ambrosch-draxl optics bse

Upload: yasir-ali

Post on 03-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    1/48

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    2/48

    Contents

    The dielectric tensor

    The program

    Inputs / outputs

    Examples

    The GW approach

    The Bethe-Salpeter equation

    Core excitons

    X-ray circular dichroism

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    3/48

    Light-Matter Interaction

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    4/48

    Light-Matter Interaction

    Polarizability

    susceptibility

    conductivity

    dielectric tensor

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    5/48

    Light-Matter Interaction

    Free electrons: the Lindhard formula

    Bloch electrons

    interbandintraband

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    6/48

    Light-Matter Interaction

    Independent particle approximation

    h

    v

    c

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    7/48

    Light-Matter Interaction

    Complex dielectric tensor

    Optical conductivity

    Complex refractive index

    Reflectivity

    Absorption coefficient Loss function

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    8/48

    Light-Matter Interaction

    Dielectric tensor

    Optical conductivity

    Ene

    rgy

    E

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    9/48

    Light-Matter Interaction

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    10/48

    Light-Matter Interaction

    triclinic

    monoclinic (,=90)

    orthorhombic

    tetragonal, hexagonal

    cubic

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    11/48

    Light-Matter Interaction

    without magnetic field, spin-orbit coupling: cubic

    with magnetic field z, spin-orbit coupling: tetragonal

    KK

    KK

    KK

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    12/48

    The Program

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    13/48

    The Program Flow

    x kgen dense mesh

    x lapw1 Kohn-Sham states (higher Emax)

    x lapw2 -Fermi Fermi distribution

    x optic momentum matrix elements

    x joint tensor components

    x kram optical c o nsta n ts

    life time broadeningsc isso rsshift

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    14/48

    Inputs

    Al.inop

    Ni.inop

    2000 1 number of k-points, first k-point-5.0 2.2 energy window for matrix elements

    1 number of cases (see choices)1 Re OFF write unsymmetrized matrix elements to file?

    800 1 number of k-points, first k-point-5.0 5.0 energy window for matrix elements3 number of cases (see choices)1 Re 3 Re 7 Im OFF

    Choices:

    1......Re 2......Re

    3......Re

    4......Re

    5......Re

    6......Re

    7......Im 8......Im

    9......Im

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    15/48

    Inputs

    Al.injoint

    1 18 lower and upper band index0.000 0.001 1.000 Emin, dE, Emax [Ry]

    eV output units eV / Ry4 switch1 number of columns to be considered

    0.1 0.2 broadening for Drude term(s)choose gamma for each case!

    0...JOINT DOS for each band combination

    1...JOINT DOS sum over all band combinations

    2...DOS for each band

    3...DOS sum over all bands

    4...Im(EPSILON) total5...Im(EPSILON) for each band combination

    6...intraband contr ibut ions

    7...intraband contributions including band analysis

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    16/48

    0 1 2 3 4 5 6-20

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    80

    Re

    Im

    =0.05eV

    Silicon

    Energy [eV]

    Inputs

    Al.inkram

    Si.inkram

    0.1 broadening gamma0.0 energy shift (scissors operator)

    1 add intraband contributions 1/012.6 plasma frequency0.2 (s) for intraband part

    0.05 broadening gamma

    1.00 energy shift (scissors operator)0

    ....

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    17/48

    Outputs

    case.symmat case.mommat

    case.joint

    case.epsilon

    case.sigmak

    case.refraction

    case.absorp

    case.eloss

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    18/48

    Results

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    19/48

    Example: Al

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00

    25

    50

    75

    100

    125

    150

    175

    0 1000 2000 3000 4000 500012.0

    12.1

    12.2

    12.312.4

    12.5

    12.6

    12.7

    12.8

    p

    k-points in IBZ

    165k

    286k

    560k

    1240k

    2456k

    3645k

    4735k

    Interb

    andIm

    Energy [eV]

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    20/48

    Example: Al

    0 10 20 30 40 50 60 70 80 90 1000

    1

    2

    3

    4

    5

    165 k-points

    4735 k-points

    Experiment

    Neff[e

    lectrons]

    Energy [eV]

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    21/48

    Example: Al

    0 5 10 15 200

    20

    40

    60

    80

    100

    120

    total

    intraband

    interband

    Loss

    function

    Energy [eV]

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    22/48

    Example: Au

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    23/48

    Example: Au

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    24/48

    Examples: Ag, Au

    W. S. M. Werner, M. R. Went, M. Vos, K. Glantschnig, and C. Ambrosch-DraxlPhys. Rev. B 77, 161404(R) (2008).

    Ag

    Au

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    25/48

    17 Elemental Metals

    W. Werner, K. Glantschnig, and CADJ. Phys. Chem. Ref. Data 38, 1013 (2009).

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    26/48

    17 Elemental Metals

    Overall excellent agreement in the entireenergy range (up to 100 eV)

    New REELS data agree

    much better with DFT

    Details of the band

    structure matter .

