x

Subdivide until x is in ordinary region

PS i

49/50

Application: Exact Evaluation

Subdivide until x is in ordinary region

Extract B-spline control points and evaluate at x

PS ix

50/50

Application: Exact Evaluation

Subdivide until x is in ordinary region

Extract B-spline control points and evaluate at x

PVV i 1x

top related