an overview of offshore concepts

Post on 18-Apr-2015

168 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

# 1

An Overview of Offshore Concepts

Presented by:  Christopher M. BartonDirector‐Business Acquisition

Expanding Facilities Knowledge Workshop‐Offshore Concept Selection 

# 2

•Safety Minute

•Putting Energy Demand in Perspective

•Introduction to Offshore Concepts 

•Field Development Planning

•Floating Platform Selection

•TLP Technology 

•Spar Technology

•Semi technology

•FPSO Technology

An Overview of Offshore Concepts

# 3

Workplace Dangers

Safety Quiz:

It's important for employees to be able to spot potential dangers in and around the 

workplace. Please study these pictures and see if you can spot the dangers yourself...

Safety Minute

# 8

Putting Energy Demand in Perspective

# 9

Coal, Oil and Natural Gas Will Remain Indispensable

8

# 10

Significant capacity additions required to meet demand

Source: Based on IEA World Energy Outlook 2007Natural decline forecast at 8% rateObserved decline forecast at 4.5% rate requires substantial investment

Oil Supply Challenge

# 11

Where Will the Energy Come From?

Increasing resource 

nationalization; 

diminished access

Non‐OPEC struggling 

to increase production

Little spare OPEC 

capacity

Depletion is real

Super majors will be 

compelled to focus on 

organic growth Deepwater will drive growth

# 12

Future Oil & Gas Deepwater Potential

# 13

Gulf of Mexico Lease Sales

Lease Activity Will Continue to Drive Deepwater GOM

# 14

Miocene & Lower Tertiary Discoveries Will Drive Deepwater GOM

# 15

Pre‐Salt Discoveries Will Drive Deepwater Brazil

# 16

Prolific Discoveries Will Continue to Drive Deepwater West Africa

# 17

Introduction to Offshore Concepts

# 18

The Offshore Industry60 Years Old and Still Growing

• First well drilled out of sight of land in 1947 in 20’ w.d.

• Today, we are drilling in 10,000’

• First offshore platform installed in 1947 in 20’

• Today, platforms are installed in depths exceeding 8,000’

• World’s tallest structure was installed offshore in 1979 in 373’

• Today, a fixed platform stands in excess of 1,800’

• First subsea tree installed in early 1960’s in less than 300’

• Today, subsea trees are installed in over 9,000’

# 19

June 1947 ‐ Oil & Gas Journal Feb 1959 ‐ Offshore Magazine

SparTLPCompliant TowerFPSOSemi

Floating Systems…then and now

# 20

Offshore Field Development

• Jacket type fixed steel structures 

have traditionally proven to be 

the most cost effective and 

safest means of developing 

offshore fields.

• Economics and increasing water 

depths are driving the use of 

other alternatives :  

• Concrete structures

• Subsea systems

• Floating systems

# 21

Offshore Field Development

• The water depths in which fixed platforms are installed 

vary from a few feet to as much as 1,850 ft

# 22

System types can be grouped into 2 categories:

1. Dry Tree Systems – Compliant Tower, TLP, Spar

2. Wet Tree Systems – TLP, FPSOs, Spar, Semi

Deepwater Development Tools

# 23

Truss Spar

Semi‐submersible (Semi)

Tension Leg Platform

• Proven ‐Many years of Operating history

• Functional ‐ Used for a large variety of functions, wet or dry tree

• Scaleable – Wide range of topsides payloads

• Adaptable – Applications worldwide

FPSO

There are four primary industry recognized wet and dry tree solutions; accepted because:

Predominant Floater Types

# 24

Motions and Loads are Controlled by…

Primary Secondary

TLPMooring System•Tendons

Hull Configuration•Column to Pontoon Volumetric Ratio

SparHull Configuration •Draft•Heave Plates

Mooring System •Taut•Synthetics

SemiHull Configuration •Column Stabilized•Small WP Area

Mooring System •Taut•Synthetics

Ship‐Shape

Hull Configuration •WL Length•Mass

Mooring System•Orientation•Head‐on Environment

# 25

5 10 15 20 25 30

Design Wave En

ergy

Period (sec)

Spread MooredSpread MooredVertically MooredVertically MooredVertical 

Motions are Controlled by 

Tendons

Vertical Motions are Controlled Hull Configuration

Natural Periods of Motion

Typical 100‐Yr Design Wave Spectrum

# 26

Comparison of Primary Characteristics

Issue TLP Spar Semi Ship‐Shape

Water Depth More Sensitive Less sensitive

Platform Motions

Excellent – Very low vertical motions, i.e. heave, roll and pitch

Good – Low vertical motions (pitch to 8‐10 deg). Sensitive to long period waves.

