ambient noise tomography fundamentals

50
Ambient Noise Tomography fundamentals ChristophSens-Sch¨onfelder GFZ German Research Centre for Geosciences, Potsdam, Germany 4DMB meeting, 2.2.2018

Upload: others

Post on 18-Dec-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ambient Noise Tomography fundamentals

Ambient Noise Tomographyfundamentals

Christoph Sens-Schonfelder

GFZ German Research Centre for Geosciences, Potsdam, Germany

4DMB meeting, 2.2.2018

Page 2: Ambient Noise Tomography fundamentals

Recap

tomographic techniques:

I refraction tomography

I local or teleseismic earthquake tomography

I surface wave tomography

common approach

Infer information about the medium from the observableinteraction of a wavefied during the propagation from its source toa set of receivers.

Page 3: Ambient Noise Tomography fundamentals

Recap

source-receiver geometry

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

We can directly measure the impulse response (Green’s function).

Page 4: Ambient Noise Tomography fundamentals

Recap

Page 5: Ambient Noise Tomography fundamentals

Recap

Page 6: Ambient Noise Tomography fundamentals

Seismic records

Signals from impulsive localized sources make up a tiny fraction ofthe records only. Most of it is NOISE.

Page 7: Ambient Noise Tomography fundamentals

Seismic records

Signals from impulsive localized sources make up a tiny fraction ofthe records only. Most of it is NOISE.

Page 8: Ambient Noise Tomography fundamentals

Seismic records

Signals from impulsive localized sources make up a tiny fraction ofthe records only. Most of it is NOISE.

Page 9: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 10: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 11: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 12: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 13: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 14: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 15: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 16: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 17: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 18: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 19: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 20: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 21: Ambient Noise Tomography fundamentals

The ambient wavefield

am

plit

ude

timede

pth

surface

How to make use of these random oscillations?

Page 22: Ambient Noise Tomography fundamentals

Seismic Interferometry (SI)

Use the correlation properties of the field – not the field itself!

impulsive source

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

random sources

One can create data for tomography from random fields bycorrelating records from different locations!

Page 23: Ambient Noise Tomography fundamentals

Seismic Interferometry (SI)

Use the correlation properties of the field – not the field itself!

impulsive source

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

random sources

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

One can create data for tomography from random fields bycorrelating records from different locations!

Page 24: Ambient Noise Tomography fundamentals

Seismic Interferometry (SI)

Use the correlation properties of the field – not the field itself!

impulsive source

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

random sources

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

One can create data for tomography from random fields bycorrelating records from different locations!

Page 25: Ambient Noise Tomography fundamentals

Seismic Interferometry (SI)

Use the correlation properties of the field – not the field itself!

impulsive source

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

random sources

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

One can create data for tomography from random fields bycorrelating records from different locations!

Page 26: Ambient Noise Tomography fundamentals

Seismic Interferometry (SI)

Use the correlation properties of the field – not the field itself!

impulsive source

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

random sources

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

One can create data for tomography from random fields bycorrelating records from different locations!

Page 27: Ambient Noise Tomography fundamentals

Seismic Interferometry (SI)

Use the correlation properties of the field – not the field itself!

impulsive source

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

random sources

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

One can create data for tomography from random fields bycorrelating records from different locations!

Page 28: Ambient Noise Tomography fundamentals

Seismic Interferometry (SI)

Use the correlation properties of the field – not the field itself!

impulsive source

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

random sources

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

One can create data for tomography from random fields bycorrelating records from different locations!

Page 29: Ambient Noise Tomography fundamentals

Seismic Interferometry (SI)

Use the correlation properties of the field – not the field itself!

impulsive source

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

random sources

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

One can create data for tomography from random fields bycorrelating records from different locations!

Page 30: Ambient Noise Tomography fundamentals

Seismic Interferometry (SI)

Use the correlation properties of the field – not the field itself!

impulsive source

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

random sources

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

One can create data for tomography from random fields bycorrelating records from different locations!

Page 31: Ambient Noise Tomography fundamentals

Seismic Interferometry (SI)

Use the correlation properties of the field – not the field itself!

impulsive source

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

random sources

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

One can create data for tomography from random fields bycorrelating records from different locations!

Page 32: Ambient Noise Tomography fundamentals

Seismic Interferometry (SI)

Green’s functions extraction:

G (xB , xA, t) + G (xB , xA,−t) ∝∫S

G (xB , x, t) + G (xA, x,−t)dS

Page 33: Ambient Noise Tomography fundamentals

Application 1: coda correlation

[Campillo and Paul, 2003]

Page 34: Ambient Noise Tomography fundamentals

Application 1: coda correlation

particle motion

[Campillo and Paul, 2003]

retrieve surface waves from earthquake coda

Page 35: Ambient Noise Tomography fundamentals

Application 2: coda correlation in an array

Green’s tensor

[Paul et al., 2005]

Page 36: Ambient Noise Tomography fundamentals

Application 3: noise correlation

[Wapenaar et al., 2010]

Page 37: Ambient Noise Tomography fundamentals

Application 3: noise correlation

dispersion

[Shapiro and Campillo, 2004]

Page 38: Ambient Noise Tomography fundamentals

First summarySeismic interferometry

I uses records of a random wavefield that contains the requiredwaves

I waves propagating between receivers are extracted from therandom field by cross correlation

