1 inverter applications motor drives power back-up systems others: example hvdc transmission systems

Post on 22-Dec-2015

214 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Inverter ApplicationsInverter Applications

•Motor Drives

• Power back-up systems

•Others:

Example HVDC Transmission systems

2

Single Phase InverterSingle Phase InverterSquare-wave “Modulation” (1)Square-wave “Modulation” (1)

Vdc

Q1

Q2Q’1

Q’2

vout

+

+

-

-

q1(t)

q2(t)1-q1(t)

1-q2(t)

vout(t)

01

4 sin( / 2)( ) cos( )out dc

n

nv t V n t n

n

-Vdc

Vdc

dcdcout VVV 27.14

1

t

3

THD = 0.48

Characteristics: - High harmonic content. - Low switching frequency. - Difficult filtering. - Little control flexibility.

Single Phase InverterSingle Phase InverterSquare-wave “Modulation” (2)Square-wave “Modulation” (2)

4

1

coscos)2/sin(2

)(n

SSin

out ntntnn

nVtv

2

cos4

1

dcout VV

Single Phase InverterSingle Phase InverterSquare-wave “Modulation” (3)Square-wave “Modulation” (3)

vout(t)

-Vdc

Vdc

tVdc

Q1

Q2Q’1

Q’2

vout

+

+

-

-

q1(t)

q2(t)1-q1(t)

1-q2(t)

5

Characteristics: - High harmonic content. - Low switching frequency. - Difficult filtering. - More control flexibility.

THD = 0.3

Example with Vout-1=1.21Vdc

Single Phase InverterSingle Phase InverterSquare-wave “Modulation” (4)Square-wave “Modulation” (4)

6

Single Phase InverterSingle Phase InverterPulse Width Modulation (1)Pulse Width Modulation (1)

)12())(1( DVVDDVv dcdcdcout

D is the duty cycle of switch Q1. D is the portion ofthe switching cycle during which Q1 will remainclosed.

S

QON

T

TD 11

In PWM D is made a function of time

D=D(t)

7

Single Phase InverterSingle Phase InverterPulse Width Modulation (2)Pulse Width Modulation (2)

)(21

21

tmD •Let’s

where 0( ) [cos( )]m t m t

Modulationfunction

FundamentalSignal

Modulationindex

dc

out

VV

m 1

8

0

1[1 cos( )]

2D m t

1

)cos(2)(

2sin

4)()(

nS

dcdcout tn

n

tmnV

Vtmtv

Moving average

dcdcout VtmDVv )()12(

Single Phase InverterSingle Phase InverterPulse Width Modulation (3)Pulse Width Modulation (3)

t

9

Single Phase InverterSingle Phase InverterPulse Width Modulation (4)Pulse Width Modulation (4)

Implementation issue: time variable “t” needs to be sampled. Two basic sampling methods: UPWM

NSPWM

10

Single Phase InverterSingle Phase InverterPulse Width Modulation (5)Pulse Width Modulation (5)

t

11

NSPWM UPWM Fundamental (n=1) and its

sidebands

dcmV no sidebands

2sin

124

1

n

k

nk

nmJ

n

kV

i

ndc

Carrier component

(n = k)

2sin

2

4

10

iimJ

V

i

dc

2sin

2

14

10

iimJ

i

V

i

dc

Sidebands of the carrier

2sin

24

1

in

i

imJ

V

i

ndc

2sin

124

1

n

k

nk

nmJ

n

kV

i

ndc

Single Phase InverterSingle Phase InverterPulse Width Modulation (6)Pulse Width Modulation (6)

Considering that )cos()( 0tmtm

12

Three Phase InverterThree Phase InverterPulse Width Modulation (1)Pulse Width Modulation (1)

Active States:

State Qa Qb Qc

S1 0 0 1

S2 0 1 0

S3 0 1 1

S4 1 0 0

S5 1 0 1

S6 1 1 0

Zero States:

State Qa Qb Qc

S0 0 0 0

S7 1 1 1

13

)]()[cos()( 00 tetmtm aa )]()3/2[cos()( 00 tetmtm bb )]()3/2[cos()( 00 tetmtm cc

Three Phase InverterThree Phase InverterPulse Width Modulation (2)Pulse Width Modulation (2)

ModulationFunctions

)()()( 0300 tetete Hcc

)()()( 0300 tetete Hbb

)()()( 0300 tetete Haa “Zero-Sequence”

Signals

14

Three Phase InverterThree Phase InverterPulse Width Modulation (3)Pulse Width Modulation (3)

)]()()[cos()( 0300 tetetmtm Haa

FundamentalSignal

Modulationindex

2/dc

peakph

V

Vm

Triplen Harmonics (3, 9, 15, …)

OtherHarmonics

(5, 7, 11, 13, 17, ….)

