alfvenic wave packets-1 & iiindico.ictp.it/event/a01106/contribution/9/material/0/0.pdf · 2014. 5....

64
the educational, scientific ftbClUS 5313111 and cultural organization international centre for theoretical physics international atomic energy agency SMR 1331/12 AUTUMN COLLEGE ON PLASMA PHYSICS 8 October - 2 November 2001 Alfvenic Wave Packets-1 & II B. Buti California Institute of Technology Pasadena, U.S.A. These are preliminary lecture notes, intended only for distribution to participants. strada costiera, I I - 34014 trieste italy - tel.+39 04022401 I I fax +39 040224163 - [email protected] - www.ictp.trieste.it

Upload: others

Post on 30-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • theeducational, scientific ftbClUS 5313111

    and culturalorganization international centre for theoretical physics

    international atomicenergy agency

    SMR 1331/12

    AUTUMN COLLEGE ON PLASMA PHYSICS8 October - 2 November 2001

    Alfvenic Wave Packets-1 & II

    B. Buti

    California Institute of TechnologyPasadena, U.S.A.

    These are preliminary lecture notes, intended only for distribution to participants.

    strada costiera, I I - 34014 trieste italy - tel.+39 04022401 I I fax +39 040224163 - [email protected] - www.ictp.trieste.it

  • Alfvenic Wave Packets

    1. INTRODUCTION

    2. LINEAR ALFVEN WAVES

    3. NONLINEAR ALFVEN WAVES:

    OBSERVATIONS

    STABILITY

    GOVERNING EQUATIONS

    4. SOLITARY ALFVEN WAVES

    5. CHAOTIC ALFVEN WAVES

    6. DISPERSIVE MHD SIMULATIONS

    7. HYBRID SIMULATIONS

    NONLINEAR LANDAU DAMPING

    ANOMALOUS TRANSPORT

  • SHML

    STA6L

    NOT£ \

    ±

    /" ™ ^ g^P \ . i^-iffct „

    LHP

    NO

  • A-

    »

    CHAOS

  • RHP {P

  • TWO MODES OF SOLAR WIND FLOW

    PROPERTY (1 AU)

    Speed (V)

    Density (n)

    Flux (nV)

    Magnetic Field(£r)

    Temperatures

    Coulomb collisions

    Anistropies

    Beams

    Structure

    Composition

    Waves

    Minor species

    LOW SPEED

    < 400 km/sec

    - 1 0 /cm3

    ~ 3 x 108/cm2 sec

    ~ 2.8nT

    Tp ~ 4 x 104 K

    Te ~ 1.3 x 105K> Tp

    Important

    Tp isotropic

    None

    Filamentary, highly >

    He/H ~ 1 - 30%

    Both directions

    riijnv variable

    HIGHSPEED

    700 - 900 km/sec

    ~ 3 /cm3

    ~ 2 x 108 /cm2 sec

    ~ 2.8 nT

    Tp ~ 2 x 10s K

    Te ~ 10*K< T,

    Negligible

    Fast ion beams

    + electron "strahl"

    Uniform, slow changes

    He/H ~ 5%

    Outwards propagating

    constant

    Associated with

    Sunspot minimum

    Sunspot maximum

    Ti~AT,

    Streamers, Coronal holes

    transiently open field

    ±15 deg from "equator" > 30 deg

    Dominant at most latitudes Less frequent

  • EVOLUTtOM OF MOMUME.AR.

    K^-k,

    CQO&TICV

    STOKES

    OfBACKWARD

  • OBSERVATIONS:

    Large amplitude Alfven waves observed in a variety ofplasmas:

    * solar wind

    * solar corona

    * environment of comets

    * planetary bow shocks

    * interplanetary shocks etc.

