americas - pharmaceutical manufacturing...commonalities in the chemcial and pharma/biotech...

37
<Occasion or Subject> Author (internally with department name) Page 1; 2002-07-10 Americas BTS - Vision: Customer Success through technical solutions Your partner for projects in the chemical and pharmaceutical industries.

Upload: others

Post on 29-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Author (internally with department name)Page 1; 2002-07-10

    Americas

    BTS - Vision: Customer Success through technical solutionsYour partner for projects in the chemical and pharmaceutical industries.

  • BTS Tefen ConsortiumRyan/PTGPage 2; 09/15/04 Americas

    Technology Transfer from the Chemical Sectorto the Pharmaceutical/Biotech Sector

    Peter J. Ryan

    Thomas Daszkowski

  • BTS Tefen ConsortiumRyan/PTGPage 3; 09/15/04 Americas

    Bayer Group: Products

    Poly-carbonate

    Poly-urethanes

    Coatings and Colorants

    Fibers, Additivesand Rubber

    IndustrialChemicals

    Diagnostics

    Agriculture

    ConsumerCare

    Pharma-ceuticals

  • BTS Tefen ConsortiumRyan/PTGPage 4; 09/15/04 Americas

    Bayer Group: Figures

    Bayer – Facts and Figures 2003:124,600 employees world-wide

    250 companies, 10,000 products

    Sales: EUR 28.6 billion

    EBITDA: EUR 3.53 billion

    Net income: (EUR 1.36 billion)

    R&D expenditures: EUR 2.4 billion

    Capital expenditures: EUR 1.74 billion

    Bayer – Objectives: Leader in research and technology

    Continuous growth of expertise in the manufacture of high-qualityand environmentally compatible products

  • BTS Tefen ConsortiumRyan/PTGPage 5; 09/15/04 Americas

    Board of ManagementBoard of Management

    Corporate CenterCorporate CenterBusiness

    Units

    CropScienceCropScience

    PolymersPolymers

    LanxessLanxess

    HealthCareHealthCareService Units

    Industry ServicesIndustry Services

    Business ServicesBusiness Services

    Technology ServicesTechnology Services

    Bayer AG

    Services offeredon the external market

    Services offeredon the external market

    Employees worldwide(*) 2.400

    Customer segments• HealthCare• Crop Science• Polymers• Chemical

    (*) Status: 2003

  • BTS Tefen ConsortiumRyan/PTGPage 6; 09/15/04 Americas

    Bayer Technology Services: International Locations/OfficesRegional OfficeNorth AmericaBaytown, Texas260 employees(*)

    RegionalOffice AsiaShanghai, China60 employees(*)

    RegionalOfficeBeneluxAntwerp90 employees(*)

    HeadquartersBTS EuropeLeverkusen1,700 employees(*)

    HeadquartersLocations

    (*) Status: 2003

    Regional OfficeCentral AmericaMexico City240 employees(*)

    Regional OfficeSouth AmericaSao Paulo/Brazil40 employees(*)

  • BTS Tefen ConsortiumRyan/PTGPage 7; 09/15/04 Americas

    Bayer Technology Services: Our Portfolio

    Initiate, implement and support technological innovations over the long term.From product and process development through the planning andconstruction of plants to the automation and optimisation of processes.

    Design andmanageinvestments

    Servicesthroughout theplant life cycle

    Optimizefacilities andproducts

    Developproducts and

    processes

  • BTS Tefen ConsortiumRyan/PTGPage 8; 09/15/04 Americas

    Content of today‘s presentation:

    • General Commonalties in the Process and Pharmaceutical/ Biotech Industries

    ⇒ Example 1: Computer Simulation in the Process and Pharma/Biotech Industries

    ⇒ Example 2: Total Performance Optimization in the Process and Pharma/Biotech Industries

    • Forum for discussion.

