a survey of metabolism - kimika · 2010-05-18 · 3 the study of metabolism allows us to understand...

Post on 27-Jun-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ASURVEYOFMETABOLISM

HLeeYuJsuicoJunsay

DepartmentofChemistry

SchoolofScienceandEngineering

AteneodeManilaUniversity1

2

Whydolivingorganismsneedenergy?

1. EnergyformoEon–kineEcenergy2. Maintainhomeostasis–steadystate,potenEal

energy

3. Builduptheorganism’scomponentsfromavailablenutrients–chemicalenergy

4. Removeswaste–chemicalandkineEcenergy5. Respondstoenvironmentalchanges–chemical

energy

6. Removeandregeneratedamagedparts–chemicalenergy

3

Thestudyofmetabolismallowsustounderstandhowallthecell’sprocessaredone!

Insomeway,itisalsoastudyofhowenergyistransformedbytheorganismfromoneformtoanother!

4

AboveandbeyondallcharacterisEcs,itismetabolismthatprovidesthebestworkingdefiniEonoflife.

“ItismetabolismandnotreplicaEonthatprovidesthebestworkingdefiniEonoflife.EvoluEonarybiologistswouldsaythatweexistinordertoreproduce–butwearenot,eventhemostamorousofuse,tryingtoreproducealltheEme.Yet,ifwestopmetabolizing,evenforaminuteortwo,wearedonefor.”

»  PhillipBallinStoriesoftheInvisible:AGuidedTourofMolecules,OxfordUniversityPress,2001.

METABOLISM

5

6

Organismscanbedividedtomanymetabolism‐basedclasses.

Autotrophvs.Heterotroph

7

Organismscanbedividedtomanymetabolism‐basedclasses.

Aerobesvs.Anaerobes

8

Thepathwaybywhichmoleculesdegradeandsynthesizecompoundsiscalledthemetabolicpathway

Astudyofenergytransferfromfoodtobiologicalmolecules

9

Enzymecomplexesprovidethemachineryformetabolism

10

Energyiscarriedfromoneformtoanotherbychemicalcompounds‐METABOLITES.

11

Metabolismiscarriedoutin3stages:

1.  DegradaEon/Synthesisofcomplexmetabolites

2.  TransformaEonofsimplemetabolites

3.  Energypay‐off

12

Organismsmaintainnon‐equilibriumcondiEonsbetweentheselfandthenon‐self:steadystate.

•  McKeeandMcKee(1999)Biochemistry:AnIntroducEon.Figure4.2,p.64.

System

Surroundings

EquilibriumSteadyStateNOTatequilibrium

Andwhenwetalkaboutenergyandequilibrium,weusuallylookatthermodynamics.

BIOLOGICALTHERMODYNAMICS

13

14

ThermodyamicsconsiderstheenergeLcsofa

reacLon.

FIRSTLAW:“Youcan’twin.”Energycannotbecreatedordestroyed.Itis

onlytransformedintootherforms

ΔEsystem=–ΔEsurrounding

15

ThermodyamicsconsiderstheenergeLcsofa

reacLon.

SECONDLAW:“Youalwayslose.”Thetotalentropyoftheuniverse(entropyof

system+surrounding)increasesinaspontaneousreacEon

ΔStotal = ΔSsystem + ΔSsurroundings > 0

16

ThermodyamicsconsiderstheenergeLcsofa

reacLon.

THIRDLAW:“Youwillnevergetthere/PerfecLonisboring”

Theentropy,S,ofapure,perfectlycrystallinesolidatabsolutezerois0.

17

Gibbsfreeenergy,ΔG,isthemaximum“useful”workthatcanbeproducedbyachemicalreacEon.

ΔG<0ThereacEonisspontaneousintheforwarddirecEon.

ΔG>0ThereacEonisnon‐spontaneousaswrinen.ThereacEonisspontaneousinthereversedirecEon.

ΔG=0ThereacEonisatequilibrium.

ΔG = ΔH −TΔS

18

ThermodyamicsconsiderstheenergeLcsofa

reacLon.

