: u ( g ¡ 2fûg g ¨ Í ö ¦ qfþg:gg ( Ê ¾%t s40...

Post on 10-Mar-2020

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

kubotay@p.s.osakafu-u.ac.jp

Porous Coordination Polymer (PCP) Metal-Organic Framework (MOF)

4500m2g-1

O. M. Yaghi, et al. Nature 423, 705 (2003) / S. Kitagawa, et al., Angew. Chem. Int. Ed. 43, 2334 (2004)

Ladder

Herringbone

Honeycomb Cube

Sheet Brick

4500m2g-1

pzdc (pyrazine-2,3-dicarboxylate) layer

L : pillar ligand [ Cu2(pzdc)2(L) ]

4 Å 6 Å 8 Å 6 Å 12 Å 6 Å

CPL-1 : L=pyrazine CPL-2 : L=4,4’-bypyrizine CPL-11 : L=bptz

-

SPring-8 BL02B2

X

IP Imaging Plate

N2 He

V V

V

L.T. He gas blower

X-ray

IP Imaging Plate

collimator sample

L.T. N2 gas blower

Gas import tube

sample

N2 gas blower 90 473 K He gas blower ( Helijet ) 10 150 K

Capillary

0.4mm��2mm

RIKEN BL44B2

Wavelength 0.8

SPring-8 BL02B2

(GVPC)

1 Pa 5.14 kPa

N /

mol

./u.c

. P / kPa

Cool down

190K

170K

150K

130K

110K

90K Methane gas pressure

8kPa

H C N O Cu pyrazine pillar-ligand

Cu2(pzdc)2 2D sheet 4 6 nanochannel

pillar

2D sheets 3D porous framework

ggandgand

Gas molecules

CPL-1 : Coordination Polymer 1 with Pillared Layer Structure

Monoclinic P21/c a=4.71534(6) b=19.8280(2) c=10.7184(1) � =95.1031(10)

O2

� = 0.8 Å

M. Takata et al. Nature 46, 377 (1995) M. Takata et al. Z.Kristallogr. 216, 71 (2001)

RWP = 2.1 % RI = 3.9 %

O2 molecule

1.0 e -3

With O2 molecules

Without guest molecules

R. Kitaura, S. Kitagawa, Y. Kubota, T. C. Kobayashi, K. Kindo, Y. Mita, A. Matsuo, M. Kobayashi, H. Chang, T. Ozawa, M. Suzuki, M. Sakata, M. Takata, Science 298, 2358 (2002)

Magnetic molecule with S = 1 p��antibonding

p��antibonding

p��bonding

p��bonding

+ +

Competed interaction

H-geometry

S-geometry T-geometry

L-geometry X-geometry

1. Electric quadrupole moment

2. Magnetic interaction

pppp

O2

O2-O2

O2 molecule: Simple magnetic entity S = 1

H-geometry

C. Uyeda, K. Sugiyama, M. Date, J. Phys. Soc. Jpn. 54, 1107 (1985)

S total = 0 singlet

S total = 2 quintet

(0, 0) z

x

(x, z)

K. Nozawa, N. Shima, K. Makoshi, J. Phys. Soc. Jpn. 71, 377 (2002)

H-geometry

Z = 0

S-geometry

Z ≠0

SSSSS total ===== 00000 singllllllllllllllllllllllleeeeeeeeeeeeeeeeeeeeeeeeeeeeeettttt SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS ttootalll = 2222 qqqquuuuiiinnnttttteeetttt

O2-O2 Spin-dependent intermolecular potential

θa θb

Φ

θa,θb,Φ

L (0,0,0) L (0,0,0) H (90,90,0) X (90,90,90) T (0,90,0)

B. Bussery et al., J. Phys. Chem. 101, 416-423 (1994)

Magnetic interaction exists between O2 molecules

H = 2 J Si Sj J : Spin coupling parameter

0

O2-O2

R. Kitaura et al., Science 298, 2358 (2002)

O2-O2 in a-solid is 3.20 Å

3.21 Å (J1 ~ - 30 K)

4.69 Å (J2 < -1 K) O2

3.56 Å

18

N2

1.0 e -3

1500 1550 1600 Raman Shift (cm-1)

Inte

nsity

(arb

.uni

ts)

16O2 17O2

without O2

1561cm-1

1513cm-1

Corresponds to the solid state at 2GPa

CPL-1

CPL-1 with O2

O2 adsorbed in CPL-1 (B–A)

Nonmagnetic ground state

W. Mori, T. C. Kobayashi et al., Mol. Cryst. Liq. Cryst. 305, 499 (1997)

Triclinic P-1 a=5.1335(2) b=9.8362(3) c=10.6881(3) � =72.557(3) � =82.450(5) =85.578(4)

MEM charge density of Cu-CHD with O2 at 90 K

Molecular O2

Guest-guest interaction Electric quadrupole moment (O2 < N2)