  • BTS Tefen ConsortiumRyan/PTGPage 9; 09/15/04 Americas

    Commonalities in the Chemcial and Pharma/Biotech Industries

    Reaction Kinetics

    Reactors

    Crystallization, Distillation

    Simulation

    Mass and Energy Balances

    Process Control

    Monitoring and Optimization

    Cell Metabolism

    Fermenters

    Chromatography, UF/DF

    Simulation/PK-Sim

    in vivo Conc.-Time Profiles

    Process Control

    Monitoring and Optimization

    Process

    Methods and Tools

  • BTS Tefen ConsortiumRyan/PTGPage 10; 09/15/04 Americas

    Disactivation

    0.0000

    2.0000

    4.0000

    6.0000

    8.0000

    10.0000

    12.0000

    14.0000

    16.0000

    18.0000

    20.0000

    0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

    time (h)

    Gew

    % D

    PC

    Standard (vers. 32, DPC)

    0-60&181-420 std. ver., 61-180 min ohne O2 (vers. 43a, DPC)

    0-120 ohne O2, 121-420 min std. vers.(vers. 45, DPC)

    vers. 32 DPC (expermn'tl)

    vers. 43a DPC (expermn'tl)

    vers. 45 DPC (expermn'tl)

    Chemical Engineering: Reaction Kinetics

    Chemical Engineering Reaction Kinetics mathematically represents chemicalprocesses using parameter estimation algorithms to fit model generated curvesthrough experimental results..

  • BTS Tefen ConsortiumRyan/PTGPage 11; 09/15/04 Americas

    Biotech Engineering: Cell Metabolism:

    Processcontrol

    FluxComputation

    G lu

    H e xo s e

    T rica rb oxy lic Acid C yc le

    100

    78

    G lu tam in e

    E le ctronTrans port

    Chain

    17

    B io m as s A c C o A

    B io m a s s♦-K G

    CO 2

    C O2

    O 2

    R

    L a cta te

    G ly colys is P P P

    B io m as sG A P

    R N AD N A

    A la

    R

    G 6P

    G A P

    RP YR

    R

    C O 2

    O AAR

    C O 2

    ♦-K G

    A cCo A

    C O2 R

    100

    1.6

    781.1

    2222

    133

    191

    18 9

    4

    36

    26

    88

    36

    96

    62

    58

    -2C O2R

    496

    43 8

    24 9

    20 6

    PP P

    Real-TimeComputationof Metabolic

    Fluxes

    Processcontrol

    FluxComputation

    G lu

    H e xo s e

    T rica rb oxy lic Acid C yc le

    100

    78

    G lu tam in e

    E le ctronTrans port

    Chain

    17

    B io m as s A c C o A

    B io m a s s♦-K G

    CO 2

    C O2

    O 2

    R

    L a cta te

    G ly colys is P P P

    B io m as sG A P

    R N AD N A

    A la

    R

    G 6P

    G A P

    RP YR

    R

    C O 2

    O AAR

    C O 2

    ♦-K G

    A cCo A

    C O2 R

    100

    1.6

    781.1

    2222

    133

    191

    18 9

    4

    36

    26

    88

    36

    96

    62

    58

    -2C O2R

    496

    43 8

    24 9

    20 6

    PP P

    Real-TimeComputationof Metabolic

    Fluxes

    • Metabolic Flux Model of a CHO Cell:⇒ Build up cell model to represent a fermenter.⇒ Develop open-loop control of fermentation system.⇒ Extend to closed loop control.

  • BTS Tefen ConsortiumRyan/PTGPage 12; 09/15/04 Americas

    Chemical Engineering: Reactors

    Maleic Anhydride Unit, Baytown, TX

  • BTS Tefen ConsortiumRyan/PTGPage 13; 09/15/04 Americas

    Biotech Engineering: Fermentation

    0,97

    0,215

    • Data Mining

    • CFD - Simulation

    • Operational Concepts

    pH

    Conc.