    Some Chaotic Features of Solar Wind:

    * Intermittent Turbulence

    * Fractal / Multifractal Nature (Dimension)

    Solar Wind Spectral Characteristics:

    * Power Law Spectra

    * Increase in Spectral Index with heliocentric distance

    * Break in Power Spectra; Break-point moves

    towards lower frequencies with increasing heliocentric

    distances

  • COSMIC PLASMAS:

    Implications of the existence of large-amplitude Alfven

    waves in many cosmic plasmas have been investigated

    to model:

    * turbulent heating of the solar corona

    * interstellar scintillations of radio sources

    * coherent radio emissions

    * generation of stellar winds and extragalactic jets etc

  • 2JIFF£R6MT APPROACHES

    •# -

    tsf\

    * ^ V * 3 6tt«te

  • SOLITARY ALFVEN WAVES

    10

  • at+ v . (Pv) = o

    dvp — = — Vp + J X B

    dB~dt

    = V X (v X B) (V X B) X BP

    B is normalized to Bo, p to po>v to FA = Bo/(4irpo)

    1/2,t to O "̂1, the ion cyclotron frequencyand / toSubscript '0' refers to equilibrium quantities.

  • or n

    -ax

    f

    = o

    /

    -f *4

    LH

    12

  • + '— o

    + LHP

    R.HP

    O3NIUS

    = - V s X. -t- 3tdvC' IJJS.+0

    x == AMPL(T"U3>E OF

    13

  • and

    A U inPLASMAS

    1 d

    _ _dp _ d_BlP dt ~ dr dr 2

    dt r dr

    1 dx dr

    , and Bl)

    . pp ** = const.

    &o(r) r2 =

    U(r) r2 =

    14

  • 0.040 pr2=3.5Ro, r3=5Ro, T4=

    0.0000 8*10

    16

  • 1010"

    Frequency (f10" 10-1

    17

  • OBSERVATIONSTURBULENCE

    POWER SPECTRAetc.

    18

  • WAVES 3mHz

  • Ulysses

    1.0

    nT

    -1.0

    BT, nT o.

    IBI, nT o.8

    0700 0710 0720 0730

    Time, UT

    June 3, 1994Day 154

    r • • • | • i r • | i

    „ . « I

    i . , , , i

    . . . j , . ,

    (J)1

    . . ,1 1 . .

    • • 1 •,

    ©

    i . 1 ll

    1 '(3)

    1 • . 1 .

    1 1 . . .

    0740 0750 0800

    Figure 10. An example of an Alfv6n wave with a phase-steepened edge (rotational discontinuity [RD]). From leftto right, dashed vertical lines give the start and stop times of intervals of analyses.

  • 221S DENSKAT AND NEUBAUER: SOLAR wj

    HELIOS 7

    10

    10

    Fig. 2. Magnetic field (vector components and magnitude) pow-er spectral densities at different heliographic distances. The 'meanfield1 coordinate system (Z axis parallel to the average direction ofthe vector magnetic field) was used throughout the paper. Thespectra were computed from 40-s averages of the magnetic field over11 1/2 hours on January 24, 1900 UT to January 25, 0623 UT-, 1976(0.97 AU) and on April 14, 2300 UT to April 15, 1023 UT, 1976 (0.29AU). Also given are the 95% confidence limits for the spectraldensity computed from an equivalent of 32 degrees of freedom.

    21

  • Tp/Te

    _J I 1

    ISEE-3 Hourly averages

    I

    2 . 5 -

    2 -

    1.5-

    * •.'»' ," ''

    0.5-

    0

    beta

  • CHAOTIC ALFVEN WAVES

    23

  • DRIVEN DNLS EQUATION:

    id2 B+

    at 4(B | B

    NUMERICAL SOLUTION

    Spertral-collocatiop nripthor! wif.b periodic boundary conditions used

    Initial condition:(21/2 - l W 2 B eie

    [2V2 CoSh (2 Vs x) -

    Bmaj : is the amplitude of the soliton

    0 (x, * = 0) = - ys x + 3 tan"1 [(21/2-hl) tanh(2Vs x)\

    V8 is the soliton speed defined by,

    v =

    8 (1 -

    24

  • * O

    |B|2

    0.2

    •15

    • 1 0

    .05

    n I ! J .1.1----

    0 10 15 20 25 M 30

    7B ss.