Motions limit application to wet 

trees

Motions limit application to wet 

trees

Transport Single piece complete Single piece hull Single piece complete Single piece complete

Installation Quayside deck lift and integration

Hull upending and offshore deck lift and 

integration

Quayside deck lift and integration

Shipyard module lift and integration

# 27

Comparison of Primary Characteristics (continued)

Issue TLP Spar Semi Ship‐Shape

Mooring System

Vertical tendons Taut or semi‐taut spread mooring legs

Mooring Footprint

Small and compact, same dimensional 

order as hull

Large, approximately 2X water depth.  Impacts field development layout, but allows drilling flexibility.

TTR Support Short stroke tensioners

Air cans or long stroke tensioners

N/A N/A

Wellbay Conventional, within columns

Confined within moonpool

N/A N/A

Storage Capability

No Yes, but not typical No Yes, typical

Spread catenary or turret moored

# 28

• Combination of water depth, metocean conditions and topsides influence the 

choice between a TLP, Semi, and Spar.

0

10,000

20,000

30,000

40,000

50,000

0 2,000 4,000 6,000 8,000 10,000

Water Depth (ft)

Facility Pa

yloa

d (st)

SparSemi

TLP

Generally Accepted Floater Application Ranges

# 29

Deepwater Production vs DrillingThe Gap is Closing Fast

# 30

Growth in Floating Production Systems

# 31

18 Spar Platforms

39 Semi FPS Platforms

24 Tension Leg Platforms 

128 FPSO Vessels

Deepwater Floaters Installed

# 32

Deepwater Milestones

# 33

Field Development Planning

# 34

Feasibility Studies

Concept Studies

FEED Execute EPCI

• Identify development alternatives

• Determine technical feasibility

• Screen alternatives

• Select development concept

• Define development concept

• Design basis• Cost• Schedule• Execution Plan

• Detail design

• Construction

• Installation

• HUC

Phases of a Field Development Project

# 35

Project Success Hinges on Front End 

# 36

Ability to Influence Cost

Co

nce

pt/

FE

EE

10%3%

P

40%

37%

CI

10%

Typical  Project CostDistribution

Relative Level of Influence

on CostSolid execution strategy needed early in order 

to “get it right”

D

7

# 37

It Takes A Village …. The Many Facets of Field Development Planning

TopsidesFacilities

Marine/RiserSystems

Geologists

Geophysicists

Petroleum Engineers

Reservoir

Drilling & Completion

Subsea Systems

Operations/Installation

Project Mgmt/Execution

Midstream, Sales, Marketing

Economics

Risk, Safety

Partners

BusinessMgmt

SubSurface

Surface

Business

# 38

Major Field Development Drivers

LowHighSafety, Reliability

LowHighPartners, PSAs, Taxes, RoyaltiesBusiness

Very HighVery HighOil / Gas Price

ModerateModerateOpex

ModerateHighSchedule to Peak HydrocarbonsSurface

ModerateHighFacility Capex, Drillex

HighHighProduction Profile

HighVery HighWell Count, Rate, RecoverySubsurface

Very HighVery HighRecoverable Reserves

UncertaintyImpactDrivers

# 39

Floating Platform Selection

# 40

• Reservoir characteristics are key

• Field layout / future expandability

• Riser options / platform motions

• Metocean criteria

• Deck requirements

• Local content requirements

• Drilling & completion strategy

• Robustness

• Risk issues & mitigating measures

• Execution plan and delivery model

Key Drivers for Floating System Selection

# 41

Floating Platform Selection Issues

LeastSomewhatSomewhatMostHull weight sensitivity  to topside

BestBetterGoodGoodContracting Flexibility

QuaysideQuayside or floatover

Offshore or floatover

Quayside or floatoverTopside Integration

NoNoNo constraintNo constraintTTRs*

Only in mild environment

Motion optimization 

neededNo constraintNo constraintSCR*

Semi‐taut spread wire or 

poly

Semi‐taut spread wire or poly

Taut‐spread wire or poly

Steel tendonsStation‐keeping

YesNoNoNoStorage

NoYesYesYesDrilling/Workover

WetWetWet or dryWet or dryTrees

No practical limit

No practical limitNo practical limitUp to 1500Water Depth (m)