ΔGisthemaximum“useful”workthatcanbeproducedbyachemicalreacLon.

19

EnergeEcallyunfavorablereacEonsarecoupledtofavorableonestodrivethemforward.(thisishoworganismswin!)

20

ΔG=+17kJ/mol

ΔG=‐30kJ/mol

EnergeEcallyunfavorablereacEonsarecoupledtofavorableonestodrivethemforward.

CoupledreacEonspassesthroughadifferentmechanismwhoseoverallyieldgiveΔG<0

21

CHEMICALSTRATEGIES

22

Organismsusecommonchemicalstrategiesinenergymanagement.

23

PhosphoryltransferreacEonsyieldverynegaEveΔGmakingthemidealforcouplingwithotherreacEons

24

PhosphoryltransferreacEonsyieldverynegaEveΔGmakingthemidealforcouplingwithotherreacEons

25

ATPhasintermediatephosphoryltransferpotenEal.

26

LessreacLvethanPEP,kineLcallystable.

ATPhasintermediatephosphoryltransferpotenEal.

27

Why do we need an intermediate metabolite as energy carrier?

28

Phophoryl transfer molecules are used up in the cells depending on certain conditions

29

Phophoryl transfer molecules are used up in the cells depending on certain conditions

30

OxidaEon‐reducEonreacEonsneedredoxpartners.

31

OxidaEon‐reducEonreacEonsneedredoxpartners.

32

Theseredoxpartnersareusuallyelectroncarriers..Toothermoleculesortorespiratoryenzymes

33

CASESTUDY:GLYCOLYSISANDTHEFATESOFPYRUVATE

34

Glycolysisandthecitricacidcycleareatthecenterofthemetabolicprocessesinlivingorganisms

35

Glucosemetabolisminvolvesbothenergyproducing(catabolic,orange)andenergyconsuming(anabolic,green)processes

36

WHYGLUCOSE?!

37

 Theonlyfuelthebrainusesinnon‐starvaEoncondiEons

 Theonlyfuelredbloodcellscanuse WHY?

 EvoluEonary:probablyavailableforprimiEvesystems(fromformaldehyde)

 Lowtendencytoglycosylateproteins,strongtendencytoexistinringform(recall:allequatorial!)

GlycolysisturnsglucosetopyruvatewhichthencanbeuElizedinfermentaEonorthrucompleteoxidaEon.

38

Glycolysisoccursinthreemajorstages:

1.  INVESTMENT:Glucosefructose‐1,6‐biphosphate

2.  MULTIPLIER:Fructose‐1,6‐biphosphateglyceraldehyde‐3‐phosphate

3.  PAYBACK:Glyceraldehyde‐3‐phosphatePyruvate

39

STEP1:PhosphorylaEonofglucoseusinghexokinase(orglucokinase)toglucose‐6‐phosphate(G6P)

40

• Thisstepisaprimingstep–usesATPtogetmoreATPlater,–VerynegaEveΔG

• Donetokeepglucoseinthecytoplasm

O

OH

OH

OH

HO

OH

hexokinase

ATP ADP

O

OH

OH

OH

-2O3PO

OH

Glucose Glucose-6-phosphate

STEP1:PhosphorylaEonofglucoseusinghexokinase(orglucokinase)toglucose‐6‐phosphate(G6P)

41

• Thisstepisaprimingstep–usesATPtogetmoreATPlater,–VerynegaEveΔG

• Donetokeepglucoseinthecytoplasm

STEP2:IsomerizaEonofG6Ptofructose‐6‐phosphate

42

• 3rdstepwillbeeasieronaprimaryOH,ratherthanahemiacetal

• ReadiesthecompoundforlatercleavagebetweenC3‐C4

O

OH

OH

OH

-2O3PO

OH

O

OH

OH-2O3PO

HO

OH

phosphogluycoisomerase

Glucose-6-phosphateFructose-6-phosphate

STEP2:IsomerizaEonofG6Ptofructose‐6‐phosphate

43

• 3rdstepwillbeeasieronaprimaryOH,ratherthanahemiacetal

• ReadiesthecompoundforlatercleavagebetweenC3‐C4

STEP3:PhosphorylaEonofF6Ptofructose‐1,6‐bisphosphate(usingPhosphofructokinase,PFK)