    25

  • CHAOTIC AVJ

    0.1

    2IBI

    .05

    O

    IBI

    1 .

    IBI

    O.5

    RHP

    A ==.

    . . . . . . J U~....*./ LVIA. . A . / U A . .....I I. »J

    2 x 1 O 4 X 1 O 5.IW

    6 x 1 O5

    oRF1b 1 .5x104-

    26

  • UUP

    O.5T

    O 2x1 4-x 1 O' 6x1 O'

    . 5

    O

    = -D3

    WAikiM2x10 ' Ax 1 6x1O'

    .75

    .25

    As r=-

    o 6.OX1O3 1 .2x1O4 1.8x10^

    27

  • 10 100

    10

    100

    FIGURE Shows Spectra for magnecic field turbulencegenerated through chao» for a) RHP with A = 0.5. b)LHP with A = O.t. c) LHP with A = .03 and d) LHPwith A = .003.

    28

  • SLOW SDLAR^ lAlNCD

    « . - * • «

    F A S T SOLAR.

    A04

    29

  • •*• MOJJE.LS SA.SE.3)

    /

    MOT

    COUPLl^4.Sl

    U-F

    30

  • *- S3

    BUT

    HA.U-

    ear/VELU , BOX I

    O-f

    31

  • MHD SIMULATIONS

    32

  • at ox ox

    8B 8 t ^ . d (ldB1_ „—(vxB — v) = —i

    dt dx dx \p dx

    vx) + (7 - l)/3— = 0a*

    Ua. is flow velocity along direction of propaga-tion, B = (By + i Bz) and v = (vy + i vz).Adiabatic equation of state: pp~1 = const..7 is ratio of specific heats.

    33

  • Initial condition:

    B(x t = 0) =[2V2 Cosh (2 V8 x) -

    is the amplitude of the soliton

    $ (x, t = 0) = - Va x + 3 tan"1 [(21/2+l) tanh(2V, x)]

    V, is the soliton speed defined by,

    TT \ ~ A / max

  • 0.20

    0.10

    0.00

    (a)

    I Ii 1 A

    MM' JM

    ', \

    0.00

    0.04

    0.02

    0.00

    -0.020.00

    -0.02

    -0.04

    -0.06

    (a)

    i hr

    8p

    85 170 255XOOV^Qp)

    0 85 170 255X(10VA/Qp)

    Figuire 1. (a) The evolution of the magnetic and den-sity fluctuations, 13 and fip, respectively, for a RHP soli-ton for ft — 0.3 at /, w 40SJ~ * (da«lied line) and at 51

    ~l (solid line), (b) Same as (a) but for 0 = 1.5.

    sf =

    35

  • 0.40

    0.20

    0.20

    0.120.08

    0.04

    0.00-0.040.00

    -0.02

    -0.04

    -0.06

    . (a)

    (b)

    V(!

    5p

    5p

    -

    85 170 255 85 170 255

    Figure 2. (a) Same as Fig. la but for LHP soliton.(b) Same as Fig. lb but for LHP soliton.

    36

  • l&l

    0

    Bperp(t)

    200 400 600

    37

  • 1.5

    1.0

    38

  • oo 0.0 200 300 400 500

    39

  • HYBRID SIMULATIONS

    COLLAPSE OF ALFVENIC WAVEPACKETS

    DYNAMICAL TURNING POINT—» CHANGE OF POLARIZATION

    RADIATIONS

    40

  • Simulation Model

    * One - Dimensional Hybrid Code

    * Electrons as Isothermal Fluid

    * Protons as Particles Maxwellian

    * HIGH RESOLUTION:

    Simulation Box Length 860 Ion Inertial Lengths

    Number of Cells 2048

    number of Particles / Cell 200

    Simulation Time 1000 Ion Gyro-Periods

    Time resolution 0.01

    4

    41

  • Initial condition:

    B i x t = 0 ) =[2V2 cosh (2 V. x) - 1]V2

    is the amplitude of the soliton

    0 (x,t = 0)-•= - V, aj + 3 tan"1 [(21/2-hl) tanh(2V, x)]

    V9 is the soliton speed defined by,

    v _8 (1 -

  • COLJ-.APS&

    8

    oo 4

    0

    0

    P10b

    200• I I I

    400 600 800

    7*a •

    -ro

    43

  • CD

    500

    72. =

    -r =- \

    44

  • M

    45

  • 8

    0 200 400 600 800

    R10b

    46

  • 0.0060

    0.0050

    n nnAn i~CN*

    _c

    Q_

    (DCL

    0.0030

    0.0020

    0.0010

    0.0000

    i I I 1 1 1 1 1 1

    - ! - = 'gCOOOOCOOOOOt tX^

    AAAAAAAAAAAAAAAAA/AVA7AA?77'A"j9f A\AAAAAA^

    0 200 400 600t

    800

    P15bc

    1000

    47

  • ION HOLES

    NONLINEAR LANDAU DAMPING

    48

  • _ I

    ^ o-i

    ~NW

    yr~V'-~-*

    200 400 600 800

    nl i i T I .—^—;— I . > ~ — I , , , 1

    0 200 400 600 800 200 400 600 300

    S 4F

    i—i—i—|—i—i—nr-|—i—i—i—1—i i i f~} 8 1 I I ' I ' ' ' I ' ' ' I

    0 200 400 600 800 200 400 600 800 200 400 SOO 800

    49

  • 1 i B(—l—t-l—p

    o-a.

    •00 600 800 200 400 600 800 200 400 600 800

    200 400 600 800 200 400 600 800 200 400 600 800

    50

  • oF

    cj

    cor~tPRS.ssi\fe SOLITARY

  • SCALE

    o*. J)PLA.SKA 75> -

  • HOLES

    WHAT

    I.

    O HOT

    II

    F8cc30,

    V

    53

  • 2 i

    200 400 600 800 200 400 600 800 0 200 400 600 800

    at—i—>—i—f—i—i—i—|

    2 ;,

    " • ' |

    0 200 400 600 800 200 400 600 800 200 400 600 ~ 800

    ^ = O-l

    54

  • = Y-x

    I i . i X K- i 1 1 1—1—1—I200 400 600 BOO 200 400 600 800

    200 *00 600 BOO

    81 ' ' ' I ' ' ' | ' ' ' I ' ' ' I

    200 *00 600 800 200 «00 600 BOO200 400 600 800

    55

  • Bs

    0.5

    0.5

    0.5

    0.5

    0.5

    Bs

    0.5

    0.5

    0.5

    0.5

    0.5

    0.7

    0.7

    Ti/Te

    1/7

    1/3

    1

    3

    9

    Ti/Te

    1/7

    1/3

    1

    3

    9

    1/3

    9

    BP IA HOLES

    Speed

    0.61 Va

    0.6 Va

    A

    A

    A

    B

    Speed (Va)

    0.83

    0.75

    0.66

    0.56

    0.32

    0.3

    A

    FP IA HOLES

    Speed

    0.65 Va

    0.63 Va

    0.46 Va

    A

    A

    N

    Speed (Va)

    0.81

    A

    A

    0.54

    0.34

    A

    A

    56

  • CONCLUSIONS

    * Governing Evolution Equation for Nonlinear ALFVENWaves is DNLS / MDNLS

    * DNLS => Stable Solitary Waves

    * Inhomogeneities destroy the coherent structures

    * Chaotic Route to Turbulence with k " spectra

    * For p ~ 1 and 5B / B ~ 1 Simulations needed

    MHD SIMULATIONS :

    * 5N and 5B coupling very significant

    * Evolution of RHP Alfvenic Wave Packet very differentthan LHP Wave Packet

    * LHP => Blow-upRHP => Steepening and High Frequency Radiations

    57

  • HYBRID SIMULATIONS :

