aerodynamics and planetary entry - nasa · lemphasis - the effect of aerodynamic errors,...

Post on 14-Apr-2020

18 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Aerodynamicsand Planetary Entry

Leslie A. YatesGary T. Chapman

Presented at JPLJune 6, 2002

Copyright © 2002 by AerospaceComputing, Inc.

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Overview

l Background

l Objectives– General description of planetary entry

– Impact of aerodynamics on trajectory

– Review sources of aerodynamic information

– Review status of aerodynamics

l Concluding remarks, issues, and futuredirections

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Background

l Extensive interest in the 1960’s to 70’s– Research– Probes to Venus, Mars, and Jupiter

l Renewed interest in the 90’s– Probes to Mars, Stardust, Huygen, Genesis

l Project driven environment leads to:– Erosion of expertise and database– Limits innovation

l Greater demand on aerodynamics– Increased program requirements– Aeroassist to reduce costs

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

lGeneral Description of PlanetaryEntry

lDemonstrate role of aerodynamicson planetary entry

lReview sources of aerodynamicinformation

lReview status of aerodynamics ofplanetary entry shapes

Objectives

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

l Entry

– Max. loads

– Max. heating

l Special events

– Parachute deployment

l Unplanned events

– Vehicle breakup

Schematic of Planetary Entry

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Planar Planetary Entry

l Equations

where

m ˙ V = −qACD + mgsinγ

mV˙ γ = −qACL + mV2

r− g

cosγ

I ˙ ̇ Θ = qAl Cm∑

CL = CL0 + CLα (α − αt )

Cm∑ = Cmα (α − α t ) + Cmq

˙ Θ lV

+

Cm ˙ α ˙ α lV

+ Cmδδ

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Point Mass Behavior

l Equations of motion:

l Important events /issues– Maximum q– Maximum heating– Mach at impact /

parachute deploy– Landing footprint

m ˙ V = −qACD + mgsinγ s

mV˙ γ s = −q A CL0 + CLα (α t + αs )[ ] − m

V2

r− g

cosγ s

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Oscillatory Behavior

l Equations of Motion

l Stability Criteria

– Static:

– Dynamic:

l Important events / issues– Control system design– Amplitude at impact /

parachute deploy

Cmα < 0

I˙ ̇ θ 0 = qAl Cmαα + Cmq

˙ θ 0lV

+ Cm ˙ α ˙ α 0lV

ρACD

mK < ∂q ∂s

q+

∂Cmα ∂s

Cmα

K = 1CD

−CLα + lσ

2Cmq + Cm ˙ α ( )

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Typical Planetary EntryImportant Events / Effects

Impact velocity /parachutedeploy

Maximumdynamicpressure

Maximum heating

Amplitude growth

Minimumamplitude

Impact angle

Mars Pathfinder Data

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

lGeneral Description of PlanetaryEntry

lDemonstrate role of aerodynamicson planetary entry

lReview sources of aerodynamicinformation

lReview status of aerodynamics ofplanetary entry shapes

Objectives

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Impact of Aerodynamics onTrajectory

l Impact demonstrated using trajectorysimulations

l Conventions and definitions– Coordinate systems used for aerodynamic

forces / moments

– Nondimensionalization of the aerodynamicforces / moments

– Static and dynamic stability

l Simulations - Description and examples

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

l Three coordinate systems used to describe motion:inertial, wind, and body

l Forces - two conventions used– Parallel and normal to flight path

Drag, lift, and side force

– Parallel and normal to body axesAxial, normal, and side force

l Moments– Pitching / yawing referenced to body axes and center of

gravity• Static• Dynamic

– Rolling referenced to body axes and center of gravity

Aerodynamic Forces and Moments

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Nondimensionalizationl Reduces number of simulation variables, resulting

terms valid over wider range of conditions

l Forces:

l Moments:

l Rates:

l Caution: Various quantities used to nondimen-sionalize variables (l or d, V or 2V)

CD = D0.5ρV2 A

Cm = M0.5ρV2 Ad

˙ α = ˙ α d2V

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Coefficient Math Modelsl Aerodynamic coefficients functions of Mach

Number, Reynolds Number, angles, angular rates,control deflections, …

l Look up tables, polynomials, and complicatedfunctions used to model coefficients