Magnetic interaction between O2

H-geometry S-geometry

N2 at 90K

O2 at 90K

O2 at 30K

13.2˚

12.5˚

B(O2) = 12.9(5) Å2

<u(O2)> = 0.40 Å

B(O2) = 9.4(5) Å2

<u(O2)> = 0.35 Å

B(N2) = 7.5(4) Å2

<u(N2)> = 0.31 Å

CPL-1 Cu-CHD

Dramatic changes of peak position caused by the adsorption of O2

Strong host-guest interaction Large

Insensible changes of peak position caused by the adsorption of O2 or N2

Week host-guest interaction small

Sinusoidal channel Straight channel (Si0.998Al0.002)O4

Si or Al

O

Charge density of MFI zeolite Ch d it f MFI li

Straight channel

Sinusoidal channel

MFI

32O2/unit cell

22O2/unit cell

Adsorption isotherms (77K)

N (m

olec

./u.c

)

P (kPa) T (K)

� M (e

mu/

mol

of O

2)

22O2/unit cell32O2/unit cellHext =0.1 T

22O2/unit cell

32O2/unit cell

Magnetic susceptibility

24O2/unitcell

O2 5.14 kPa

Monoclinic P121/n1

a=19.8272(2)Å

b=20.0911(2)Å β= 90.9615(9)

c=13.3501(1)Å

V=5279.21O2 0.018 kPa

Orthorhombic Pnma

a=19.9474(2)Å

b=19.9341(2)Å

c=13.3797(1)Å

V=5320.29

N (m

olec

./u.c

)

P (kPa)

32O2/unit cell

22O2/unit cell

32O2/unitcell

24O2/unitcell 32O2/unitcell

12O2/unitcell 12O2/unitcell

12O2/unitcell 20O2/unitcell

11.010.09.08.07.0

2� ( degree )11.010.09.08.07.0

2� ( degree )

90K

50K

30K

20K

30K

50K

Inte

nsity

(arb

. uni

ts)

No guest 90K

2θ(degree) 2θ(degree)

90K

20K

N2

No guest 90K

90K

Monoclinic

Orthorhombic

Monoclinic Monoclinic

O2 Orthorhombic

Orthorhombic

90

Orthorhombic a = 19.9474(2) Å

Pnma b = 19.9341(2) Å

c =13.3797(1) Å

V = 5320.29

20K 90K O2 5.14 kPa

ÅMonoclinic a = 19.8356(3) Å

P121/n1 b = 20.1044(3) Å β = 90.947(2)

c =13.3830(2) Å

V = 5263.10

O2 N2 CH4 Ar

R. Matsuda et al., J. Am. Chem. Soc. 126, 14063 (2004)

CPL-2 : pillar = 4,4’-bypyrizine

b ax

is

With C6H6 Anhydrous

Lattice shrinks in the direction of b axis with adsorption

CPL-p1 : [Cu2(dhbc)2bpy]n

Closed-Form Open-Form

20%

Gate open pressure

Pressure (atm)

N2 O2

R. Kitaura et al., Angew. Chem. Int. Ed. (2003)

0.2 MPa 200

0.434 g cm-3 40 MPa

R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 436, 238 (2005)

1.0 e -3

CO2

5.3 Å

C2H2

5.5 Å

Pressure kPa

Am

ount

of a

dsor

ptio

n (m

olec

ules

/ un

it po

re)

b.p. 189.2 (K)

b.p. 194.7 (K)

Cool

ing

dow

n

Apohost phase I

Intermediate adsorbed phase M

Saturated adsorbed phase S

CPL-1

Vcell [Å3] 1019.25(5) → 1063.03(6) → 1036.18(3) expand contract

a

c

0 %

100 %

70 %

1

Y. Kubota, M. Takata, R. Matsuda, R. Kitaura, S. Kitagawa, T. C. Kobayashi, Angew. Chem. Int. Ed. 45, 4932 (2006)

CPL-1 MEM

Equi-contour level 1.0 eÅ-3

Containing O2 atom

Containing O1 atom

Containing O2 atom in saturated adsorbed phase S

0.00 - 1.00 eÅ-3 step 0.05 eÅ-3

2

Interaction between the acetylene and pore wall is rather weaker in phase M than that in the saturated phase S.

+

?

?

X XFEL(X-ray Free Electron Laser) Project

X SACLA 2011 6 1.2Å

60Hz CCD

XFEL

CCD

��

XFEL

SPring-8 BL19LXU

SPring-8

CCD IP CCD 10 ms 20 Hz

XFEL

G80Exp20ms110K329.ipw

Start

-1

Valve Open

1

2

3

4 5

6

7

-2 s

-1 s

0 s

1 s

2 s

3 s

4 s

5 s

6 s

7 s

8

8 s

-2 s

-2

0 s Adsorbed

No guest

-2 s 8 s

Exp. time / shot 0.02 s ( 20 ms ) Gain 80 Interval time 1.00 s

0.02 s

1.00 s

CPL-1 1 s

110 K

Δ

λ

N2 90 – 1000 K He 15 – 100 K He 15 – 300 K

X-ray

Laser

top related