15

Three Phase InverterThree Phase InverterPulse Width Modulation (4)Pulse Width Modulation (4)

)]3cos()6/1()[cos()]()[cos()( 00300 ttmtetmtma

)3cos()6/1()( 030 tmte

)cos( 0tm

t

16

Classic Approaches to PWM (1)Classic Approaches to PWM (1)Time DomainTime Domain

Use of modulation signal: Duty cycle computation:

)(21

21

)(21

21

)(21

21

scc

sbb

saa

kTmD

kTmD

kTmD

t

Sector limits

17

Disadvantages: Can’t see evolution in time Loss of information about e0-3(t)

Classic Approaches to PWM (2)Classic Approaches to PWM (2)Classic SVM - ApplicationClassic SVM - Application

InverterDC

SourceMotor

SwitchControl

d-PIController

q-PIController

DomainTransformer(Modulator)

SpaceVector Time

+

+

-

-

3 2

Park’sTransformation

* ( )d sM kT* ( )q sM kT

( )refd sM kT( )ref

q sM kT

( )d sM kT

( )q sM kTeqM

edM

refv

(From Vector Controller)

* ( )ai t* ( )bi t

* ( )ci t

Park’s Transformation

c

b

a

q

d

i

i

i

M

M

23

23

0

21

21

1

32

*

*

)cos( tia

)3/2cos( tib

)3/2cos( tic

)cos(* tM d

)sin(* tM q

18

SECTORI

4v̂trefv

SECTORII

SECTORIII

SECTORIV

SECTORV

SECTORVI

6v̂2v̂

3v̂

1̂v 5v̂

0S

O

7S

6S2S

3S

1S5S

In O:

4Sdv̂

qv̂

0v̂7v̂

Space vector domain

Classic Approaches to PWM (3)Classic Approaches to PWM (3)Classic SVMClassic SVM

2 Bases

qddq vvB ˆˆ

jiSVM vvB ˆˆ

BSVM in sector I4ˆˆ vvi

6ˆˆ vv j

BSVM changes ineach sector

19

-Track the sector in which is in and based on it

select the appropriate set of basis Bij

-Calculate the coordinates of in the basis Bij

- Change the coordinates of the reference voltage vector

S4

S6

S2

S5S1

S0

S7

S3

Transitions withinsector I

Classic Approaches to PWM (4)Classic Approaches to PWM (4)Classic SVMClassic SVM

from basis Bdq to basis Bij. The sector dependant transformation yields the period of

time Ti that the machine remains in each state in a given sampling period.

- When the time Ti is finished move to the next state following the sequence given by

the SVM state machine.

SVM Computation

refv

refv

T7=T0

20

Then, a 3-D vector canbe introduced:

Mathematical Framework (1)Mathematical Framework (1)

Control TimeDomainSpace Vector

DomainOutput Time

Domain

Complete representationinvolves a 3-D space

v

R

W

S

21

Mathematical Framework (2)Mathematical Framework (2)Control Time DomainControl Time Domain

Functions of time are used as basis

)()3/2cos(ˆ

)()3/2cos(ˆ

)()cos(ˆ

ˆ,ˆ,ˆ

0

0

0

tett

tett

tett

tttB

cc

bb

aa

cbat

)ˆˆˆ( cba tttmv

22

Mathematical Framework (3)Mathematical Framework (3)Space Vector DomainSpace Vector Domain

T

t

T

T

tdq

ten

q

d

nqdB

)(00ˆ

010ˆ

001ˆ

ˆ,ˆ,ˆ

300

00

tqd ntvqtvdtvv 00 ˆ)(ˆ)(ˆ)(

When e0-H(t)=0, describes a circumferencewith radius equal to m.

v

23

Mathematical Framework (4)Mathematical Framework (4)Output Time DomainOutput Time Domain

T

c

T

b

T

a

cbaS

v

v

v

vvvB

100ˆ

010ˆ

001ˆ

ˆ,ˆ,ˆ

ˆ ˆ ˆ( ) ( ) ( )a a b b c cv v t v v t v v t v

24

Mathematical Framework (5)Mathematical Framework (5)Output Time DomainOutput Time Domain

Length of sides equal to 2

Each corner represents one state

State sequence is obtained naturally

Sectors: six pyramid-shaped volumes bounded by sides of the cube and |vi|=|vj| planes (i, j = a,b,c; i j).