Mars Pathfinder Mars 03, Ballistic Range

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

l Static stability

– If displaced from equilibrium vehicle tends toreturn to or pass through equilibrium point

l Dynamic stability

– Amplitude of oscillatory motion decreases withtime

l Limit cycle

– Motion approaches constant amplitude

Definitions

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Stability – Limit Cycle

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Calculated, 1 Calculated, 2Measured, 1 Measured, 2

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

0.00 0.05 0.10 0.15 0.20

Calculated, 1 Calculated, 2Measured, 1 Measured, 2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25

Angle(deg)

Mach = 1.25Mach = 1.50Mach = 1.75Mach = 2.00Mach = 2.50Mach = 3.00Mach = 3.50

When damping coefficientis nonlinear function ofangle, Mach, complicatedbehaviors occur.

Mars 03 Unstable

Stable, Limit Cycle

Cmq + Cm ˙ α

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Trajectory Simulations

l Brief description of simulations

l Examples

– Linear aerodynamics

– Nonlinear aerodynamics

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Linear Aerodynamics Simulations

l Six-degree-of-freedom, nonlinear mathmodels

l Density profiles, gravitational forces, androtational rates consistent with Mars

l Vehicle specifications and aerodynamicsconsistent with axisymmetric probeconfigurations

l Shallow entry for longer flight paths andbetter demonstration of effects

l Not modeled - winds, controls

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Linear Aerodynamics Simulations(concluded)

l Emphasis - the effect of aerodynamic errors,uncertainties on the entry

l Varied parameters:– Drag, lift coefficient slope, trim lift, trim angle,

moment coefficient slope, damping, roll

l Comparative effects– Forces, moments proportional to dynamic pressure

• 5% variation in density produces similar effect as 5%variation in aerodynamic coefficient

• 5% variation in velocity produces similar effect as 10%variation in aerodynamic coefficient

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Drag CoefficientDynamic Pressure, MachLongitude

1° of longitude translates to ≈60 km

Total Angle

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Lift Coefficient SlopeAmplitude Dynamic Pressure

Longitude

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Trim Lift Coefficient

Altitude Total Angle

Longitude Dynamic Pressure, Mach

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Trim Angle VariationLongitude Dynamic Pressure, Mach

Total Angle

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Pitching Moment CoefficientAmplitude Dynamic Pressure

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Damping Parameter

Longitude

Amplitude Dynamic Pressure

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Roll RateAmplitude Dynamic Pressure

Longitude

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Summary of Linear AerodynamicsSimulations

l Landing footprint– Drag, Trim Lift, Trim angle have large effect– Moment, Damping, and Roll have little or no effect

l Amplitude– Drag, Trim Lift, Trim angle have little effect– Moment has little effect– Lift slope has small effect– Roll and damping coefficient have large effect

l If effective damping, K, used, position and angularmotion largely independent of each other

K = 1CD

−CLα + lσ

2Cmq + Cm ˙ α ( )

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Effects of NonlinearAerodynamics on Trajectory

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Nonlinear Aerodynamics Simulations

l Density profiles, gravitational forcesidentical to those used in linearsimulations

l Vehicle specifications identical to thoseused in linear simulations

l Shallow entry for better demonstration ofeffects

l Nonlinearities consistent with observedfor planetary entry vehicles

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Drag Coefficient (CD = 1.5 - 2 sin2σ)Dynamic Pressure, MachLongitude

Total Angle

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Damping Parameter (Cmq + Cmα = 1.5 eAsin2σ - 0.5 )Amplitude Dynamic Pressure

Longitude

Difference in small angle limitmay be due to modeltumbling and resulting errors

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Summary of NonlinearAerodynamics Simulations

l Landing footprint– Nonlinear drag has effect

– Nonlinear moment, lift effect trim angle and trim lift;therefore they will have an effect

l Amplitude– Nonlinear damping coefficients have significant

impact on amplitude

– Impact of other terms small compared to nonlineardamping coefficient

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Impact of Accurate AerodynamicInformation

l Reduce risks– Parachute deployment

– TPS

l Improve landing precision– Minimize foot print

l Expand landing alternatives

l Reduce control propellant mass margin

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

lGeneral Description of PlanetaryEntry

lDemonstrate role of aerodynamicson planetary entry

lReview sources of aerodynamicinformation

lReview status of aerodynamics ofplanetary entry shapes

Objectives

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Aerodynamic Information

l Effects of uncertainties and nonlinearitiesin aerodynamic coefficients demonstrated