44

• Thisisanotherprimingstep–UsesATPtogetmoreATPlater,–VerynegaEveΔG

• Thisisthecommibedstep:F‐1,6‐BPisveryreacEve!• PFK,InhibitedbylotsofATP.(ifyoudon’tneedenergy,yourstepwillnotoccur)

O

OH

OH-2O3PO

HO

OH

O

OH

OPO3-2-2O3PO

HO

OH

phosphofructokinase

Fructose-6-phosphate Fructose-1,6-bisphosphate

ATP ADP

RecallSTAGE1:INVESTMENT

45

STEP4:Cleavingthe6Cmoleculetotwo3Cmolecules

46

• Donebyaldolase(areversealdolcondensaEonreacEon)

O

HO

-2O3PO OPO3-2

OH

Fructose-1,6-bisphosphate

Aldolase

H2C

C O

CH2OH

O P

O

O-

O-

Dihydroxyacetonephosphate(DHAP)

HC

HC OH

CH2O

O

P

O

O-

O-

1

2

3

4

5

6+

Glyceraldehyde-3-phosphate (G-3-P)

1

2

34

5

6

STEP4:Cleavingthe6Cmoleculetotwo3Cmolecules

47

• Donebyaldolase(areversealdolcondensaEonreacEon)

STEP5:ConvertsDHAPtoG‐3‐P

48

• UsesTriose‐phosphateisomerase• ThisreacEonyieldsanoveralltwo(2)G‐3‐Ppermoleculeofglucose

H2C

C O

CH2OH

O P

O

O-

O-

Dihydroxyacetonephosphate(DHAP)

HC

HC OH

CH2O

O

P

O

O-

O-

Glyceraldehyde-3-phosphate (G-3-P)

Triose-phosphate isomerase

STEP5:ConvertsDHAPtoG‐3‐P

49

• UsesTriose‐phosphateisomerase• ThisreacEonyieldsanoveralltwo(2)G‐3‐Ppermoleculeofglucose

RecallSTAGE2:MULTIPLIER

50

CHECKLIST:

51

 We’veUSEDUP2ATPmoleculestoprocess1glucosemolecule

 Weareleswith2G3Pnow

 Timeforenergypayback,thusSTAGE3!

 Recallthatstage3happensinparalleltothetwoG3Pmolecules

STEP6:G‐3‐Pisoxidizedto1,3‐bisphosphateglycerate(1,3‐BPG)

52

• YieldsNADH,anelectroncarrier!• YieldsahighlyreacEve1,3‐BPG,aphosphorylcarrier!

C

HC OH

CH2O

O

P

O

O-

O-

Glyceraldehyde-3-phosphate (G-3-P)

H

C

HC OH

CH2O

O

P

O

O-

O-

1,3-bisphosphate glycerate(1,3-BPG)

OPO3-2

NAD+ NADH

HPO4-2+

H++G-3-P dehydrogenase

STEP7:1,3‐BPGistransformedto3‐phosphoglycerate(3‐PG)

53

• YieldsATPpaybackEme!(rememberforeverystephere,twoareactuallyyieldedduetothetwoG‐3‐Pmoleculesthatwemadeearlier!)

C

HC OH

CH2O

O

P

O

O-

O-

1,3-bisphosphate glycerate(1,3-BPG)

OPO3-2

C

HC OH

CH2O

O

P

O

O-

O-

OH

3-phosphoglycerate(3-PG)

phophoglycerate kinase

ADP ATP

STEP8:3‐PGisconvertedto2‐PG

54

• PlacesphosphatefromC3toC2..ReadiesthemoleculetomakePhosphoenolpyruvate,anotherhighlyreacEvecompound!

C

HC OH

CH2O

O

P

O

O-

O-

OH

3-phosphoglycerate(3-PG)

C

HC O

CH2OH

O

P

O

O-

O-

OH

2-phosphoglycerate(2-PG)

phophoglycerate mutase

STEP9:2‐PGisre‐arrangedtophosphoenolpyruvate(PEP)

55

• EnolasecreatesanenollikefuncEonalgroup.

