alternative representation of qw phase accumulation model

9
B i B re C i C re 1/2 1/2 2() 2 integer 3.4 1 2arcsin B C B V L C U L kEd n n eV E E E E E E Alternative representation of QW Phase accumulation model

Upload: ivana

Post on 23-Feb-2016

55 views

Category:

Documents


0 download

DESCRIPTION

Alternative representation of QW Phase accumulation model. Dispersion of k(E). Synchrotron radiation photoemission spectroscopy. ISA Aarhus University Maximum Energy 580 MeV Max Current 250 mA Lifetime 15 hours. SGM1 30-400 eV 10 10 photons/sec @130 eV. Photoelectron spectroscopy. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Alternative  representation  of QW Phase accumulation  model

BiBr e

CiCr e

1/2

1/2

2 ( ) 2integer

3.4 1

2arcsin

B C

B

V

LC

U L

k E d nn

eVE E

E EE E

Alternative representation of QWPhase accumulation model

Page 2: Alternative  representation  of QW Phase accumulation  model

Dispersion of k(E)

FEVBME

5.5VE eV

2.1gV eV

1/221

2 1

2 2

1/2

22

4 ( )

2

2

2( )

G G G G VBM

G G VBM

G

r V E E V E E

r E V E E r

h GEm

m rk Eh

Page 3: Alternative  representation  of QW Phase accumulation  model

Synchrotron radiation photoemission spectroscopy

• ISA Aarhus University• Maximum Energy 580 MeV• Max Current 250 mA• Lifetime 15 hours

SGM130-400 eV1010 photons/sec @130 eV

Page 4: Alternative  representation  of QW Phase accumulation  model

Photoelectron spectroscopy• Core levels

– Chemical reactions/mixing– Growth modes

• Valence bands– Electronic levels relevant for optics

Binding Energy(eV)

sp band

h=130 eV

Secondaryelectrons

Inte

nsity

(arb

. uni

ts) Al2p

h

EF E

vac

Kinetic Energy (eV)

Page 5: Alternative  representation  of QW Phase accumulation  model

Scanning film thickness by movingwedge through laser or synchrotron beam

Wedge-shaped metal film

18 18 2. . mSample moved into shadow of shield. Evaporation rate ~1 ML per minute Triangular domains ~200 nm

Ag(111) LEED-pattern - only one type of domains

38,80 38,85 38,90 38,95 39,000

5

10

15

20

25Convolution fit ofGauss beamand step functiond=150 m

Si2

p pe

ak h

eigh

t (ar

b. u

nits

)

Sample position (mm)

Width of synchrotron beam

AFM

Page 6: Alternative  representation  of QW Phase accumulation  model

Film growth - Si2p spectra

102 101 100 99 98

0

2

4

6

8

10

101 100 99 98 97

Growth at 170 KNo annealing

130 eV

Inte

nsity

(arb

. uni

ts)

7x7

Growth at 170 KAnnealing atroom temperature

Binding Energy (eV)

0 2 4 6 8 10 120,01

0,1

1

10 Bulk 300 K Surface 300 K Bulk 170 K Surface 170 K

Inte

nsity

(ar

b. u

nits

)

Coverage (ML)

Growth at 170 K leads to exponential decay of Si2p levels with ~5Å decay rate.Room temperature annealing of the film leads to growth of large atomically flatdomains. Areas with low Ag coverage are formed.

Annealing

Page 7: Alternative  representation  of QW Phase accumulation  model

3,0 2,5 2,0 1,5 1,0 0,5 0,00

5

10

15

20

25

30

Double peaks

14

2418

1297

5

4210

Cu VBM

Clean Si(111)7x7

Inte

nsity

(ar

b. u

nits

)

Binding Energy (eV)

Cu buffer layerCu wedge under 10-ML Ag film

3 ML Cu: disordered film

6-7 ML Cu: optimum for Ag overlayer

> 7 ML Cu: coupling of overlayerand substrate levels -double peaks -avoided crossings

Page 8: Alternative  representation  of QW Phase accumulation  model

6 4 2 01

2

3

4

5

6

7

8

9

3 2 1 00,0

0,5

1,0

1,5

2,0

2,5

3,0Ag / 6 ML Cu / Si(111) Valence band 47 eV

20 ML Ag

6 ML Cu

Inte

nsity

(ar

b. u

nits

)

Binding Energy (eV)

Effect of Cu buffer layer

Page 9: Alternative  representation  of QW Phase accumulation  model

QW levels and film roughness

0 2 4 6 8 10 12 14 16 18 20 22 24-2.5

-2

-1.5

-1

-0.5

0

Thickness (ML)

Bin

ding

Ene

rgy

(eV

)

Film thickness variations expected within probed areaVariations within a few atomic layer give broad peaks in photoemission

Beam size on sample ~1 mm