l Sources

– Types

– Availability

– Accuracy

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Sources of AerodynamicInformation

l Theories

l Computational Fluid Dynamics – CFD

l Ground based experiments

– Wind tunnels

– Ballistic ranges

l Flight tests

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Theories

l Inexpensive

l Limited to high Mach number

l Poorly known and not understood

l Useful in some cases for quick estimatesand trends

l Not validated in all cases

l Examples– Free molecular– Newtonian

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

CFD

l For simple configurations provides goodresults for static aerodynamics

l Not thoroughly validated

l Not readily used by non-expert

l Dynamic parameters untried and could beexpensive

l Examples:– Euler - Inviscid– Navier Stokes - Viscid– Navier Stokes - Real Gas

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Ground Based Experiments

lWind tunnels

– Standard approach

lBallistic ranges

– More versatile

– Under appreciated

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Wind Tunnels

l Many readily available

l No real gas effects

l Wall effects at transonicMach numbers

l Sting effects in lowsupersonic / transonicMach range

l Dynamic testingdifficult / expensive

StingM

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Ballistic Ranges

l Overview given since community is less familiar withthese types of facility

l Experimental approach– Free flying model

– Trajectory measurements obtained from series of orthogonalshadowgraphs taken at known times

l Facility– Range & Launcher

• Small model in sabot• Wide range of Mach, Reynolds numbers• Various gases, real gas effects

– 6 DOF, nonlinear data analysis

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

NASA Ames HFFAFModel Assortment

Test section interiorTest section exterior andshadowgraph film planesLight-gas gun

Images courtesy of NASA Ames Research Center

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Eglin AFB’s ARF

Schematic of the AeroballisticResearch Facility

Interior

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Ballistic Range Data

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.05 0.10 0.15 0.20 0.25 0.30

time

Calculated, 1 Calculated, 2Measured, 1 Measured, 2

0

10

20

30

40

50

60

70

80

90

100

0.00 0.05 0.10 0.15 0.20 0.25 0.30time

Calculated, zCalculated, yMeasured, zMeasured, y

SampleShadowgraph Projected angular and swerve motion

Data from Eglin AFBAerodynamic Research Facility

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Modern 6-DOF Analysis ofBallistic Range Data

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Parameter Estimationl Coefficients found by fitting

calculated trajectories toexperimental measurements

l Trajectory defined by 12, firstorder, coupled, nonlineardifferential equations in threecoordinate systems

l Unknown parameters: nonlinearaerodynamic coefficient termsand initial conditions

l Differentiating equations ofmotion with respect to unknownsprovide method for estimatingcorrections

l Trajectory calculated, correctionsto unknowns estimated, trajectoryre-calculated. Process repeateduntil convergence criteria met

l Single / multi fits

l Error estimates available

Drag: ˙ V = − ρAV2

2m CD − gsinθw

˙ x E = V cosθw cos ψw

Rolling Moment: ˙ p = ρAlV2

2IzCp + Izx

Iz˙ r + pq( ) +

Iy − Iz( )Iz

rp˙ φ w= pw + qw sinφw + rw cos φw( ) tanθw

Pitching, yawing ˙ α = q − qw sec β − p cosα +r sin α( ) tanβmoment: ˙ β = rw secβ + p sinα − rcos α

˙ q = ρAlV2

2IyCM + Izx

Iyr2 − p2( ) +

Iz −Ix( )Iy

rp

˙ r = ρAlV2

2IzCN + Izx

Iz˙ p − qr( ) +

Ix − Iy( )Iz

pq

Lift: ˙ y E = V cos θw sin ψw

˙ z E = −V sin θw˙ θ w= qw cos φw − rw sin φw˙ ψ w= qw sinφw + rw cos φw( ) sec θw

where qw = ρAV2m CL − g cosθw cos φw

rw = − ρAV2m CY + gcosθw sin φw

pw = p cosα + r sin α( ) cosβ + q − ˙ α ( ) sinβ

Equations (6-DOF)

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Parameter Identification - Example

