a lagrangian relaxation technique for the demand-based benefit ... · meritxell pacheco paneque...

Post on 22-May-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

A Lagrangian relaxation technique for the demand-basedbenefit maximization problem

Meritxell Pacheco PanequeBernard Gendron Virginie Lurkin

Michel Bierlaire Shadi Sharif Azadeh

Transport and Mobility LaboratorySchool of Architecture, Civil and Environmental Engineering

École Polytechnique Fédérale de Lausanne

06/09/2018

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 1 / 29

Outline

1 Introduction

2 Demand-based benefit maximization problem

3 Lagrangian relaxation

4 Preliminary results

5 Conclusions and future work

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 2 / 29

Introduction

1 Introduction

2 Demand-based benefit maximization problem

3 Lagrangian relaxation

4 Preliminary results

5 Conclusions and future work

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 3 / 29

Introduction

Discrete choice models and optimization

Disaggregate demand modelingBehavioral realismComplex formulations

Supply decisionsLinearity and/or convexityMILP models

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 4 / 29

Introduction

Bridging the gap

Linear characterization of a discrete choice modelSimulation to address stochasticityDemand-based benefit maximization problem (MILP example)General framework that can be applied with an existing choice model

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 5 / 29

Demand-based benefit maximization problem

1 Introduction

2 Demand-based benefit maximization problem

3 Lagrangian relaxation

4 Preliminary results

5 Conclusions and future work

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 6 / 29

Demand-based benefit maximization problem

Linearization of the discrete choice model

Choice set C (i) Population N (n)

Uin =Vin+εin Uinr =Vin+ξinrdraw distribution (R)

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 7 / 29

Demand-based benefit maximization problem

Linearization of the discrete choice model

Choice set C (i) Population N (n)

Uin =Vin+εin Uinr =Vin+ξinrdraw distribution (R)

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 7 / 29

Demand-based benefit maximization problem

Linearization of the discrete choice model

Choice set C (i) Population N (n)

Uin =Vin+εin Uinr =Vin+ξinrdraw distribution (R)

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 7 / 29

Demand-based benefit maximization problem

Demand representation

Choice winr

winr ={

1 if Uinr ≥Ujnr , ∀j ∈Cn, j 6= i0 otherwise Di = 1

R

∑r

∑nwinr

demand

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 8 / 29

Demand-based benefit maximization problem

Demand representation

Choice winr

winr ={

1 if Uinr ≥Ujnr , ∀j ∈Cn, j 6= i0 otherwise Di = 1

R

∑r

∑nwinr

demand

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 8 / 29

Demand-based benefit maximization problem

Demand representation

Choice winr

winr ={

1 if Uinr ≥Ujnr , ∀j ∈Cn, j 6= i0 otherwise Di = 1

R

∑r

∑nwinr

demand

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 8 / 29

Demand-based benefit maximization problem

Benefit maximization problem (1)

Set of alternatives C (i > 0)Opt-out option i = 0Population N (n≥ 1)

Price ain ≤ pin ≤ bin

Capacity levels ciq (Q levels,each with a certain cost)

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 9 / 29

Demand-based benefit maximization problem

Benefit maximization problem (2)

obj. fun.

availability

disc. utility

choice

price

capacity

∑i>0Revenuei − Costi

operator level and scenario level

variable capturing availability and utility

linearization of the highest utility

linearization of the product winrpin (revenue)

relation with the availability at scenario level

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 10 / 29

Demand-based benefit maximization problem

Computational results

Parking choices: mixtures of logit modelDistributed parameters (and correlated)R = 50 draws and N = 50 customers|C | = 3: PSP, PUP and FSP (opt-out)

Several experimentsPrice calibration (discrete and continuous prices)Price differentiation by population segmentation

Computational times up to 34 hours!

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 11 / 29

Lagrangian relaxation

1 Introduction

2 Demand-based benefit maximization problem

3 Lagrangian relaxation

4 Preliminary results

5 Conclusions and future work

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 12 / 29

Lagrangian relaxation

Motivation

Customer (n)

Maximization of own utilityObjective function andcapacity constraints

Draw (r)

Behavioral scenarioObjective function

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 13 / 29

Lagrangian relaxation

Why Lagrangian relaxation?

obj. fun.

easy constraints

hard constraints

obj. fun.

easy constraints

hard constraints+α

Lagrangian decomposition

obj. fun.

