a hardware in the loop simulation system for fuel cell

Post on 03-Oct-2021

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

A Hardware In the Loop Simulation System for Fuel Cell Vehicle ControlCell Vehicle Control

Dr. Roydon Fraser Erik J WilhelmErik J. WilhelmDr. M. Fowler

1

Alternative Fuels Team

• UWAFT formed in 1996

– Propane Vehicle Challenge

– Ethanol Vehicle Challenge

– Tour de Sol

– Challenge X

• ~140 members– Primarily engineering

t d tstudents– ~30 core members– 6 graduate students

2

Fuel Cell Hybrid PowertrainDevice Make/Model Specifications

Fuel Cell Hydrogenics/HYPMax Power: 65kWVoltage Range: 190-300VFuel Cell

StackHydrogenics/HYPM 65kW

Voltage Range: 190 300V Current Range: 0-300AMass: 415kg

Hydrogen D t k/ZM180*

Max Pressure: 5000 psiTank Capacity: 4.31kg H2Hydrogen

Storage Dynetek/ZM180* Tank Capacity: 4.31kg H2Tank Weight: 92kgTank Volume: 178L

DC/DC Custom UWAFT Input Voltage Range: 190-310VOutput Voltage Range: 300-385VDC/DC

Converter Design and Construction

Output Voltage Range: 300 385VConverter Type: BoostMass: 30 kg

Motors B ll d/312V67

Peak Power: 67kWContinuous Power: 32kWMotors

(2 units) Ballard/312V67 Continuous Power: 32kWMax Torque: 190NmMass: 84kg

Motor Controller Ballard/312V67

Continuous Power: 67kWInput Voltage: 260-385V

(2 units)p g

Output Current: 280A RMS

Battery Pack

Cobasys/NiMHax288-60

Voltage Range: 220-360VCapacity: 8.5AhEnergy: 2.4kWhMass: 88kg

3

Integration Overview

4

Control Development V‐cyclep y

Off-lineController Modeling

(SIL)

VehicleTesting

Rapid CIL{ }RapidController

Prototyping

HILTestingControls

Designers (OEM)

CILTesting{ }

Target

(OEM) Code Generation (3rd part ) Target

Controller Development

(3rd party)

5

Mototron Control Development

Off liOff-lineController Modeling

(SIL)

VehicleTesting

(SIL)

CILControls { }RapidController

Prototyping

HILTesting

CILTesting

Controls Designers (OEM)

{ }MotoHawk™ Auto Code Generation

6

Software In the Loopp

• SIL implementation:SIL implementation:

Vehicle model Vehicle control algorithms

Virtual

7

Hardware In the Loop

• HIL implementation:

Vehicle model on Actual vehicleActual vehicleVehicle model on real-time processor

Actual vehicle controller

Actual vehicle wiring harness

Virtual Real-world

8

Vehicle Testing

The InuksH2uk

9

SIL Model

4wdTraction motorsFuel Cell Power Module

10

SIL ValidationSIL Validation

Validation of model predicted bus voltages versus vehicle acceleration data

11

SIL Regen FaultSIL Regen Fault

100

120

3000

3500

4000

60

80

ph]/T

orqu

e [N

-m]

2000

2500

3000

spee

d [R

PM]

0

20

40

Spee

d [k

p

500

1000

1500

Whe

el

-20

00 2 4 6 8 10 12 14

Time (s)-500

0

speed Front Torque Req RPM

Regenerative braking control strategy not functioning as intended

12

SIL Regen Fault FixedSIL Regen Fault Fixed

100

120

140

7000

8000

60

80

100

h]/T

orqu

e [N

-m]

4000

5000

6000

spee

d [r

pm]

0

20

40

0 5 10 15 20 25 30 35 40

Spee

d [k

ph

2000

3000 Whe

el

-40

-20

Time (s)0

1000

speed Front Torque Req RPM

Regenerative braking control strategy functioning as intended

13

HIL Methodologygy

Supervisory Controller

Analog/Digital Out signalsVehicle

Plant Model

MPC-565128 Analog/Digital In signals

CAN 1 CAN 2

FCPM

SecondaryControllerMPC-555

80

CAN 1, CAN 2

Visual Data Stream

Data

Battery

MotorsData Motors

User interface

Data logging

14

HIL Test Stand

15

HIL GoalsCommunication Bus Testing

Phase 1I/O L CAN

Hybrid Control Development

I/O Lag

Code Efficiency

performance

Signal Robustness

Power module

Safety System Validation

Phase 2a

Phase 2b

Power module control

optimization

Hybrid control strategy tuning

Sa e y Sys e a da o

Dynamic Control DevelopmentFailure memory

Failure insertion

Implausibility recognition

Redundancy

OBD

Emergency Simulation Anti-lock

braking Torque control

strategy

Non Powertrain Control Development

Phase 4

gdevelopment

gydevelopment

Non-Powertrain Control Development Phase 3GUI

development

Bluetooth interface

Drive quality tuning

Start-time optimization

DC/DC control

16

I/O Lag Test Block

23

14 5

66

17

I/O Lag Quantified

6Falling Lag Rising Lag

Rising: 15ms Falling: 17ms 5

6

{ {

Lag causes:– Line inductance from 

oversized pulldown 3

4ge

(V)

p– Relay actuation time– Code execution 

(Processor overhead 2

3

volta

g

(and signal discretization)