I allows to retrieve surface waves traveling between seismicstations

Some review papers on SI:

I [Snieder, 2004]

I [Campillo, 2006]

I [Curtis et al., 2006]

I [Wapenaar et al., 2010]

I [Snieder and Larose, 2013]

Page 39: Ambient Noise Tomography fundamentals

Application 4: ambient noise surface wave tomography

group velocity maps of Southern California

7.5 s 15 s

[Shapiro et al., 2005]

Page 40: Ambient Noise Tomography fundamentals

What is the ambient noise?power spectrum of a typical noise record (New Mexico)

[Peterson, 1993]

Page 41: Ambient Noise Tomography fundamentals

What is the ambient noise?power spectrum of a typical noise record (New Mexico)

[Peterson, 1993]

Page 42: Ambient Noise Tomography fundamentals

Microtremorvibrations with f > 1Hz mostly of cultural origin (traffic, industry,wind turbines)

[Bonnefoy-Claudet et al., 2006]

Page 43: Ambient Noise Tomography fundamentals

Microseisms

seismic waves excited by the action of ocean waves

Page 44: Ambient Noise Tomography fundamentals

Microseisms

seismic waves excited by the action of ocean waves

I hum and primary microseisms around 12 s period: interferenceof waves with ocean bottom topography

Page 45: Ambient Noise Tomography fundamentals

Microseisms

seismic waves excited by the action of ocean waves

I hum and primary microseisms around 12 s period: interferenceof waves with ocean bottom topography

I secondary (double frequency) microseism around 6 s period:wave-wave interaction

Page 46: Ambient Noise Tomography fundamentals

Microseisms

seismic waves excited by the action of ocean waves

I hum and primary microseisms around 12 s period: interferenceof waves with ocean bottom topography

I secondary (double frequency) microseism around 6 s period:wave-wave interaction

The source site effect due to the water depth modulates theefficiency of seismic wave generation.

Seismic sources are neither simply below wind systems nor at theshore!

Page 47: Ambient Noise Tomography fundamentals

Source regions of secondary microseisms

[Landes et al., 2010]

Page 48: Ambient Noise Tomography fundamentals

Consequences for tomography

I source distribution is variable ⇒ potenial for estimates ofwave velocities

[Froment et al., 2010]

⇒ long time averaging required to reduce the effect ofnon-uniform source distributions.

Page 49: Ambient Noise Tomography fundamentals

Summary

I seismic interferometry allows to retrieve the Green’s functionfrom random seismic fields (e.g. ambient noise)

I the ambient field below 0.3 Hz is generated in the oceans(microseisms)

I high frequency cultural noise above 1 Hz

⇒ allows for surface wave tomography without individuallyidentified sources

I uneven source distribution can bias velocity estimates

Page 50: Ambient Noise Tomography fundamentals

References

Bonnefoy-Claudet, S., Cotton, F., and Bard, P. Y. (2006).The nature of noise wavefield and its applications for site effects studies. Aliterature review.Earth-Science Rev., 79(3-4):205–227.

Campillo, M. (2006).Phase and Correlation in ‘Random’ Seismic Fields and the Reconstruction of theGreen Function.Pure Appl. Geophys., 163(2-3):475–502.

Campillo, M. and Paul, A. (2003).Long-range correlations in the diffuse seismic coda.Science, 299(5606):547–9.

Curtis, A., Gerstoft, P., Sato, H., Snieder, R., and Wapenaar, K. (2006).Seismic interferometry – turning noise into signal.Lead. Edge, 25(9):1082.

Froment, B., Campillo, M., Roux, P., Gouedard, P., Verdel, A., and Weaver,R. L. (2010).Estimation of the effect of nonisotropically distributed energy on the apparentarrival time in correlations.Geophysics, 75(5):SA85.

Landes, M., Hubans, F., Shapiro, N. M., Paul, A., and Campillo, M. (2010).Origin of deep ocean microseisms by using teleseismic body waves.J. Geophys. Res. Solid Earth, 115(5):1–14.

Paul, A., Campillo, M., Margerin, L., Larose, E., and Derode, A. (2005).Empirical synthesis of time-asymmetrical Green functions from the correlation ofcoda waves.J. Geophys. Res., 110(B8):B08302.

Peterson, J. (1993).Observations and modeling of seismic background noise.USGS Open File Rep., 93-322:Open–File Report 93–322.

Shapiro, N. and Campillo, M. (2004).Emergence of broadband Rayleigh waves from correlations of the ambientseismic noise.Geophys. Res. Lett., 31:7614.

Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H. (2005).High-resolution surface-wave tomography from ambient seismic noise.Science (80-. )., 307(5715):1615–1618.

Snieder, R. (2004).Extracting the Green’s function from the correlation of coda waves: A derivationbased on stationary phase.Phys. Rev. E, 69(4):046610.

Snieder, R. and Larose, E. (2013).Extracting Earth’s Elastic Wave Response from Noise Measurements.Annu. Rev. Earth Planet. Sci., 41(1):183–206.

Wapenaar, K., Draganov, D., and Snieder, R. (2010).Tutorial on seismic interferometry: Part 1—Basic principles and applications.Geophysics, 75(5).