-0.40

-0.20

0.00

0.20

0.40

0.00 0.05 0.10 0.15 0.20 0.25 0.30

20

30

40

50

60

0.00 0.05 0.10 0.15 0.20 0.25 0.30

-500

-400

-300

-200

-100

0

100

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Direction sines vs. time

Swerve vs time

Down range distance vs time

CD = CD0 +CD1 + CD3 + CD4 M − 1( )[ ]sin2 α

1 + CD2(M − 1)2

M − 1( )

CL = CL1 +CL2 sin2 α

1 + CL3 sin2 α

sinα

Cm = Cm1 + Cm2 M − 2.5( ) +Cm3 sin2 α

1 + Cm4 sin2 α

sinα

Cmq = Cmq,0 + Cmq,1

exp −Cmq,2 MCmq,3 s in2 α

1 + Cmq,4 M − 1( )[ ]6

Coefficient Expansions

Moment

Damping

Lift

Drag

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Sample Ballistic Range Results (MER)

CD = CD0 +CD1 + CD3 + CD4 M − 1( )[ ]sin2 α

1 + CD2(M − 1)2

M − 1( )

c.g. CD0 CD1 CD2 CD3 CD4 x rms (ft)

0.27D 1.327 0.641 8.31 -1.369 -1.92 0.0234± 0.005 0.028 0.40 0.055 0.06

Resultsc.g. CL1 CL2 CL3 y, z rms (ft)

0.27D -1.650 75.02 142.6 0.008± fixed 3.40 fixed

Results

Drag Lift

CL = CL1 +CL2 sin2 α

1 + CL3 sin2 α

sinα

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Sample Ballistic Range Results (MER)

Moment Damping

Cm = Cm1 + Cm2 M − 2.5( ) +Cm3 sin2 α

1 + Cm4 sin2 α

sinα

c.g. Cm1 Cm2 Cm3 Cm4 α rms (°)

0.27D -0.1049 0.00000 0.95 160.6 1.36± fixed fixed 0.02 fixed

Resultsc.g. Cmq,0 Cmq,1 Cmq,2 Cmq,3 Cmq,4 α rms (°)

0.27D -0.298 1.177 5.73 4.37 0.40 1.32fixed 0.123 2.77 0.56 fixed

Results

Cmq = Cmq,0 + Cmq,1

exp −Cmq,2 MCmq,3 s in2 α

1 + Cmq,4 M − 1( )[ ]6

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Other Applications of Modern6-DOF Analysis Tools

l Vertical Wind Tunnel

l Flight Tests

– Helicopter Drop Tests

– Atmospheric Entry

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Flight Tests

l Expensive

l Can be dangerous for lifting bodies

l Time consuming

l Data acquisition difficult

l Analysis subject to unknowns– Winds

– Atmospheric properties

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Summary of Data Sourcesl Theory

– Limited

l CFD– Good capability– Validation required in some areas– Need to develop capability for damping

l Ground based testing– Wind tunnels - good static aerodynamics but limited in

damping, real gas– Ballistic ranges - good static and dynamic aerodynamics

for wide range of conditions but model size limited andno onboard instrumentation

l Flight testing– Expensive– Unknown or variable atmospheric conditions

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

lGeneral Description of PlanetaryEntry

lDemonstrate role of aerodynamicson planetary entry

lReview sources of aerodynamicinformation

lReview status of aerodynamics ofplanetary entry shapes

Objectives

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Aerodynamicsby Flight Regime

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Flight Regimes

l Free molecular

l Transition

l Continuum

– Entry• Hypersonic

– After maximum dynamicpressure

• Supersonic

• Transonic

• Subsonic

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

l Knudsen number:

l Theory – Free molecular flow

l Direct Monte Carlo simulation – DMS

l Ground base facilities non-existent

l Accuracy not critical in many cases

Free Molecular Regime

Kn = λ d > o(1)

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Free Molecular Flow

l Molecules hit surface and are reflected ina specular or diffuse manner with nocollisions

l Example-Sharp cones

– Specular reflection

– No reflection

l Type of reflection depends on surface

CD0= 4sin2 θ

CD0= 2s in2 θ

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

l Knudsen number:

l Direct Monte Carlo simulations-DMS

l Low Reynolds number CFD

l Empirical bridging functions

l Experimental facilities non-existent

Transition

Kn = λ d ≅ o(1)