0 cbadq vvvB

Balanced system plane

25

Mathematical Framework (6)Mathematical Framework (6)Matrix RMatrix R

When e0-H(t)=0, describes a circumferencewith radius equal to m.

v

1st Idea: Use Park’s transformation to a synchronousrotating reference frame:

))()3/2(cos(

))()3/2(cos(

))()(cos(

111

)3/2cos()3/2sin()sin(

)3/2cos()3/2cos()cos(

32

30

30

30

0 tetm

tetm

tetm

ttt

ttt

v

v

v

q

d

Instantaneous values of the voltages

26

Mathematical Framework (7)Mathematical Framework (7)Matrix RMatrix R

)(2

1

1

300 tmev

v

v

q

d Problem: components in and are constant values

d̂ q̂

I am interested in having a constant value in tn0ˆ

2nd Idea: Freeze the rotational reference frame at t=0

)(2

)sin(

)cos(

))()3/2(cos(

))()3/2(cos(

))()(cos(

11123

23

0

21

21

1

32

3030

30

30

0 tme

tm

tm

tetm

tetm

tetm

v

v

v

q

d

27

Mathematical Framework (8)Mathematical Framework (8)Matrix RMatrix R

3rd Idea: Rearrange the product.

m

tet

tet

tet

v

v

v

q

d

)()3/2cos(

)()3/2cos(

)()cos(

11123

23

0

21

21

1

32

30

30

30

0

m

m

m

tetete

tt

ttt

)()()(

)3/2cos()2/3()3/2cos()2/3(0

)3/2cos()2/1()3/2cos()2/1()cos(

32

303030

0dqBv

tBv

28

Mathematical Framework (9)Mathematical Framework (9)Matrix RMatrix R

111

)3/2cos()2/3()3/2cos()2/3(0

)3/2cos()2/1()3/2cos()2/1()cos(

32

tt

ttt

R

2

)sin(

)cos(

0

t

t

m

m

m

m

R

v

v

v

q

d

4th Idea: Eliminate the dependency on e0-3(t) inorder to have a constant coordinate in tn0ˆ

29

111

)3/2cos()2/3()3/2cos()2/3(0

)3/2cos()2/1()3/2cos()2/1()cos(

32

tt

ttt

R

000

)()2/3()()2/3(0

)()2/1()()2/1()(

32

00

000

tete

tetete

HcHb

HcHbHa

111

))()3/2)(cos(2/3())()3/2)(cos(2/3(0

))()3/2)(cos(2/1())()3/2)(cos(2/1()()cos(

32

00

000

tettet

tettettet

R HcHb

HcHbHa

Mathematical Framework (10)Mathematical Framework (10)Matrix RMatrix R

In order to include e0-H(t) we need to follow thesame steps and apply superposition.

30

Mathematical Framework (11)Mathematical Framework (11)Matrix WMatrix W

cba vvvd ˆ21

ˆ21

ˆ'ˆ

cb vvq ˆˆ'ˆ

cba vvvdqn ˆˆˆˆˆ'ˆ 0

c

b

a

v

v

v

n

q

d

ˆ

ˆ

ˆ

111

110

2/12/11

0

W’