    Shear Stress

    Improvement byIndividualized

    Process Strategy

    Tangible Results through AdvancedData Mining Technology

    Processcontrol

    FluxComputation

    G lu

    H e xo s e

    T rica rb oxy lic Acid C yc le

    100

    78

    G lu tam in e

    E le ctronTrans port

    C hain

    17

    B io m as s A c C o A

    B io m a s s♦-K G

    C O 2

    C O2

    O 2

    R

    L a cta te

    G ly colys is P P P

    B io m as sG A P

    R N AD N A

    A la

    R

    G 6P

    G A P

    RP YR

    R

    C O 2

    O AAR

    C O 2

    ♦-K G

    A cCoA

    C O 2 R

    100

    1.6

    781.1

    2222

    133

    191

    18 9

    4

    3 6

    26

    88

    36

    96

    62

    58

    -2C O2R

    4 96

    43 8

    24 9

    20 6

    PP P

    Real-TimeComputationof M etabolic

    Fluxes

    Processcontrol

    FluxComputation

    G lu

    H e xo s e

    T rica rb oxy lic Acid C yc le

    100

    78

    G lu tam in e

    E le ctronTrans port

    C hain

    17

    B io m as s A c C o A

    B io m a s s♦-K G

    C O 2

    C O2

    O 2

    R

    L a cta te

    G ly colys is P P P

    B io m as sG A P

    R N AD N A

    A la

    R

    G 6P

    G A P

    RP YR

    R

    C O 2

    O AAR

    C O 2

    ♦-K G

    A cCoA

    C O 2 R

    100

    1.6

    781.1

    2222

    133

    191

    18 9

    4

    3 6

    26

    88

    36

    96

    62

    58

    -2C O2R

    4 96

    43 8

    24 9

    20 6

    PP P

    Real-TimeComputationof M etabolic

    Fluxes

  • BTS Tefen ConsortiumRyan/PTGPage 14; 09/15/04 Americas

    Chemical Engineering: Distillation

    Distillation, Leverkusen, Germany

    Reboiler Steam Flow-Rate0 2000 4000 6000 8000 10000 12000 14000 16000

    Tray

    Product 1756 2083 2328

    R = 4,6

    Case A Case B Case C

    Side-draw

    Condenser Duty ACondenser Duty BNo Condneser

  • BTS Tefen ConsortiumRyan/PTGPage 15; 09/15/04 Americas

    Pharma Engineering: Chromatography

    0

    0.2

    0.4

    0.6

    0.8

    1

    3 lotsElution Rate = n l/min

    Nor

    mal

    ized

    Col

    umn

    Rec

    over

    y

    3 lotsElution Rate = n* l/min

  • BTS Tefen ConsortiumRyan/PTGPage 16; 09/15/04 Americas

    Example 1: Process Simulation

    Chemical Process:

    Simulation of a

    Polymer Process

    Biotech Process:

    Simulation of the

    Human Body

  • BTS Tefen ConsortiumRyan/PTGPage 17; 09/15/04 Americas

    Example 1: Polymer Process Simulation

    300 Co

    Werkstoff 2.4605

    El.

    RKW

    KW KW

    MCB

    MCB MCB

    auf +-0m

    auf +-0mauf +-0m

    o20 C

    20 Co

    o

    diskontinuierlich

    El.

    35 Co

    AbluftanlageAbluftanlage Abluftanlage Abluftanlage

    /2

    n.VD70PA21/22

    30mbar

    KW

    Diphyl

    Diphyl

    VD71BA44Auskoch-LMG

    300 C

    MCB MCB

    CB-Destillation

    GOS

    GOS

    Diphyl, Dampf

    Diphyl-V, flüssig

    Diphyl-R, flüssig

    Diphyl-Kondensat

    /59

    524MCB

    von VD70PA21/22

    PC-Lösung (70%ig)

    503

    55

    58 59

    5859 60

    60

    60

    60

    52

    Diphyl

    Diphyl

    -400-

    Stand: 00-06-26 Cn

    UE307779

    LISA

    TIA+

    LIA-

    FIA-

    TITI

    LICSA

    FICSA

    TISA+

    FSA+

    TIA+

    TI

    PIR

    anlage

    Abluft-

    TICA+

    UE307779

    n.WA70 WA31Kondensator

    1. Stufe

    Voreindampfung

    PISA+

    UE307779

    n. VD70PA21/22

    UE307779

    v. VD41PA44 ( Spülkreislauf )

    PC-Lösung ( Spülstrom ) v.VD70FA13/14

    Frisch CB 25 bar

    ( 16 bar / 25 bar)

    LMG-Spülung

    TISA+

    LISA

    UE307783

    n. GR70HA72

    UE307783

    n. GR70HA71

    UE307780

    v. DTPA80

    PIRSA+

    LICRSA+

    PIRSA+

    TIRCA

    UE307779

    LIRCSA

    30mbar

    PIRCA

    2x-900

    PIRA

    PICA+

    UE307779

    n. VD71BA44 (Spülkreislauf)