0

1

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (1/1000 s)impulse response

18

HIL Results ‐ Charge Depleting Strategy 

0.9

1

0.9

1

0 200 400 600 800 1000 1200 1400

0.6

0.7

0.8

harge [0,1]

0.6

0.7

0.8

0.4

0.5

ry State Of C

h

0.4

0.5

0.1

0.2

0.3

Batter

0.1

0.2

0.3

0

0 200 400 600 800 1000 1200 1400

Time (s)

0

19

( )

Voltage Spikes Revealed in HILg p

380

400

380

400

0 200 400 600 800 1000 1200 1400

320

340

360

ge (V)

320

340

360

280

300

320

attery Voltag

280

300

320

220

240

260Ba

220

240

260

200

0 200 400 600 800 1000 1200 1400

Time (s)

200

20

Time (s)

Vehicle Testing

The InuksH2uk

21

Acknowledgments

SupervisorsDr. M.W. Fowler, Dr. R.A. Fraser

UWAFTMichael Whalstrom, Alain Boutros, Matthew Stevens, Christopher Lawrence, Sam Arsenault, Christopher Haliburton, Marty Long, Daniel Sellan, Vishal Singh, Thomas Geraghty, Joshua Bruce, James Goh, Will Williams, Greg Dong, Ryan Huizing, Adrian Kwan, Ramandeep Virk, Ian Tam, Brian Vandenboomen, Kuo-Feng Tong, Jennifer Bauman, Christopher Mendes, Josh Aziz, Curtis Knischewsky, Hinkel Yeung, Zarrar Ali, Devin Cass, Christin Strong Charles Hua Tim Horton and many more

Platinum SponsorsChristin Strong, Charles Hua, Tim Horton, and many more…

22

Thank you

Questions?Questions?

23

24

Safety System: OBD

25

ChallengeX‐Factor

• Changes to the team structure:– Six 2006 Graduates, Two “Retirees”, and Eleven fresh recruits

• Coverage Areas:Business Electrical Mechanical Controls Fuel Cell Criteria

Max 1 year competency 5 5 5 5 5 =5Max 2 year competency 5 5 5 5 5 =5

Summary

Max 3 year competency 5 5 5 5 5 =54 3 5 5 4 =5

Average 1 year competency 3.4 3.5 3.5 3.3 3.5 >3Average 2 year competency 3.3 3.3 3.5 3.3 3.5 >3

Max 4+ year competency

g y p yAverage 3 year competency 4.3 2.7 4.0 3.0 3.0 >3

3.9 2.1 3.7 3.3 2.5 >3Average 4+ year competency

26

Hybrid Control SIL Results

20000

30000

40000

20000

30000

40000

M otorBatteryFuel Cell

20000

30000

40000

20000

30000

40000

10000

0

10000

270 275 280 285 290

Pow

er (W

)

10000

0

10000

-10000

0

10000

510 515 520 525 530 535 540 545 550Pow

er (W

)

-10000

0

10000

-30000

-20000

-10000

Sim ulation tim e (s)-30000

-20000

-10000

-30000

-20000

10000

Simulation Time (S)-30000

-20000

10000

MotorBatteryFuel Cell

( ) ( )

Cost FunctionLoad FollowingFuel Cell Efficiency 47.0%

DC/DC Effi i 90 4%

Fuel Cell Efficiency 54.1%

DC/DC Effi i 90 4%DC/DC Efficiency 90.4%

Battery Efficiency 97.0%

Mileage (mpge) 41.0

DC/DC Efficiency 90.4%

Battery Efficiency 94.8%

Mileage (mpge) 47.0

27

Torque Control Strategy

Front Speed Sensor

Front Wheel Speed

Rear Speed Sensor

Sensor

Rear Wheel Speed

Traction Control

Wheel Slip?