FPSO

(Ship Shape)

Semisub

(Four Column)

Spar

(Truss)TLPPlatform Configuration

# 42

HigherLower

Reservoir Mgmt and Productivity

HigherLowerProduction Reliability

LowerHigherOPEX Cost

LowerHigherDRILEX Cost

HigherLowerCAPEX Cost

Surface (dry‐tree)Total Subsea (wet‐tree)Criteria

Completion Strategy Drives Floater Selection

# 43

Dry Trees vs. Wet Trees

Key Driver: Wellbore Access

Dry Tree (Direct Vertical Access)

• Single drill center

• Lower OPEX and life cycle costs for medium and large developments

• Simpler hardware

• Minimize well intervention cost and downtime

• Less flow assurance risk

• Potentially higher recovery

• Difficult for semi due to motions

Wet Tree (Indirect Access)

• Multi drill centers

• Lower CAPEX, but potentially higher OPEX

• Minimize drilling costs and risks for large area extent reservoirs

• Minimize project schedule

• Maximize development plan flexibility

• Ultra deepwater capability not tied to host platform

• Maximize project economics for small developments

• More complex flow assurance issues

# 44

Number of Wells by Facility Type

# 45

Direct Well Access Riser Options

StricterHull MotionRequirements

StricterHull MotionRequirements

Direct Tensioned Riser Air Can Tensioned Riser Tubing Tie‐back RiserCompliant Vertical Access Riser (CVAR)Near or At‐Surface Completion

TTR

# 46

Indirect Well Access Riser Options

Steel Catenary Risers (SCR)Hybrid RisersFlexible Catenary Risers

StricterHull MotionRequirements

StricterHull MotionRequirements

• Placid GC 29. First Deep Water Free‐Standing Production Riser System.  Installation, Drilling, Production, and Workover from the Same Semi.

• Enserch GB 388.

# 47

DEVELOPMENT OPTIONS

Dry Trees Dry TreesWet

TreesTLP SPAR

Floating Production

Unit

Semi-Submersible FPSO

DryTreeUnit

Tender Assist Drilling

MODU Drilled

Permanent Platform Facilities

FSO

DRILLINGSTORAGE &

EXPORTSUBSTRUCTURES

Selection of potential development options

Development Option Components

Facilities Elements

Development Option Strategies

All WetTie-backs

Wet &Dry

SubseaTiebacks

Pipeline

Option Identification – Building Blocks

# 48

Hull Size

Total FacilityPayload

Total FacilityPayload

TopsideWeight

• Type, Amount Boosting• Workover Rig• Wax Hydrate Management

• Oil / Gas ProductionThroughput

• Dry or Wet Trees• Drilling or No Drilling

• Drilling,Completions

• Flow Assurance• Boosting• Intervention

• Well Count• Well Location• Production Profile

• Geometry• Connectivity

• Export RiserWeight

• Export RiserSize, Type

• Integrated OilStorage / Shuttle

• Oil Pipeline

• Production RiserWeight

• Station KeepingWeight

• ProductionRiser Size, Type

• Station KeepingType

Roadmap for Establishing Size of Floating Platform

PipelineInfrastructure

• Water Depth• Metocean

ReservoirReservoir

Size(Recoverable

Reserves)• Geology• Rock Properties

• Depth Below M/L• Salt Layer

Fluid Properties(P, V, etc.)

# 49

TLP Technology

# 50

TLP Statistics

Installed : 24

First: 1984, Hutton, Conoco

Locations: North Sea, Angola,

Gulf of Mexico, Indonesia

and Equatorial Guinea

Deepest: 4,674 ft., Magnolia

GB783/84

# 51

Current TLP Installed Base – by Location

# 52

– Topsides• Production Facilities• Drilling Systems• Utilities• Accommodations & Helideck