    PIRSA+

    TI

    1mbar

    TITI

    TIA+

    UE307781

    UE307781

    UE307781

    UE307781

    UE307779

    ( 15% ig) UE307779

    n.VD71PA43 UE307779

    VA71FA55/ VA71FA56/

    VA71VA56/VA71VA55/ VA71FA57/

    VA71VA57/

    VA71BA58 VA71BA54

    02.03.99 Lentzen

    VA71BA51

    VD71RM50

    VD71AX10

    Eindampfung/Granulierung Verfahrensfließbild

    Bearbeiter:incae ue307782 .DGN

    UE307782-0

    VD71BA521

    VD71BA52

    VD71WV52

    /2

    58 59 60 60

    VA71PA57/

    VA71WA57/

    /2

    55 605258 59 60

    VD71WV51

    VA71PA51/ VA71PA54/

    /59

    VA71PA58

    VD71BA51

    UE307779

    Str. 7 ZT ENGKU

    UE307781

    Diphyl-R, flüssig

    UE307781

    Diphyl-V, flüssig

    VD71PA52

    VD71WA51 VD71WA52

    VD71PA51

    VA71FA51

    VA71VA51

    VA71FA53VA71VA53

    VA71PA53

    VA71WA53

    Benennung

    Technische Daten

    zul. Betriebs}berdruck

    Werkstoff

    Bemerkung

    bar

    Co

    Zeichnung Nr

    zul. Betriebstemperatur

    Technische Einrichtung

    23-M1-V1-VD71/VA71

    Makrolon N175UER

    VD71/VA71 V1 M1 23

    Vorlage

    6,3 m3 d=1800x3200

    -1 / 6

    200

    1.4571

    VA71BA51

    61491

    ue233164-0

    Vorlage

    1,6 m3 1200x1800

    -1 / 6

    120

    1.4571

    VA71BA54 Vorlage

    1,6 m3 1200x1800

    -1 / 6

    200

    1.4571

    VA71BA58 Abscheider

    0,52 m3 800x1200

    B=-1/3HS=-1/18

    200/300

    1.4571

    VA71FA51 Abscheider

    0,5 m3 600x1400

    -1/3

    200

    1.4571

    VA71FA53 Abscheider

    1 m3 1000x1500

    -1/3

    200

    1.4571

    VA71FA55/ Abscheider

    0,52 m3 800x1200

    -1/3

    200

    1.4571

    VA71FA56/ Abscheider

    0,3 m3 600x1150

    -1/3

    200

    HII

    UE241801

    VA71FA57/ Kreiselpumpe

    6 m3/h 2900 upm

    51mFLS, 6,6KW

    1.4408

    magnetgek.

    VA71PA51/ Kreiselpumpe

    11 m3/h 2900 upm

    12mFLS, 2,5KW

    1.4408

    magnetgek.

    VA71PA53 VA71PA54/

    magnetgek.

    1.4408

    51mFLS, 6,6KW 2900 upm 6 m3/h

    Kreiselpumpe

    VA71PA57/

    magnetgek.

    1.4408

    12mFLS, 2,5KW 2900 upm

    11 m3/h

    Kreiselpumpe

    VA71PA58

    magnetgek.

    1.4408

    51mFLS, 6,6KW 2900 upm

    6 m3/h

    Kreiselpumpe

    VA71VA51

    RO 3500 II

    GG20

    9,7KW, 1000upm 25 mbar

    3000 m3/h

    pumpe Wälzkolben-

    VA71VA53

    SIHI/GLRD

    1.4408

    75KW, 750upm 70 mbar 1800 m3/h

    ringpumpe Flüssigkeits-

    VA71VA55/

    RO 16000

    GG20

    20KW, 1000upm 1,3 mbar

    10500 m3/h

    pumpe Wälzkolben-

    VA71VA56/

    RO 3500 II

    GG20

    9,7KW, 1000upm 4 mbar

    2700 m3/h

    pumpe Wälzkolben-

    VA71VA57/

    SIHI/GLRD

    GG-25

    46KW, 1000upm 30 mbar

    600 m3/h

    ringpumpe Flüssigkeits-

    VA71WA53

    HII / 1.4571

    200/200

    M=-1/10,R=-1/6

    370x3250 20 m2

    Kühler

    VA71WA57/

    H II / St.35.8

    200/200

    M=-1/10,R=-1/6

    370x1940 15 m2

    Kühler

    VD71AX10

    Schmelzarmatur

    VD71BA51

    45 Konus

    1.0425/2.4605

    350/350

    M=-1/16,R=-1/8

    3200x2690 9,5 m3

    Abscheider Rohrverdampfer

    GOS

    -300-

    -700-

    -700-

    Str.4

    zum CB/MC Tank

    über WA70FB40

    VD71WV52

    Innenverteiler

    2.4605

    350

    200

    d=1 mm 100 000

    Bohrungen:

    verdampfer Strang-

    VD71WV51

    HII/2.4605

    400

    M=-1/10/R-1/25

    1750R 12,5x1,1 1100x2500

    172 m3

    Verdampfer Rohr-

    VD71WA52

    1.4571

    350/200

    M=-1/10/R=-1/8

    1200 25x1,65x3500

    285 m2

    Kondensator

    VD71WA51

    1.4571

    350/200

    M=-1/10/R=-1/8

    2000 33,7x2x3500

    592 m2

    Kondensator

    VD71RM50

    2.4605

    350

    200

    Stat. Mischer

    VD71PA52

    1.4802/1.4112

    350

    250 bar

    12 m3/h

    Zahnradpumpe

    VD71PA51

    1.4408/1.8550

    350

    250 bar

    12 m3/h

    Zahnradpumpe

    VD71BA521

    1.4571

    300/300

    M=-1/6 / R=-1/

    18l

    323,9x540

    Abscheider

    VD71BA52

    1.0425/2.4605

    350/350

    M=-1/16 / R=-1

    3200x6833 46m3

    Abscheider Strangverdampf

    VD71BA511

    1.4571

    300/300

    M=-1/6 / R=-1/

    18l

    323,9x540

    Abscheider

    Technische Einrichtung

    zul. Betriebstemperatur

    Zeichnung Nr

    o C

    bar

    Bemerkung

    Werkstoff

    zul. Betriebs}berdruck

    Technische Daten

    Benennung

    L405

    L414

    L391

    L419

    L791L413

    L944

    L412

    L971 L943

    L402

    L403

    L973

    L407

    /2VD71BA511

    projekt=PC7 variante=0 fbid=351668

    L422

    L421

    Preheater Simulation ResultsExisting DIN-2 Preheater

    4.5ft active tube length, 2275 tubes, 10,000 pph RS-ABS

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    Tube Length (ft)

    0

    50

    100

    150

    200

    250

    300

    Molar Vapor FractionResidence Time (min)Pressure (psig)Polymer Temperature (°C)

    Polymer DevolatilizationProcess showing onsetof two-phase flow in thetubes of the first-stage

    preheater

  • BTS Tefen ConsortiumRyan/PTGPage 18; 09/15/04 Americas

    Disactivation

    0.0000

    2.0000

    4.0000

    6.0000

    8.0000

    10.0000

    12.0000

    14.0000

    16.0000

    18.0000

    20.0000

    0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

    time (h)

    Gew

    % D

    PC

    Standard (vers. 32, DPC)

    0-60&181-420 std. ver., 61-180 min ohne O2 (vers. 43a, DPC)

    0-120 ohne O2, 121-420 min std. vers.(vers. 45, DPC)

    vers. 32 DPC (expermn'tl)

    vers. 43a DPC (expermn'tl)

    vers. 45 DPC (expermn'tl)

    Chemical Engineering: Reaction Kinetics

    Chemical Engineering Reaction Kinetics mathematically represents chemicalprocesses using parameter estimation algorithms to fit model generated curvesthrough experimental results..

  • BTS Tefen ConsortiumRyan/PTGPage 19; 09/15/04 Americas

    Example 1: Biotech Engineering Simulation

    Dose strategy forsuccessful therapy ???

    Absorption and

    distribution of the agent

    inside the body ???

    Concentrationof the agent

    inside organ / tumoras a function

    of time???

    Segmental fraction doseabsorbed inside cellularspace ???

    PK-Sim®Fast and cost-saving drug development ?Therapeutical effect ???

  • BTS Tefen ConsortiumRyan/PTGPage 20; 09/15/04 Americas

    GI-tract

    liver

    organs

    lung

    Ve n

    ous

    b loo

    d

    Ar t e

    ri al b

    l ood

    intra

    cel

    lula

    r c

    ompa

    rtmen

    t

    inte

    rstit

    ial

    com

    partm

    ent

    vasc

    ular

    com

    partm

    ent

    Simulation ofconcentration profile in

    liverlungpancreasplasmaskinbrain.......tumoretc.

    t

    c

    Simulation ofconcentration profile int

    Dosing Scheme 1

    Dosing Scheme 2

    vascular spaceof organ

    cellular spaceof organ

    t

    t

    PK-Sim®The Whole-Body ADME Simulation Tool

    2 4 6 8

    100

    50

    Succ

    ess

    r ate

    [%]

    Days after infection

    Control

    Dosing Scheme 1

    Dosing Scheme 2

    Simulation ofpharmaco-dynamics

    Example 1: Biotech Engineering Simulation

  • BTS Tefen ConsortiumRyan/PTGPage 21; 09/15/04 Americas

    Goal

    Results

    ProcedurePhysiology-based modeling was usedto „scale-up“ the known PK oflaboratory animals to humans