Front Motor Torque

Throttle Position Signal

TorqueRequest

Empirical TorqueSplitting TableTPS TR

Torque Arbitration Algorithm

Signal qAlgorithm Individual Motor Torque request Rear Motor Torque

Powertrain PD

• Efficient torque splitting algorithm• Allows for traction control strategy between

Powertrain data

gymotors

• Optimized for performance and efficiency

28

Torque Control StrategyMotor Efficiency map and Maximumum Motor Efficiency wrt Speed

180

1

140

160

180

0.8

0.9

Torq

ue

100

120

140

0.6

0.7

Mot

or T

o

60

80

100

0 3

0.4

0.5

20

40

60

0 1

0.2

0.3

Motor Speed

0 2000 4000 6000 8000 10000 12000

0 0

0.1

29

Cost Based Parasitic Control

30

99% Buy‐off Featuresy

Electronic gear selector

TactilePolycarbonate tinted windows

Custom Paint

Visual

Touch screen GUICustom upholstery

Trim and finishEmergency lighting solution

On-board inverter

Custom PaintCustom fiber engine cover

Custom rockersFuel storage coverManifolded exhaust

F l t i t fOn board inverterAir conditioningCabin heating

Fuel port interface coverPAX™ Tires

Air delivery mufflingRecirculation pump isolation

Auditory

Drive quality tuningHard acceleration anticipation

Unperceivable

Recirculation pump isolationEntertainment center

On-starStart sequence audio cueEmergency state warning

pWATsafe system

Intelligent fuel use optimizationAnti-lock braking system

Traction controlZERO TAILPIPE EMISSIONSZERO TAILPIPE EMISSIONS

= Can I drive?= Can I drive?31

ChallengeXg

32

ChallengeX Goalsg

Metric Base VehicleWaterloo Y2

VTSWaterloo Y3

VTSVehicle

Performance

Fuel Economy - combined EPA [l/100km] ≤10.1 ≤6.96 ≤7.35 6.29-12.37

Mass [kg] ≤1818 ≤2227 ≤2000 2095[ g]

Acceleration: 0-100kph [s] ≤8.9 ≤9.9 ≤9.0 N/A

Acceleration: 80-110kph [s] ≤6.8 ≤9.4 ≤6.8 N/A

R hi h [k ] ≥512 ≥224 ≥220 270Range – highway [km] ≥512 ≥224 ≥220 270

Start Time [s] <2.0 ≤5.0 ≤5.0 4.03

Passenger Capacity 3.5 2.5 5 5

Emissions [Tier, bin] Tier 2, Bin 5 Tier 2, Bin 1 Tier 2, Bin 1 Tier 2, Bin 1

Trailering Grade-ability 7% gr. – 90kph – 0.4km [kg] 1591 1136 1136 N/Ag p [ g]

Trailering Grade-ability 4% gr. – 90kph – 10km [kg] 1591 1136 1136 N/A

33

SIL Validation Inputp

FU-50560

Consumer Report City

40

50

60

35

40

45

50

20

30

Spee

d (m

ph)

15

20

25

30

Spee

d (m

ph)

0

10

0 100 200 300 400 500 6000

5

10

15

0 200 400 600 800 1000 1200 1400

• Simulate drive speed request based on data

Time (s) Time (s)

p q

• AVL, FU505, Trip‐EPA, Consumer Report

34

SIL Validation Results

• Model rationality and hybrid control strategy validated

Vehicle Speed/Motor Current (mph/A)

Battery Current (A)

Battery SOC (%)Battery SOC (%)

FCPM current (A)

35

450

Battery Current with various power limits(WOT acceleration)

350

400

450

no Batterypower limit

250

300

350

nt [A

mps

]

55kw

150

200

250

Bat

tery

Cur

rent

40kw

55kwBatterylimit

50

100

50B 0Batterylimit

0 1 2 3 4 5 6 7 8 90

Time [Seconds]

The impact of differing battery power limits on a 0-100kph acceleration run using the two-stage torque control strategy

36

Powertrain Control RequirementsSupervisory controller Safety controller

Mototron ECU565- Mototron ECU555-

DC/DCF/C Module 1

A

CB

Controller: 128 80

Processor: Motorola MPC565 Motorola MPC555

Clock Frequency: 56 MHz 40 MHz

Internal Flash: 1M 448K

F/C Module 2Motor

D E

H

I

F

Internal Flash: 1M 448K

External Flash: NIL 2M (optional)

EEPROM8K serial/optional 64K x 8 (parallel)

8K serial/optional 128k (parallel)

F/C Module 2InverterA/C

Inverter

F

G

Internal SRAM: 36K 32K

Supply Voltage: 6-32VDC 8-16V

Analog In/Out Used 24 7

Digita In/Out Used 8 6Powertrain elements

• Two vehicle controllers (supervisory and safety)

Digita In/Out Used 8 6

PWM Used 8 16

CAN Used 2 2

• Two vehicle controllers (supervisory and safety)• Six powertrain component controllers• Three CAN (controller area network) communication bussesThree CAN (controller area network) communication busses

37

top related