algèbres d’opérateurs et physique combinatoire · xavier viennot cnrs, labri, bordeaux...

Post on 13-Sep-2018

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Xavier ViennotCNRS, LaBRI, Bordeaux

Algèbres d’opérateurset

Physique combinatoire

12 Avril 2012colloquium de l’IMJ

Institut mathématiques de Jussieu

(part 2)

guided construction of a bijectionfrom a combinatorial representation

of the algebra Q

The cellular Ansatzsecond part:

The RSK correspondence

G. de B. Robinson, 1938C. Schensted, 1961

Robinson-Schensted-Knuth

The algebra UD=DU+Id

The Robinson-Schensted correspondence between permutations and pair of (standard) Young tableaux with the same shape

RSK with Schensted’s insertions

representation of the operators U, D

Sergey Fomin(with C. K.)

Operators U and D

UD●

Young lattice

addingor deleting

a cell ina Ferrersdiagram

U = + +

D += . .

UD = DU + I

I

combinatorial “representation” of the commutation relation UD = DU + I

U = + +

D +=

UD = + ++ + +

U = + +

D +=

UD

DU

=

=

+ ++

++ +

+ +

+

U = + +

D +=

UD

DU

=

=

+ ++

++ +

+ +

+

U = + +

D +=

UD

DU

=

=

+ ++

++ +

+ +

+

(UD-DU) =

U

D

I

I

1 4235

1 423

123

12

1

1 4235

123

45

U

D

I

I

number of alternative tableaux

n = 12

alternative tableau

combinatorialrepresentation

of the operatorsE and D

PASEP algebraDE = qED + E + D

K

S

S = +

S S

S S S

Bijection Laguerre histories

permutations

Françon-X.V., 1978

bijectionpermutations

alternativetableaux

416978352

416978352

1 1 2

1 3 241 3 241 352416 352

416 7 352416 78352

A

K

A

S

SJ A

S

416978352

1 1 2

1 3 241 3 241 352416 352

416 7 352416 78352

1

2

34

416978352

5

6 78

A

K

A

S

SJ A

S

416978352

1 1 2

1 3 241 3 241 352416 352

416 7 352416 78352

1

2

34

416978352

5

6 78

A

K

A

S

SJ A

S

K

A

A

K

A

S

SJ A

S

K

A

AS

A

K

A

S

SJ A

S

K

A

AS

JI

A

K

A

S

SJ A

S

K

A

AS

JI

KI

A

K

A

S

SJ A

S

K

A

AS

JI

KI

KJ

A

K

A

S

SJ A

S

K

A

AS

JI

KI

KJ

K

I

A

K

A

S

SJ A

S

K

A

AS

JI

KI

KJ

K

I

K

J

A

K

A

S

SJ A

S

K

A

AS

JI

KI

KJ

K

I

K

J

K

I

A

K

A

S

SJ A

S

K

A

AS

JI

KI

KJ

K

I

K

J

K

I

K

J

416978352

inverse bijection

The “exchange-fusion” algorithm

equivalent bijection:

4 2 67 8 9 5 13

4

2

67

8

9 5 13

4 2

67

8

9 5 1

3

(43)2

67

8

9 5 1

2

6

7

8

9 5 1

(43)

2

6

7

8

9

51(43)

2

6

7

8

9

5

1(43)

2

6

7

8 91

5

(43)

2

6

7 (89)1

5

(43)

2

6

7

1

5

(43)(89)

6

7

1

5

(432)(89)

6

7

1

5

(432)(89)

6

7

1

5

(432)(89)

6

7

5

(89)

(4321)

6

7

5

(89)

(4321)

6

5(789) (4321)

“exchange-fusion”

algorithm

(789) (4321) 5 6

equivalent to a bijection

S. Corteel, P. Nadeau (2009)

with permutations tableaux

«canonical bijections»

top related