    Estimate pharmacokinetic (PK)behavior of a new compound inhumans prior to clinical studies

    New compound has a favorable PKprofile in humans (e. g. threefold higherCmax compared to compound B)

    x 3

    Example 1: Biotech Engineering Simulation

    Compound BCompound B

  • BTS Tefen ConsortiumRyan/PTGPage 22; 09/15/04 Americas

    GI-tract

    liver

    organs

    lung

    Ven

    ous

    b loo

    d

    Ar t e

    ri al b

    l ood

    intra

    cel

    lula

    r c

    ompa

    rtmen

    t

    inte

    rstit

    ial

    com

    partm

    ent

    vasc

    ular

    com

    partm

    ent

    PK-Sim®The Whole-Body ADME Simulation ToolFuture Development …

    Pharmaco-Dynamic Module

    affinity to target

    Example 1: Biotech Engineering Simulation

    Future Development: Cancer Cell Metabolic Model

  • BTS Tefen ConsortiumRyan/PTGPage 23; 09/15/04 Americas

    Process Simulation: Summary

    • Dynamic and steady-state material and energy balances developed in the polymer and chemical sector to support design, construction and optimization of processes.

    ⇒ First simulation methods developed 30-years ago!⇒ Industrial standards now recognized (Aspen, Hypertech, gProms).

    • Dynamic material balance simulation models are available in the pharmaceutical and biotech sectors to support:

    ⇒ Drug development!⇒ Optimized Dosages (individualized therapies)

  • BTS Tefen ConsortiumRyan/PTGPage 24; 09/15/04 Americas

    Example 2: Total Process Performance Optimization

    UltrafiltrationCapturing

    Protein A Chrom.VirusInactivation?

    PurificationIEX Chrom.

    PolishingHIC Chrom.Diafiltratio

    nDiafiltratio

    nSterile FiltrationFormulation

    air

    waste airM

    V

    Fermentation

    Based on six-sigma principles and chemical engineering tools: √ Simulation √ Datamining √ Statistics √ Process Control

    Typical Batch Biotech Process

  • BTS Tefen ConsortiumRyan/PTGPage 25; 09/15/04 Americas

    Cp Sigma Defects Cost of Quality Class

    0.67 +/- 2 5% 25-35%Not Capable Competitive

    1 +/- 3 0.13% 20-25% Average1.33 +/- 4 60 ppm 12-18% Healthy1.66 +/- 5 1ppm 4-8% Superior

    2 +/- 6 2 ppb 1-3% World Class

    Example 2: Total Process Performance Optimization - Motivation

    FDA Science Board November 16, 2001 Meeting:D. Dean, F. Bruttin, Price Waterhouse Coopers,

    Modified by Ajaz S. Hussain, Ph.D.,Deputy Director, Office of Pharmaceutical

    Science, CDER, FDA

    Under cGMP when failures/recalls exceed 10% - process no longer “validated”

    Pharma

    Semicon

  • BTS Tefen ConsortiumRyan/PTGPage 26; 09/15/04 Americas

    Notes:1: * Based on sold-out conditions

    2: All results are based on past projects: (two years ago mainly energy and yield savings and quality improvements, currently capacity increase (higher throughput and reliability) OEE Overall Equipment Efficiency

    Example 2: Total Process Performance Optimization - Motivation

    Project Payout (mts)

    Annual Savings (k$)

    Project Payout (mts)

    Annual Savings (k$)

    Energy 9-12 150-350 N/A N/AYield 9-12 up to 450 12-24 >> 1,000Capacity Increase* 8 > 1,000 12-24 >> 1,000

    Polychem Biotech

  • BTS Tefen ConsortiumRyan/PTGPage 27; 09/15/04 Americas

    A step-by-step quantitative framework (rooted in six sigma principles) toassess, improve and sustain process efficiencies.