– Hull• Columns• Pontoons• Pontoon Extensions• Riser Porches

– Mooring System• Tendon Porches• Tendons• Foundations

– Riser System• Drilling and Production Risers• Trees and associated components

TLP Components

Topsides

Pontoons

Columns

Tendons

# 53

Proprietary TLP Designs and Technology Providers

MODEC DESIGN

SBM ATLANTIA DESIGNS

FLOATEC DESIGNS

# 54

Typical Functions of a TLP

Functions ConsideredFull PDQ:• Fully Self Contained• Export to Pipeline or FSO

Wellhead Platform:•Drilling only (on platform)

• Support of Dry Trees• Export to FPSO

Tender Assisted Drilling:•Drilling Systems on TAD Vessel• Benign Metocean Regions

Wet Tree Application with Production and Quarters:•No Drilling• Export to Pipeline or FSO

# 55

TLP Drilling & Production Configurations

Tender assist drilling & production mode

Platform drilling & production mode

Wellhead platform mode with remote production

# 56

Kizomba A ETLP Configuration

Functions and Particulars :

• Drilling

• Well Intervention

• Dry Tree Manifold

• Displacement ‐ 53,033 mt

• Draft ‐ 34 m

• 36 TTRs

• Tendons ‐ 4 x 2

Water Depth ‐ 1,178 m (3,865 ft)

FPSO

SWHP

# 57

Magnolia ETLP Configuration

Functions and Particulars :

• Full production

• Workover rig

• 15,230 st total topsides payload

• 8 TTRs

• Import / export risers

• 4 x 2 stepped tendons

Water Depth – 4,674 ft

# 58

Typical TLP Tendon Make‐up

Connected to Tendon Porch

MWL +3937 ft

Mudline

Pretension 2750 kips

TTS

TTS, TBS and MB1 to MB 14ALL Approx. 240 ft long

TBS

1

2

3

14

4

5

Segments 1 to 14

Each Segment (240 ft) consists 60 ft pipes girth welded

# 59

Stepped Tendon System

Open Tendon Porch

Closed Tendon Porch

TLP Tendon Porches

# 60

Free Standing Tendon Installation

TTS

Mud lineTBS

WD 1200 m(3937 ft)

Main Pipe

Water Surface

Buoys Connected100 ft from top of tendon

Buoy Dimension:18’ OD x 50 ft long

# 61

TLP Riser Stack‐ups

Hanging Hydraulic Tensioners

# 62

Conventional TLP Tensioners

# 63

Typical Wellbay Layout(TLP Supported Risers)

# 64

Project Photos

# 65

Hull Component Fabrication

# 66Panel Line Work

# 67

Hull FabricationDry Dock Based

# 68

Hull Fabrication at QuaysideLand Based

# 69

Preparing for Loadout

# 70Hull Loadout

# 71Hull Float On

# 72

Mars TLP

Ursa TLP ‐ BargeRam/Powell TLP

Hull Transportation

Kizomba TLP

# 73Hull Sailaway

# 74

Hull Float‐Off(Ram/Powell TLP)

# 75

Deck/Hull Quayside IntegrationLand Based Crane

# 76

System DeliveryDeck Lift & Integration

(Ram/Powell TLP)

# 77

System Delivery

Deck Lift & Integration(Ram/Powell TLP)

# 78

System DeliveryDeck Lift & Integration

(Ram/Powell TLP)

# 79

Deck Lift & Integration(Kizomba “A” ETLP)

# 80

Deck Integration(Magnolia TLP)

# 81

Platform Commissioning(Performed at Quayside)

# 82

Platform Dry Transport

# 83

Platform Dry Transport(Next Stop ‐ Angola)

# 84 Platform Wet Tow to Location

# 85

TLP Pile Fabrication and Pre‐Installation

# 86Tendon Pre‐Installation

TLP Tendon Pre‐Installation

# 87

TLP Topsides Installation ‐ Offshore

# 88

Platform Commissioning(Brutus TLP)

# 89 TLP Installed

# 90

Spar Technology

# 91

Spar Statistics

Installed : 18

First: 1996, Neptune, VK 826

Deepest: Perdido 8,008 ft.