    W. Werner, K. Glantschnig, and CADJ. Phys. Chem. Ref. Data 38, 1013 (2009).

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    27/48

    People

    C. Ambrosch-Draxl and J. O. Sofo

    Line a r o p tic a l p ro p e rt ie s o f so lid s w ithin the full-p o te nt ia l line a rize d

    a u gm ente d p la n ewa ve m e tho d

    Comp. Phys. Commun. 175, 1-14 (2006).

    Robert Abt

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    28/48

    Exploring the Core Region

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    29/48

    A polarized photon beam excites electronsof different spin with different cross sections

    X-Ray Magnetic Circular Dichroism

    2p1/2

    2p3/2

    25% 63%75% 37%

    Right Left

    25% 63% 75% 37%

    exchange

    splitting

    SO splitting

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    30/48

    XMCD

    L. Pardini, F. Manghi, V. Bellini, and C. Ambrosch-Draxl,in Linear and Chiral Dichroism in the Electron Microscope,

    Edt. P. Schattschneider, 2011).

    Right

    Left

    Theory

    ExperimentIntensity[arb.u

    nits]

    Energy [eV]Energy [eV]

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    31/48

    Beyond

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    32/48

    Elemental Metals: Ag

    Interband transition onset:

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    33/48

    Can Functionals Help?

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    34/48

    Beyond the Ground State

    Ground state

    Excited state

    Many-body treatment needed

    2 routes

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    35/48

    h

    Probing Electronic States

    h

    v

    c

    N-1 electrons

    v

    c

    N+1 electrons

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    36/48

    The quasi horse according to Richard D. Mattuk

    The Quasiparticle Concept

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    37/48

    The Quasiparticle Concept

    The quasiparticle equation

    The Kohn Sham equation

    G0W0

    G = GKS+

    G0= G

    KS

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    38/48

    The GWApproach

    All-electron & pseudopotential results

    R. Gmez-Abal, X. Li, M. Scheffler, and CAD, PRL 101, 036402 (2008).

    G0W

    0

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    39/48

    Beyond

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    40/48

    Effective H atom

    effective mass m*

    dielectric constant

    h

    v

    c

    The Bethe-Salpeter Equation

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    41/48

    Two-particle wavefunction

    Effective two-particle Schrdinger equation

    KS states from GS calculation

    The Bethe-Salpeter Equation

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    42/48

    Diagonal term

    Direct term - attractive

    Exchange term - repulsive

    The Bethe-Salpeter Equation

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    43/48

    Bethe-Salpether equation (BSE)

    Independet particle approximation (IPA)

    The Bethe-Salpeter Equation

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    44/48

    P. Puschnig and C. Ambrosch-Draxl, Phys. Rev. Lett. 89, 056405 (2002).P. Puschnig and C. Ambrosch-Draxl, Phys. Rev. B 66, 165105 (2002).

    The Bethe-Salpeter Equation

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    45/48

    Typical approach:

    LAPW allows for a BSE treatment

    How well do both approaches compare?

    For deep core states they are basicallyequivalent

    What about semi-core levels?

    J. J. Rehr, J. A. Soininen, and E. L. Shirley, Phys. Scr. T115, 207 (2005).

    The Bethe-Salpeter Equation

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    46/48

    Li K edge in LiF

    Core Excitations

    Exp.: K. Handa et al., Memoirs of the SR Center Ritsumeikan University 7, 3 (2005).

    W. Olovsson, I. Tanaka, T. Mizoguchi, P. Puschnig, and CAD, PRB 79, 041102(R) (2009).

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    47/48

    Status of Codes

    Independent-particle approximation

    XMCD

    GW

    BSE

    CAD and J. O. Sofo, CPC 175, 1-14 (2006).

    H. Jiang, R. Gmez-Abal, X. Li, Ch. Meisenbichler, CAD, and M. Scheffler,CPC to be published.

    P. Puschnig and CAD, Phys. Rev. B 66, 165105 (2002).

    L. Pardini, V. Bellini, CAD, and F. Manghi, submitted to CPC (preprint).

  • 7/28/2019 Ambrosch-Draxl Optics Bse

    48/48