    Capacity Yield Energy Environment Quality Reliability

    D e f i n e Define goals and targets

    M e a s u r e Measure goals and process, validate measurements

    A n a l y z e Analyze variability, historical process system data & control system performance data

    I m p r o v e Perform DOE’s, Lab Experiments to discover variable relationships, establish “best” control limits C o n t r o l Implement SPC Implement process control, implement monitoring to sustain performance

    Voice of the Customer

    Economic and Quality Goals for process

    Example 2: Total Process Performance Optimization

  • BTS Tefen ConsortiumRyan/PTGPage 28; 09/15/04 Americas

    Total Process Performance Optimization:Define and Quantify Performance

    EXAMPLE: Specific Energy Consumption Lbs SteamLbs Product

    Spec

    ific

    Ener

    gy C

    onsu

    mpt

    ion

    Best Achieved(best achieved values)

    Production Rate

    Target based (averaged values)7%

    15%

  • BTS Tefen ConsortiumRyan/PTGPage 29; 09/15/04 Americas

    2n

    4n

    6n

    8n

    10n

    12n

    0 n*1000 n*2000 n*3000 n*4000 n*5000 n*6000 n*7000

    Production Rate (#/h of PC based on BPA feed)

    Spec

    ific

    Mix

    ed S

    olve

    nt C

    onsu

    mpt

    ion

    (#m

    s/#p

    c)

    If the unit can operate consistently at the best observed performancepoints, it can increase capacity and improve

    quality!

    30%

    Total Process Performance Optimization:Define and Quantify Performance

    Production Rate

  • BTS Tefen ConsortiumRyan/PTGPage 30; 09/15/04 Americas

    0.000

    0.100

    0.200

    0.300

    0.400

    0.500

    0.600

    0.700

    0.800

    0.900

    1.000

    7/24/1998 0:00 2/9/1999 0:00 8/28/1999 0:00 3/15/2000 0:00 10/1/2000 0:00 4/19/2001 0:00 11/5/2001 0:00 5/24/2002 0:00

    Date

    Dur

    atio

    n (D

    ays)

    Filter Suspend/Harvest Duration

    100%

    Total Process Performance Optimization:Define and Quantify Performance, Biotech Process

  • BTS Tefen ConsortiumRyan/PTGPage 31; 09/15/04 Americas

    0

    5

    10

    15

    20

    25

    30

    0.00-0.30 0.30-0.35 0.35-0.40 0.40-0.45 0.45-0.50 0.50-0.55 0.55-0.60 0.60-0.65 0.65-0.99

    Duration (days)

    %

    Filter Suspend/Harvest Duration

    Best ObservedPerformance

    Cpk = 0.003

    Total Process Performance Optimization:Define and Quantify Performance, Biotech Process

  • BTS Tefen ConsortiumRyan/PTGPage 32; 09/15/04 Americas

    -0.40

    -0.20

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    Varia

    ble

    1

    Varia

    ble

    2

    Varia

    ble

    3

    Varia

    ble

    4

    Varia

    ble

    5

    Varia

    ble

    6

    Varia

    ble

    7

    Varia

    ble

    8

    Varia

    ble

    9

    Varia

    ble

    10

    Varia

    ble

    11

    Varia

    ble

    12

    Varia

    ble

    13

    Varia

    ble

    14

    Varia

    ble

    15

    Varia

    ble

    16

    Varia

    ble

    17

    Varia

    ble

    18

    variables with little to no effect on KPI

    variables with a large positive effect on KPIvariables with a large negative effect on KPI

    Fingerprints and Impact Charts

    -4-3-2-

    1012

    - 2- 101234

    Varia

    ble

    1Va

    riabl

    e 2

    Varia

    ble

    3Va

    riabl

    e 4

    Varia

    ble

    5

    Varia

    ble

    20Va

    riabl

    e 21

    Varia

    ble

    22Va

    riabl

    e 23

    Varia

    ble

    24Va

    riabl

    e 25

    Varia

    ble

    26Va

    riabl

    e 27

    Varia

    ble

    6Va

    riabl

    e 7

    Varia

    ble

    8Va

    riabl

    e 9

    Varia

    ble

    10Va

    riabl

    e 11

    Varia

    ble

    12Va

    riabl

    e 13

    Varia

    ble

    14Va

    riabl

    e 15

    Varia

    ble

    16Va

    riabl

    e 17

    Varia

    ble

    18Va

    riabl

    e 19

    Good Lot

    Bad Lot

    Total Process Performance Optimization:Data Analysis and Datamining

  • BTS Tefen ConsortiumRyan/PTGPage 33; 09/15/04 Americas

    •Daily Summary •TDI 2 •06/02/2001•General Information

    •Number of Controllers: •20•Unit PI: •0.75•Unit Service factor: •88.00

    •Controllers •PI •Service •Factor

    •Saturation •(%)

    •Oscillation •Index

    •Period •(min)