Alaminos Canyon 857

Construction: 0

Locations: Gulf of Mexico, Malaysia

# 92

Spar Features

Truss

Hard Tank

Topsides

Soft Tank

Unconditionally Stable

Failsafe ballast system

Simple ballast system

Mooring Line Failure not Catastrophic

Redundancy

Spar continues to float

Down flooding difficult

Risers Protected from Loop Currents and Waves

# 93

Current Spar Installed Base – by Location

# 94

Spar Hull Diameter Comparison

# 95

Current Installed Base

# 96

Spar Flexibility and Scalability 

Holstein Truss Spar

• # Dry Trees – TTR’s: 20

• # SCR’s: 2

• Pay Load: 37,000 mt

• Estimated Reserves: 400 MBOE

Red Hawk Cell Spar• # Subes Trees: 2• # SCR’s: 3• Pay Load: 5,460 mt• Estimated Reserves: 50 MBOE

# 97

Current Installed Base

# 98

Hull Design Drivers

• Payload• Hard tank compartmentation • Ballasting

– Variable (sea‐water)– Fixed (magnetite)

• In‐hull storage of chemicals, diesel, etc. • Fabrication & installation

– Yard limitations (skidway spacing, quay depth, cranes)– Heavy lift transport vessel– Offload draft– Wet tow & up‐end (keel tank sizing)– Topside lift

• Performance criteria (pitch, surge & heave)

# 99

Front Runner

Devils Tower

Medusa

Geotechnical Considerations

• Bathymetry (bottom contours, escarpments, etc.) 

• Geotechnical (hazards, soils, faults, etc.)

# 100

Spar Mooring Systems

MWL

8200

'-0"

R4 STUDLESS CHAIN

3 SEGMENTSPOLYSTER ROPE

(-) 8200'-0"ANCHOR

SUCTION PILE8000'-0"

TRUSS SPAR PLATFORM

SCR (TYP.)

SCR PORCHES

ELEVATION VARIES

R4 STUDLESSANCHOR CHAIN

SCR (

TTR

10°-14°(TYP.)

MWL

MOORING / RISER ELEVATION

RQ4 STUDLESS CHAIN

SPIRAL STRAND STEEL WIRE

ANCHOR TION PILE

OR CHAIN

SCOPE FROM FAIRLEAD

TRUSS SPAR PLATFORM

Steel Wires Synthetic Ropes

• Chain‐Wire‐Chain system• Driven or suction anchor piles• Grouped or equally spread• Sized for both intact and 

broken line conditions• Active system

# 101

Spar Risers

• Direct vertical access wells (Dry Tree)– Top‐tensioned, rigid risers – single or double cased

• Import flowline risers (Wet Tree)– Steel catenary– Flexible pipe

• Export pipelines risers– Top‐tensioned– Steel catenary– Flexible pipe

• Control umbilical bundles

# 102

Riser System Options: Wet Trees

Riser Hang‐off Porch:

Flexjoint

Stress Joint

Pull Tubes:

Flexibles

SCR’s

# 103

Riser System Options: Dry Trees

Buoyancy Can

Hydraulic

Multi-riser Buoyancy Can

# 104

Spar Buoyancy Can Tensioner(non‐Spar supported)

# 105

Spar Ram Type Tensioners(Spar‐supported)

# 106

Riser Options (Flexibility): Combination Dry & Wet Tree

Pull Tubes, SCR’S OR Flexibles

Dry Tree Riser Slots, Top Tensioned Buoynacy Cans

# 107

Centerwell Drivers

• Dry trees

– Number of well slots

– Riser make‐up / buoyancy can size

– Tree size and access requirements

– Drilling riser slot

• Wet trees and umbilicals

– Number

– Sizes (hang‐off loads) 

– Azimuths

• Pump casings, disposal caisson, cuttings chute, exhaust ventilation, etc.

# 108

Centerwell Arrangement ‐ Example

Export Lines (2)

Drain Sump

Buoyancy Cans (8)

Misc.Utilities

Flowlines (10)

Umbilicals (5)

# 109

Topsides Drivers

• Payload ‐Weight, Mass, VCG & HCG

– Initial and future

– Lift and operating conditions

• Wind sail areas (directional) & elevation of resultant wind pressure

• Prevailing wind directions

• Wave crest elevation & air gap (set deck elevations)