C

HC O

CH2OH

O

P

O

O-

O-

OH

2-phosphoglycerate(2-PG)

C

C O

CH2

O

P

O

O-

O-

OH

Phosphoenol pyruvate(PEP)

enolase

H2O

STEP9:PEPisconvertedtoPyruvate

56

• YieldsATPanotherpaybackstep!

C

C O

CH2

O

P

O

O-

O-

OH

Phosphoenol pyruvate(PEP)

ADP + H+ ATP

pyruvate kinase C

C

OHH2C

OHO

C

C

OH3C

OHOketo-enoltautomerization

pyruvate

RecallSTAGE3:PAYBACK

57

CHECKLIST:

58

 Made2NADH(onefromeachG‐3‐P)

 Made4ATP(twofromeachG‐3‐P)

 OVERALLMassbalance:

Glucose+2Pi+2ADP+2NAD+

2Pyruvate+NADH+2ATP+2H++2H2O

59

NADHhastwopossiblefates:fermentaEonorrespiraEon

FermentaLon:IntheabsenceofO2,NADHisusedasachemicalreductantofpyruvatetomakelactate

60

NADHhastwopossiblefates:fermentaEonorrespiraEon

RespiraLon:InthepresenceofO2,NADHisusedasaelectroncarriertoharnessenergyinthemitochondria.

61

Pyruvatehasthreepossiblefates:lactatefermentaEon,alcoholfermentaEonandcompleteoxidaEon

LactateFermentaLon:IntheabsenceorshortsupplyofO2,pyruvateisconvertedtolactate(vialactatedehydrogenase).Reverseisdonebythesameenzyme.

62

Pyruvatehasthreepossiblefates:lactatefermentaEon,alcoholfermentaEonandcompleteoxidaEon

LactateFermentaLon:IntheabsenceorshortsupplyofO2,pyruvateisconvertedtolactate(vialactatedehydrogenase).Reverseisdonebythesameenzyme.

63

Pyruvatehasthreepossiblefates:lactatefermentaEon,alcoholfermentaEonandcompleteoxidaEon

EthanolFermentaLon:Inanaerobicbacteria/yeast,pyruvateisdecarboxylatedthenreducedtoethanol

O

H3C

O

OH

O

H3C

H

H3C C

OH

H

H

CO2

alcoholdecarboxylase

pyruvate acetaldehyde

NADH + H+ NAD+

alcohol dehydrogenase

ethanol

64

Pyruvatehasthreepossiblefates:lactatefermentaEon,alcoholfermentaEonandcompleteoxidaEon

RespiraLon:InthepresenceofO2,pyruvateisconvertedtoAcetyl‐CoAwhichwillbefedontothetricarboxylicacidcycle.

O

H3C

O

OH

pyruvate Acetyl-CoA

O

H3C

SCoA

HSCoANAD+

NADH + H+CO2

pyruvate dehydrogenase complex (E1 + E2 + E3)

65

TheenergeEcsofglycolysisrevealsthreeimportantthings:

1. Mostoftheprocessisnotenergyintensiveandarethusreversible

2. Therearethreeirreversiblesteps:1,3and10.

3. ThesestepsarepossiblywhereregulaEoncanhappen

66

67

68

Othermonosaccharidescanalsoenterglycolysis.

69

70

Thesynthesisofglucosefrompyruvate,lactate,aminoacidsorothermetabolites,iscalledgluconeogenesis.

 Occursmainlyinliverandkidneys

 Notthemerereversalofglycolysisfor2reasons: EnergeEcsmustchangetomakegluconeogenesisfavorable(deltaGofglycolysis=‐74kJ/mol

 ReciprocalregulaEonmustturnoneonandtheotheroff‐thisrequiressomethingnew!

71

  Sevenstepsofglycolysisareretained:  Steps2and4‐9

  Threestepsarereplaced:  Steps1,3,and10(theregulatedsteps!)