    •Weight

    •10TC207 •0.65 •100.00 •8.61 •0.12 •0.00 •1.00•10PC104 •0.11 •10.00 •90.00 •0.88 •6.00 •1.00•10PC105 •0.16 •20.00 •85.00 •0.82 •6.00 •1.00•10FC107 •0.15 •70.00 •65.00 •0.85 •6.00 •1.00•10FC109 •0.90 •100.00 •21.53 •0.20 •6.00 •1.00•10PC110 •0.95 •100.00 •11.88 •0.30 •6.00 •1.00•10TC113 •0.70 •85.00 •17.71 •0.78 •6.00 •1.00•10AC115 •0.80 •65.00 •21.04 •0.86 •6.00 •1.00•10PC116 •1.00 •100.00 •10.76 •0.60 •6.00 •1.00•10PC106 •0.08 •100.00 •80.00 •0.91 •8.00 •1.00•10FC108 •0.79 •100.00 •14.31 •0.83 •8.00 •1.00•10FC111 •1.00 •100.00 •15.14 •0.82 •8.00 •1.00•10PC112 •0.80 •100.00 •12.36 •0.83 •8.00 •1.00•10PC114 •1.00 •100.00 •8.40 •0.86 •8.00 •1.00•10TC204 •0.87 •100.00 •8.89 •0.80 •12.00 •1.00•10LC206 •0.95 •100.00 •5.90 •0.63 •12.00 •1.00•10TC201 •0.90 •100.00 •0.00 •0.92 •14.00 •1.00•10AC203 •0.75 •100.00 •2.15 •0.61 •16.00 •1.00•10FC202 •0.45 •100.00 •0.00 •0.58 •22.00 •1.00•10TC205 •0.90 •100.00 •0.00 •0.50 •24.00 •1.00

    Daily Summary

    Total Process Performance Optimization:Sustain Reactor Controller Performance

    LowerSpecLimit

    UpperSpecLimit

    GOOD: High CapabilityHigh Capability

    LowerSpecLimit

    UpperSpecLimit

    BAD: Low CapabilityLow Capability

    LowerSpecLimit

    UpperSpecLimit

    Process is capable

    LowerSpecLimit

    UpperSpecLimit

    Process is not capableFDA Science Board November 16, 2001 Meeting:

    Price Waterhouse Coopers Presentation,

  • BTS Tefen ConsortiumRyan/PTGPage 34; 09/15/04 Americas

    Performance

    Process & Equipment

    Control

    Total Process Performance Optimization:Sustainability, Monitoring and SPC

  • BTS Tefen ConsortiumRyan/PTGPage 35; 09/15/04 Americas

    Total Process Performance Optimization:Sustain Batch Operations

    Golden Batch Profile

  • BTS Tefen ConsortiumRyan/PTGPage 36; 09/15/04 Americas

    Total Process Performance Optimization - Results

    • Baytown and New Martinsville set monthly production records, againThey’ve done it again; Baytown and New Martinsville have once again set newmonthly MDI production records. The facilities first set monthly production recordsfor MDI in March with a combined output of 27,238 metric tons. In June, they brokethe record again, increasing production by an additional 1,367 metric tons… Thisgood news is no surprise to Kirk Bourgeois, Head Production and Technology –MDI USA, who has helped lead six sigma-based optimization teams charged withimproving and sustaining process efficiencies... BMS Website News, September,2004

    • Bayer BP … has bounced back thanks to a successful process transformation projectBayer BP’s Operational Excellence initiative helped increase by 35% the plant’soverall output of Kogenate FS in 2003 and should help to double 2000’s productionlevels by 2006… So far, the process changes brought about by the OperationalExcellence project have not been accompanied by big Bayer BP financialexpenditures in new technology… Managing Automation, July, 2004, pages 43-46.

  • BTS Tefen ConsortiumRyan/PTGPage 37; 09/15/04 Americas

    Total Process Performance Optimization: Summary

    • Powerful Tools Developed in the Chemical Process Sector√ Methodologies√ Mathematical Tools√ Monitoring Infrastructure

    In Polymer and Chemical Industries In Pharma and Biotech Industries √ To Increase Capacity √ To Increase Capacity √ To Improve Quality √ To Improve Quality √ To Reduce Energy Costs √ To Improve Release Times √ To Increase Productivity √ To Reduce DER’s

    • And … process optimization leads to a better understanding of the unit operations within the process; a well implemented optimization project can inherently be used as a diagnostic platform to recover from disturbances … both in the process and pharma/biotech sectors!

    Bayer Group: ProductsBayer Group: FiguresBayer Technology Services: International Locations/Offices