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

l Knudsen number:

l Mach number:

l Theory– Newtonian

• Normal component of momentum converted to pressure• Mach number independent• Capable of calculating both static and dynamic coefficients

l CFD

l Ground based experiments– Wind tunnel

– Ballistic range

Continuum Entry-Hypersonic

Kn = λ d << o(1)

M = V a > 5

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Examples ofHypersonic

Aerodynamics

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Drag and Lift on Simple Shapes(Mach > 5)

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80

Newtonian, Rn/Rb = 0.0Newtonian, Rn/Rb = 0.6Newtonian, Rn/Rb = 0.95Conical Flow TheoryBlunt Cone DataSharp Cone Data

CD

0

Cone Angle

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2

Newtonian TheoryConical Flow TheoryBlunt Cone Data

CLα

CD 0

Lift: CLα = CPmax - 2CDDrag

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Center of Pressure (Mach > 5)

-2

-1

0

1

2

3

4

0 20 40 60 80

Sharp ConeSphere SegmentBlunt Cone

xC

p / r b

Cone Half Angle

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Dynamic Stability

For Sharp Cones

where

Based on reference length l and l /V (not l / 2V )

Cmqx= Cmq0

+ CNq0

xl

− Cmα0

xl

− CNα0

xl

2

Cm ˙ α x≡ 0

(plunging motion)

Cmq0= − 1 + tan2 θ( ), Cmα0

= −4 / 3

CNα0= 2

1 + tan2 θ, CNq0

= +4 / 3

Cmqx< 0 for large cone angles

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Ballistic Range DataMars Smart Lander, Axisymmetric Configuration

(CO2, M ≈ 18, NASA Ames Research Center)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 5 10 15α

Single FitsMulti Fit

-0.040

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.0000 5 10 15

α

Single FitsMulti Fit

-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.000 5 10 15

RMS Pitch Angle

Single FitsMulti Fit

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.000 5 10 15

RMS Pitch Angle

Single FitsMulti Fit

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Supersonic/Transonic

l Mach number:

l No theories for blunt bodies

l CFD– Used extensively

– Not used for dynamics, could be expensive

l Ground based experimental– Wind tunnel

– Ballistic range

5 > M > 0.6

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Examples ofSupersonic/Transonic

Aerodynamics

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Available Data Sets

l Pre 1975– Early research

– PAET /Voyager/Viking

l Post 1985– Huygens Probe

– Stardust

– DS-2

– Genesis

– MER

– Mars Smart Lander

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Stardust Ballistic Range Data (Air, Mach ≈ 2)

Axial Force vs Angle of Attack

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 5 10 15

Axi

al F

orce

Coe

ff, C

X

Ames (Re_d =1.55e+06)Eglin (CG = 0.35),Re_d = 3.10e+06

Damping Moment vs Angle of Attack

-1.50

-1.00

-0.50

0.00

0.50

0 5 10 15

Angle of Attack, Deg

Dam

ping

Coe

ff, C

mq

Ames (Re_d = 1.55e+06)

Eglin (CG=0.35), Re_d =3.10e+06Eglin Error Bound

Error Bound

Pitching Moment vs Angle of Attack

-0.040-0.035-0.030-0.025-0.020-0.015-0.010-0.0050.000

0 5 10 15

Angle of Attack, Deg

Ames (Re_d =1.55e=06)Eglin (CG=0.35),Re_d = 3.10e+6

Normal Force vs Angle of Attack

00.010.020.030.040.050.060.070.08

0 5 10 15

Nor

mal

For

ce C

oeff,

CN

Ames (Re_d =1.55e+06)Eglin (CG=0.35,Re_d=3.10e+06)

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Stardust Ballistic Range Data (Air, Mach ≈ 2)