• Lift equipment constraints on topside geometry

• Centerwell access

# 110

PanelLine

RingSections

1/8 Sections

1/4 Sections

1/2 Sections

FullSections

Spar Hard Tank Build Philosophy

# 111

Upper Half Ring Section Assembly

Lower Half Ring Section Assembly

Ring Section Mating

H

HT Half Ring Assembly and Mating Methodology

# 112

First Cutting of Steel Center Bulkhead Assembly 1/8 Segment Assembly

Segment Full Welding Shifting Segment to Erection Shifting Center Bulkhead

HT Segments & Center Bulkhead Sub‐Assembly

# 113

UPPER SECTION

BLOCK EBLOCK F

LOWER SECTION

BLOCK B BLOCK A BLOCK HBLOCK GBULKHEAD

BLOCK C BLOCK D BULKHEAD

Hard Tank Half Ring Sections Assembly

# 114

1 2 3

4 5 6

Hard Tank Half Ring Sections Mating

# 115

Hard Tank Sections Mating & Joining

# 116

Soft Tank Block Erection

# 117

Spar Hull Assembly

# 118

Spar Hull Ready For Loadout

# 119

Spar Hull Load‐out

# 120

Spar Hull Load‐out

# 121

Spar Hull Tie‐Downs

# 122

Spar Hull Ready for Transport

# 123

Spar Hull Transport

# 124

Spar Hull Offload

# 125

Hull Wet Tow to Site

# 126

Spar Hull Wet Tow and Upend

# 127

Hull Upend Sequence

Wet Tow Ballast

# 128

Post Up‐end Stages

Post Upend Fixed Ballast Set TWD Install Moorings Remove TWD

Install SCRs Set Topside Topside Set Operating

# 129

Mooring System Components

# 130

Anchor Types

Suction PilesSuction Piles60 st 60 st –– 250 st250 st

Driven PilesDriven Piles150 st 150 st –– 230 st230 st

Driven PilesDriven Piles150 st 150 st –– 230 st230 stDrag AnchorsDrag Anchors30 st 30 st –– 50 st50 st

# 131

Chain Jacks

Set Work Deck

Mooring Installation

# 132Temporary Work Deck

# 133

Anchor Chain Hook‐up

# 134

Ready for Topsides Installation

# 135

Topsides Installation

# 136 Topsides Installation

# 137

Topsides Installation

# 138

Spar Topsides Installation (Floatover)

# 139

Spar Riser Installation

Seafloor Stress‐Joint& Connector

Casing

Keel‐JointBuoyancy Can

Tapered Stress & CrossProduction Riser

Keel and Transition J

FlowlineJumpers & Umbilicals

Tieback Connector

Stem Centralizers

Buoyancy Can

Surface Wellhead & Tree

Subsea Wellhead

Tapered Stress & CrossProduction Riser

Keel and Transition J

FlowlineJumpers & Umbilicals

Tieback Connector

Stem Centralizers

Buoyancy Can

Surface Wellhead & Tree

Subsea Wellhead

# 140

Tapered Stress & Crossover JointsProduction Riser

Keel and Transition Joints

Flowline Jumpers & Umbilicals

Tieback Connector

Stem Centralizers

Buoyancy Can

Surface Wellhead & Tree

Subsea Wellhead

Tapered Stress & Crossover JointsProduction Riser

Keel and Transition Joints

Flowline Jumpers & Umbilicals

Tieback Connector

Stem Centralizers

Buoyancy Can

Surface Wellhead & Tree

Subsea Wellhead

Jumpers Upper Stem

Tree & Access Platform

Can Installation

Jumper Hoses

Spar Riser Installation

# 141

Spars Installed

# 142

Semi‐FPS Technology

# 143

Semi‐FPS Statistics

• Operating : 39

• First: 1975, Argyll, Hamilton

• Deepest: 7,920 ft, MC920

Independence Hub

• Locations: Worldwide

# 144

Current Semi‐FPS Installed Base – by Location

# 145

Topsides•Production Facilities•Utilities•Accommodations

Hull•Columns•Ring Pontoon

Mooring System•Polyester/wire•Anchor piles (suction/driven)