constraints

obj. fun. (x)x = y

constraints (x)

obj. fun. (y)

constraints (y)+

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 14 / 29

Lagrangian relaxation

Revenue maximization + unlimited capacity

obj. fun.

availability

utility

choice

price

capacity

∑i>0Revenuei

no need for discounted utility (no availability)

linearization of the highest utility

linearization of the product winrpin (revenue)

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 15 / 29

Lagrangian relaxation

Lagrangian decomposition

B Price pin is the same across draws ⇒ no decomposition by n and r

pin1 = pin2 = ·· · = pinR = pin1

pinr −pin(r+1) = 0⇒ Lagrangian multipliers αinr ⇒ decomposition by n and r

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 16 / 29

Lagrangian relaxation

Lagrangian subproblems

Objective function:Price of the chosen alternativeLagrangian term: (αinr −αin(r−1))pinr

One alternative is chosen (based on thehighest utility)Price of the chosen alternative specificfor the draw

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 17 / 29

Lagrangian relaxation

Subgradient method (1)

initial valuesLag. mult.

solvesubproblems

calculate stepand direction

update Lag.multipliers

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 18 / 29

Lagrangian relaxation

Subgradient method (2)

Input: UB: Z (α) with α starting values, LB: Z∗ (from a feasible solution)1 while k <K or Z (α(k)) has not improved after some iterations do2 for r = 1 . . .R do3 for n= 1 . . .N do4 Lagrangian subproblem Znr (α(k)) (MILP);5 Obtain pinr and Znr (α(k));6 end7 end8 Compute Z (α(k))=∑

r∑

nZnr (α(k));9 k ← k +1;

10 Obtain ω(k) (step) and dinr (k) (direction);11 Update the Lagrangian multipliers: αinr (k)=αinr (k −1)−ω(k)dinr (k)12 end

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 19 / 29

Preliminary results

1 Introduction

2 Demand-based benefit maximization problem

3 Lagrangian relaxation

4 Preliminary results

5 Conclusions and future work

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 20 / 29

Preliminary results

Case study

N = 20 and R = 100Price bounds PSP: [0.5,1.0]Price bounds PUP: [0.7,1.2]Number of iterations: K = 250

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 21 / 29

Preliminary results

Evolution bounds

Computational time:

Exact method: 32 minSubgradient method: 5.9 min (1.4s/it)

Objective function:

MILP: 11.0773LP relaxation: 21.4114

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 22 / 29

Preliminary results

Valid inequalities

Same optimal solution for the MILPTighter formulation for the LP relaxation

∑i Uinrwinr ≥ Ujnr ∀j ,n,r

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 23 / 29

Preliminary results

Evolution bounds (with valid inequality)

Computational time:

Exact method: 11 minSubgradient method: 34 min (7 s/it)

Objective function:

MILP: 11.0773LP relaxation: 14.1934

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 24 / 29

Preliminary results

Observations

Cheap iterations of the subgradient methodLB provides a feasible solutionValid inequality

It helps to strength the LP bound (21.41 vs 14.19)More expensive iterations but a smaller amount gives better bounds

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 25 / 29

Conclusions and future work

1 Introduction

2 Demand-based benefit maximization problem

3 Lagrangian relaxation

4 Preliminary results

5 Conclusions and future work

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 26 / 29

Conclusions and future work

Conclusions

Efficient method to obtain lower and upper bounds + feasible solutionDifferent configurations of parameters might helpValid inequalities

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 27 / 29

Conclusions and future work

Future work

Define other techniques to generate feasible solutions (LB)Try other valid inequalities: (Unr −Uinr )winr in the objective function

winr = 0⇒ term vanisheswinr = 1⇒Unr =Uinr ⇒ term vanishes

Evaluate other strategies (e.g., regularization term)Gradually include the complexity back (capacity, availability...)

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 28 / 29

Conclusions and future work

Questions?

meritxell.pacheco@epfl.ch

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 29 / 29

Subgradient method: step size and direction

αinr (k) = αinr (k −1)−ω(k)dinr (k)

Step:

ω(k)=λ(k)Z(α(k−1))−Z∗

‖γ(k)‖2λ(0) ∈ [0,2)γinr (k)= pinr (k)−pin(r−1)(k) (subgradients)λ(k) divided by ω1 if Z (α(k)) has not improved in ω2 iterations

Direction:d(k)= γ(k)+θd(k −1)θ ∈ [0,1)

MPP, BG, VL, MB, SSA hEART 2018 06/09/2018 1 / 1

top related