Lift vs Angle of Attack

-0.40-0.35-0.30-0.25-0.20-0.15-0.10-0.050.00

0 5 10 15

Angle of Attack, Deg

Lift

Coe

ff, C

L

Nom. Re_d=1.55e+06

Nom. Re=0.27e+06

Pitching Moment vs Angle of Attack

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0 5 10 15

Angle of Attack, Deg

Pitc

h M

omen

t Coe

ff, C

m

Nom. Re_d=1.55e+06

Nom. Re_d=0.27e+06

Damping vs Angle of Attack

-1.50

-1.00

-0.50

0.00

0.50

0 5 10 15

Angle of Attack, Deg

Dam

ping

Coe

ff, C

mq

Nom. Re_d=1.55e+06

Nom. Re_d=0.27e+06

Drag vs Angle of Attack

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 5 10 15

Angle of Attack, Deg

Dra

g C

oeff,

CD

Nom. Re_d=1.55e+06

Nom. Re_d=0.27e+06

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Ballistic Range Pitch Damping Data (Air, Mach ≈ 2)

-1

-0.8

-0.6

-0.4

-0.2

0

-20 -15 -10 -5 0 5 10 15 20Angle of Attack, degrees

-0.5

0

0.5

1

1.5

2

2.5

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

4.88° 0.175.55° 0.236.41° 0.337.66° 0.287.69° 0.247.89° 0.368.64° 0.23

9.00° 0.26 9.62° 0.2211.94° 0.4612.66° 0.3714.31° 0.3516.50° 0.1219.50° 0.28

αm Rex10-6 α

m Rex10-6

M∞

Pre 1975

Blunt Probes Linear Results

Post 1985

Huygen’s Probe Noninear Results

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Impact of Afterbody on Dynamics (Air, Mach ≈ 2)

Stardust-TB: Damping vs. Angle of Attack

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0 5 10 15

Angle of Attack, deg

Dam

ping

Coe

ff, C

mq

Stardust-TB

Stardust-RB

Stardust-S

TB

RB

S

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 5 10 15 20 25 30

P = 110 mmP = 40 mmExperiment

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30

P = 110 mmP = 40 mmExperiment

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0 5 10 15 20 25 30

RMS Pitch Angle

P = 110 mmP = 40 mmExperiment

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0 5 10 15 20 25 30

RMS Pitch Angle

P = 110 mmP = 40 mmExperiment

Pre-testCFD

Ballistic Range DataMars Smart Lander, Tabbed Configuration

CO2, Mach = 2.6, NASA Ames Ballistic Range

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Ballistic Range DataMars Smart Lander, Tabbed ConfigurationMach = 2.6, NASA Ames Ballistic Range

PITCH DAMPING

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

10 15 20 25

RMS Pitch Angle

M3C, C02

M3C, AIR

M3C, Mix

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Summary of Super/TransonicAerodynamics

l Static aerodynamics– Well understood

l Dynamic aerodynamics– Strong base effects that are not understood

– Potential gas dependence

l Tools– CFD, wind tunnels, and ballistic ranges needed

for high quality data base

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Subsonic Aerodynamics

l Mach number:

l No theories

l CFD– Not used for dynamics, would be expensive

l Ground based experimental– Wind tunnel

• Difficult for dynamics• Sting effects

– Ballistic range• Difficult at low speeds

M < 0.6

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Summary of Aerodynamicsl Free molecular

– Reasonably well understood– Accuracy not critical

l Transition– DMS and low Reynolds number CFD plus bridging

functions give reasonable estimates

l Continuum hypersonic– Statics: well understood– Dynamics: validated theory and CFD required

l Supersonic - Transonic– Statics: reasonably well understood– Dynamics: strong base effect; possible gas effect

l Subsonic– Shortage of data– Required only for missions without drogues / parachutes

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Concluding Remarks

l Aerodynamics plays major role in shapingtrajectory

l Accurate aerodynamics database reduces foot-print size and reduces control fuel mass margins

l Aerodynamic understanding can provide missiondesign flexibility

l CFD, wind tunnels, and ballistic ranges all have arole in database generation

l Today’s project driven environment limitsinnovation and is eroding expertise base

Leslie A. Yates(650) 988-0388lyates@aerospacecomputing.com

Copyright © 2002 byAerospaceComputing, Inc.

AerospaceComputing, Inc.

Issues and Future Directions

l Loss of expertise– Develop user friendly training tools– Train new personnel

l Database erosion– Develop user friendly tool kits containing database,

theory and simple CFD, and access tools for morecomplicated CFD

l Gaps in aerodynamic database– Pitch damping

• Understand base effects• Determine effect of gas composition• Validate Newtonian Theory• Develop CFD approach / program

top related