31

131

131

102

21

''W

Mathematical Framework (12)Mathematical Framework (12)Matrix WMatrix W

111

110

2/12/11

'W

)(31

)(31

)(02

21

30

30

30

te

te

te

W

1) Take the transpose and apply scaling factor

2) Include e0-3(t) in order to have it as a component

32

Mathematical Framework (13)Mathematical Framework (13)Matrix SMatrix S

)(2)()3/2cos(2)()()3/2cos()()()cos(

)()()3/2cos()(2)()3/2cos(2)()()cos(

)()()3/2cos()()(3/2cos)(2)()cos(2

31

030030030

030030030

030030030

tetettetettetet

tetettetettetet

tetettetettetet

S

HcHbHa

HcHbHa

HcHbHa

)()3/2cos(2)()3/2cos()()cos(

)()3/2cos()()3/2cos(2)()cos(

)()3/2cos()(3/2cos)()cos(2

31

303030

303030

303030

tettettet

tettettet

tettettet

S

)(2)()(

)()(2)(

)()()(2

31

000

000

000

tetete

tetete

tetete

HcHbHa

HcHbHa

HcHbHa

S=WR

33

3D Analysis and Representation3D Analysis and Representation

tdq BB vRv

)(0

0)(

dqS BB vWv

tS BB vSv

)(

)()3/2cos(

)()3/2cos(

)()cos(

0

0

0

ScS

SbS

SaS

c

b

a

tet

tet

tet

m

v

v

v

34

3D Analysis and Representation3D Analysis and Representation)3cos(

41

)()( 300 ttetei

UPWM

35

3D Analysis and Representation3D Analysis and Representation

SVM

UPWM

36

3D Analysis and Representation3D Analysis and Representation

3D Representation: Plotevolution of in outputtime domain during acomplete fundamentalperiod.

The resulting curve alwayslays within the cube definedby the switching states.

v

)3cos(61

)()( 300 ttetei

37

3D Analysis and Representation3D Analysis and Representation

Triplen harmonic distortion: Evolution away from the plane va+vb+vc=0

Other harmonic distortion: non circular projection of the curve over the plane va+vb+vc=0

Sharp corners indicate the presence of higher order harmonics.

38

Commonly used schemesCommonly used schemes

)3cos(61

)()( 300 ttetei 0)(0 tei

SVM

Square wave

39

3D Analysis and Representation3D Analysis and Representation

)3cos(61

)()( 300 ttetei Square wave0)(0 tei

40

3D Analysis and Representation3D Analysis and Representation

Phase and Line Voltages (1)

babaab vvvvv ˆˆ ).(21

)( abdcab vvVtv

)ˆˆˆ2(31

)(31

cbacaaboa vvvvvv ).(

21

)( oadcoa vvVtv

Phase Leg a b c Phase

voltages T11231 T1213

1 T21131

Line Voltages T011 T110 T101

41

3D Analysis and Representation3D Analysis and Representation

Phase and Line Voltages (2)

Direction of vab

Direction of voa

voa (t)

t

va (t)

42

3D Analysis and Representation3D Analysis and Representation

Phase and Line Voltages (3)

)3cos()4/1()( 030 tte

)5cos()10/1()( 00 tte H

voa (t)

t

va (t)

43

3D Analysis and Representation3D Analysis and RepresentationMaximum non distorting range

Radius of circle is m if it ismeasured in the Space VectorDomain.

)3cos(61

)()( 300 ttetei

There is a scaling factor in W

dBd vvdq

ˆ0

cbaBd vvvvS

ˆ5.0ˆ5.0ˆ 3

2Sd B

v

10

dqBdv

15.13

22

32

max ND

m

44

3D Analysis and Representation3D Analysis and Representation

ii vv If fswitch>>ffund then

cbaiDDDv iiii , ,, 121)1(

45

3D Analysis and Representation3D Analysis and Representation

t

46

3D Analysis and Representation3D Analysis and Representation

Qa

Qb

Qc

Qb

Qa

Qc

Qb

Qc

Qa

Sector I Sector II Sector III

T7 T6 T4 T0 T7 T6 T2 T0 T7 T3 T2 T0

6) 5, 3, (j , )(

4) 2, 1, (i , )(

)1(

min

max

max0

min7

smedj

smedi

s

s

TDDT

TDDT

TDT

TDT

47

Analysis of SVM (1)Analysis of SVM (1)

T7=T0 Dmin=1-Dmax

vmax +vmin=0

S is sectordependent

)(21

)()( 300 tvtete med

(considering e0-H(t)=0)

SVM tends to approximate the trajectory of a square wave, but adds 3rd harmonic and higher order triplen harmonics

No difference in sequence compared to other schemes

48

Analysis of SVM (2)Analysis of SVM (2)

Fundamental andzero-sequence

signal

Modulating signals

t t

49

Analysis of SVM (3)Analysis of SVM (3)

Control TimeDomain

Space VectorDomain

Output TimeDomain

Digital implementation related to sampling method selected, not to the modulation function used.

SVM vs.)3cos(61

)(0 ttei

15.13

2max m

top related