  ThenewreacEonsprovideforaspontaneouspathway(ΔGnegaEveinthedirecEonofsugarsynthesis),andtheyprovidenewmechanismsofregulaEon

 MakesureyouknowtheTHREEBYPASSSTEPSofGluconeogenesis!!!

Thesynthesisofglucosefrompyruvate,lactate,aminoacidsorothermetabolites,iscalledgluconeogenesis.

72

Thesynthesisofglucosefrompyruvateiscalledgluconeogenesis.

 Occursmainlyinliverandkidneys

 Notthemerereversalofglycolysisfor2reasons: EnergeEcsmustchangetomakegluconeogenesisfavorable(deltaGofglycolysis=‐74kJ/mol

 ReciprocalregulaEonmustturnoneonandtheotheroff‐thisrequiressomethingnew!

73

Thesynthesisofglucosefrompyruvate,lactate,aminoacidsorothermetabolites,iscalledgluconeogenesis.

74

Thesynthesisofglucosefrompyruvateiscalledgluconeogenesis.

75

76

Asidefrom(+)and(‐)effectors,hormonescontrolgeneexpression.

77

Asidefrom(+)and(‐)effectors,hormonescontrolgeneexpression.

CASESTUDY:TRICARBOXYLICACIDCYCLEANDELECTRONTRANSPORTCHAIN

78

79

Acetyl‐CoAentersacyclethatconvertsittoCO2

andlotsofelectroncarriers

80

Acetyl‐CoAentersacyclethatconvertsittoCO2

andlotsofelectroncarriers

81

Acetyl‐CoAreactwithOxaloacetateandisconvertedtoCitrate.Thecycleregeneratestheoxaloacete,disposesoftheCO2andyieldlotsofenergycarriers.

82

Acetyl‐CoAreactwithOxaloacetateandisconvertedtoCitrate.Thecycleregeneratestheoxaloacete,disposesoftheCO2andyieldlotsofenergycarriers.

83

Acetyl‐CoAreactwithOxaloacetateandisconvertedtoCitrate.Thecycleregeneratestheoxaloacete,disposesoftheCO2andyieldlotsofenergycarriers.

84

Acetyl‐CoAreactwithOxaloacetateandisconvertedtoCitrate.Thecycleregeneratestheoxaloacete,disposesoftheCO2andyieldlotsofenergycarriers.

85

NADHandFADH2carrieshighenergyelectronwhichcreatesahydrogenpotenEalwhichinturncreatesATP

86

NADHandFADH2carrieshighenergyelectronwhichcreatesahydrogenpotenEalwhichinturncreatesATP.1NADH=3ATP,1FADH2=2ATP.

87

Glycolysis+Pyruvatedehydrogenase+TCA=lotsofenergy

CASESTUDY:BETA‐OXIDATIONOFFATS

88

89

FatsaredegradedbycuungthemupintoC2fragments:Acetyl‐CoAandfedintotheTCA.

90

FatsaredegradedbycuungthemupintoC2fragments:Acetyl‐CoAandfedintotheTCA.

SUMMARY

91

92

Metabolismofnutrientsinvolve

  Breakdownfrombiomoleculestosimplemolecules

  Simplemoleculesareconvertedtofeedermolecules

  Glycolysis,  Pyruvatedehydrogenase,  B‐oxidaEon

  Feedermoleculesarefedtoacyclethatproduceslotsofenergycarriers

  TCANADH+FAH2

  EnergycarriersareprocessedandcanreleaselotsofATP  ElectrontransportChain

THESEPROCESSESARETIGHTLYREGULATED

93

AboveandbeyondallcharacterisEcs,itismetabolismthatprovidesthebestworkingdefiniEonoflife.

“ItismetabolismandnotreplicaEonthatprovidesthebestworkingdefiniEonoflife.EvoluEonarybiologistswouldsaythatweexistinordertoreproduce–butwearenot,eventhemostamorousofuse,tryingtoreproducealltheEme.Yet,ifwestopmetabolizing,evenforaminuteortwo,wearedonefor.”

»  PhillipBallinStoriesoftheInvisible:AGuidedTourofMolecules,OxfordUniversityPress,2001.

top related