266 hariharan

Post on 07-May-2015

115 Views

Category:

Education

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6

C.Hariharan and M.GovardhanC.Hariharan and M.Govardhan

Thermal Turbomachines Laboratory

Department of Mechanical EngineeringIndian Institute of Technology Madras

Loss in Input Power due to Increase in Clearance between Inlet Duct and Impeller in an

Industrial Centrifugal Blower

2

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Introduction

• Aayder et al. [1]

• Lee [3]

• C Hariharan et al [5]

3

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Problem definition

• In most of the time while design we omit the clearance gap in between suction duct and impeller.

• The area of clearance is only 0.5 to 2% of inlet area.

4

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Design

Specification:

specific work - 24000 m2/s2 Design mass flow rate - 28.5 kg/soperating range - 20 kg/s to 31.5 kg/sSpeed - 3000rpm

5

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Dimension

Impeller:Blades - 15Inlet Diameter - 0.7 mInlet Blade angle - 32o

Exit Blade angle - 48o

Clearance gap - 1mm, 3mm and 5mm

clearance area - 0.6 %, 1.8% and 3%

6

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6

Volute :- constant angular momentum

- tongue clearance 5% of impeller exit diameter

- Ratio between volute width and impeller exit width 5.

7

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Fan Assembly with Ratio 5 volute

8

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Numerical simulation

- commercial CFD code CFX 14

simplification-Steady state -Compressible (air ideal gas)

- (3-D) Full fan

9

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6

- (3-D)-Mass-Momentum -Energy

- turbulence model (K-Ɛ)

10

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6- Stationary domain

- suction duct- volute

-Rotating domain - impeller

Interface

Frozen Rotor Technique

11

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Meshing

-Suction duct 0.8 million-Impeller 4.5 million-Volute 5.5 million

Y+ < 50 volume expansion factor < 25

Number of nodes in interfaces maintained almost same

12

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Suction duct mesh

13

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Impeller mesh

14

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6

Impeller pasage

15

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Volute mesh

16

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Impeller inlet duct mesh

17

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Clearance between impeller and

inlet duct

18

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6

Number of nodes in clearance

circumferential 1100radial 10

19

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Results

-Stage performance

-Component performance

20

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Stage Pressure raise

21

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in Stage Pressure raise

22

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Stage Efficiency

23

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in Stage Efficiency

24

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in Total pressure at impeller

exit

25

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in static pressure at impeller

exit

26

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Increase in input power

27

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Return mass flow rate

28

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Flow angle at inlet to impeller for

design mass flow rate

29

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Flow angle at inlet to impeller for

lowest mass flow rate

30

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Static pressure at impeller exit for

design mass flow rate

31

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Static pressure at impeller exit for

lowest mass flow rate

32

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Total pressure at impeller exit for

design mass flow rate

33

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Total pressure at impeller exit for

lowest mass flow rate

34

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Flow angle at Exit of impeller for

design mass flow rate

35

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Flow angle at Exit of impeller for

lowest mass flow rate

36

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Stream lines in impeller for

clearance of (a) 0mm

37

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Stream lines in impeller for

clearance of (a) 1mm

38

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Stream lines in impeller for

clearance of (a) 3mm

39

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Stream lines in impeller for

clearance of (a) 5mm

40

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Volute Pressure recovery coefficient

41

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in volute Pressure recovery

coefficient

42

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Volute loss coefficient

43

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Volute loss coefficient

44

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in Total pressure at volute

exit

45

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in static pressure at volute

exit

46

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6conclusion

-The overall stage performance at design and off design conditions, especially at higher mass flow rate is not favorable

-Stage efficiency drops considerably as the mass flow is increased and also there is an increase in input power up to 32 kW

-There is a noticeable drop in total and static pressure at exit of impeller

47

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6conclusion

As the clearance increases, the flow is found to be more uniform at the exit of the impeller and also the possibility of flow separation gets reduced at lower mass flow rates especially near the trailing edge of impeller.

The increased pressure recovery and reduced loss at higher clearance has positive effect on volute at all mass flow rates.

48

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6

Thank you

top related