Riser System•Steel Catenary Risers

Topsides

Moorings

Columns

Pontoons

Semi‐FPS Components

# 146

Conventional Production Semi‐FPS

# 147

Conventional Production Semi

• Column extended for deep draft• Reduced column/pontoon size for better motion

Deep DraftSemi

Pre‐Katrina

The Evolution of the Post‐Katrina Deep Draft Design

Deep DraftSemi

Post‐Katrina

• Column extended for air gap• Increased column spacing for stability

# 148

ATANTIA 

DEEP DRAFT DESIGN

AKER KVAERNER 

DEEP DRAFT DESIGNGVA / KBR DESIGN

EXMAR DESIGN  MOSS MARITIMEDESIGN

FLOATECDEEP DRAFT DESIGN

Proprietary Semi‐FPS Designs and Technology Providers

# 149

Typical Semi Topsides

# 150

Typical Semi‐FPS Hull Block Breakdown

# 151

Semi‐FPS Hull Construction(Nodes Sub‐block Assembly)

# 152

Semi‐FPS Hull Construction(Pontoon Sub‐block Assembly)

# 153

Semi‐FPS Hull Construction(Erection of Nodes Sub‐block)

# 154

Semi‐FPS hull Construction(Pontoon Erection)

# 155

Semi‐FPS Hull Construction(Consolidating Pontoons in Dry Dock)

# 156

Semi‐FPS Hull Construction(Consolidating Pontoons in Dry Dock)

# 157

Semi‐FPS Hull Construction(Undocking of Pontoons)

# 158

Semi‐FPS Hull Construction(Undocking of Pontoons)

# 159

Semi‐FPS Hull Construction(Column Block Assembly)

# 160

Semi‐FPS Hull Construction(Consolidating Column Blocks)

# 161

Semi‐FPS Hull Construction(Erection of Column Blocks)

# 162

Semi‐FPS Hull Construction(Completed Lower Hull Ready for Transport)

# 163

Semi‐FPS Hull Dry Transport

# 164

Semi‐FPS Topsides Construction

# 165

Hull is moored, ballasted and in position 

Barge is pulled to site

Hull is dry‐transported, offloaded and wet‐towed to installation site.

Marine Mating (Hull and Topsides)

Topsides is skidded onto barge

Topsides Integration (Floatover Option)

Semi‐FPS Topsides Integration ‐ Floatover

# 166

Semi‐FPS Topsides Integration(Mating Completed)

# 167

Land‐based Semi‐FPS Construction

# 168

Topsides Integration

# 169

Semi‐FPS Topsides Integration(Single Lift)

# 170

Integrated Semi‐FPS Dry Transport

# 171

Semi‐FPS Wet Tow to Field

# 172

Semi‐FPS Wet Tow to Field

# 173

Semi‐FPS in Operation

# 174

FPSO Technology

# 175

FPSO Statistics

First

Deepest

Operating

1977

Castellon, Shell

6,086 ft., Roncador

128

WorldwideLocations

# 176

Current FPSO Installed Base – by Location

# 177

Ship‐shape FPSO Components

Hull(Conversion or New Build)

Topsides

Turret and Mooring(Permanent or disconnect)

# 178

Round FPSO Components

# 179

FPSO Layout

# 180

FPSO Topsides Modules

P1

P2

P3

P4P5P6P7

P8

S1

S2S3S4S5

S6S7

S8

Main E&I Bldg

Seawater Water Injection

Seawater Filtration & Utilities

Production Manifolds

Oil Dehydration

LLP Gas Compression

HP & HHP Gas Compression

Gas Dehydration

Power Generation

Power Generation (3 trains)

Seawater Deaeration

Production Manifolds

Oil Dehydration

Future Module

LP & MP Gas Compression

Oil Offloading

# 181

# 182

FPSO Station Keeping Key Considerations

• Permanent vs. Disconnectable

• Turret Location on the Hull (internal vs external)

• Mooring Material

– Polyester vs. Steel Wire

• Anchor Selection  

– Suction Piles vs. Vertically Loaded Anchors

• Dependent on:

– Weather conditions

– Water depth

– Number/diameter of risers

# 183

FPSO Mooring Systems

# 184

FPSO Mooring Components

# 185

FPSO Construction – Ship Shape

# 186

FPSO Construction – Ship Shape

# 187

FPSO Construction – Round Shape

# 188

FPSO Construction – Round Shape

# 189

Round FPSO Dry Transport

# 190

Round FPSO Wet Transport

# 191

FPSO’s in Transit

# 192

Ship‐shape FPSO’s in Operation

# 193

Round FPSO in Operation

# 194

The Next Generation FPSO

The Azurite FDPSO

• Combines the benefits of a MODU and a floating storage, production and offloading unit

# 195

FloaTEC ContactThanks!

top related