    * For Large p, 8N - 5B coupling as well as Wave -Particle interactions very crucial

    1. LHP EVOLUTION:

    * Blow - up observed in LHP case in MHD Simulationsarrested by Kinetic Effects

    * COLLAPSE => Transport of Energy to larger k

    * Appearance of Turning Point due to Structural Instabilityin the evolution of LHP

    * Turning Point function of p and the initial amplitude ofthe Wave Packet

    * At the Turning Point LHP => RHP

    * Ion Acoustic Waves (Coherent Ion Holes) generated forT > T

    e 1

    * For Te » Tj, forward and backward (in inertial frame)propagating Ion Holes

    * Nonlinear Landau damping forTe < Ti

    * Forward propagating Magnetosonic waves in some cases

    58

  • 2. RHP EVOLUTION:

    * High - Frequency Radiations for relatively lower

    * Only Backward Propagating Ion Holes

    * No Magnetosonic waves generated

    * More robust compared to LHP

    59

  • References:

    Bavassano, B., Dobrowolny, M., Mariani, F. and Ness, N.F., Radialevolution of Power Spectra of Interplanetary Alfvenic Turbulence, J.Geophys. Res., 87, 3617, 1982.

    Belcher, J. W. and Davis, L, Large amplitude Alfvenic waves in theinterplanetary medium, J. Geophys. Res., 76, 3534, 1971.

    Buti, B., Ion Acoustic Holes in a Two-Electron-Temperature Plasma,Phys. Lett, 76A, 251, 1980.

    Buti, B., Stochastic and Coherent Processes in Space Plasmas, inCometary and Solar Plasma Physics, Ed. B. Buti, World Scientific,Singapore, 1988.

    Buti, B., Nonlinear and Chaotic Alfven waves, in Solar and PlanetaryPlasma Physics, Ed. B. Buti, p 92 , World Scientific, Singapore, 1990.

    Buti, B., Chaotic Alfven Waves in Multispecies Plasmas J. Geophys.Res., 97, 4229, 1992.

    Buti, B., Solitary Alfven Waves in Inhomogeneous StreamingPlasmas, J. plasma Phys., 47, 39, 1992.

    Buti, B., Chaos and Turbulence in Solar Wind, {\it Astrophys. SpaceSci., 243}, 33, 1996.

    Buti, B., V. Jayanti, et a!., Nonlinear Evolution of Alfvenic WavePackets, Geophys. Res. Letts., 25, 2377, 1998.

    Buti, B., V.L. Galinski, V.I. Shevchenko, et al., Evolution of NonlinearAlfven Waves in Streaming Inhomogeneous Plasmas, Astrophys.Jou., 523, 849, 1999.

    Buti, B. and Nocera, L., Chaotic Alfven Waves in the Solar Wind inSolar Wind Nine, AIP Proceedings, 471- Eds. S. Habbal et al., p. 173,American Institute of Physics, 1999.

    60

  • Buti, B., M. Velli, P.C. Liewer, et al., Hybrid Simulations of Collapseof Alfvenic Wave Packets, Phys. Plasmas, 7, 3998, 2000.

    Buti, B., B.E. Goldstein and P.C. Liewer, Ion Holes in the Solar Wind:Hybrid Simulations, Geophys. Res. Letts. , 28, 91, 2001.

    Dawson, S.P. and Fontan, C.F., Soliton Decay of Nonlinear AlfvenWaves: Numerical Studies, Phys Fluids, 31, 83, 1988.

    Hada, T., Kennel, C.F. and Buti, B., Stationary Nonlinear AlfvenWaves and solitons, J. Geophys. Res., 94, 65, 1989.

    Hada, T., Kennel, C.F., Buti, B. and Mjolhus, E., Chaos in DrivenAlfven systems, Phys. Fluids, B2, 2581, 1990.

    Inhester, B., A Drift-Kinetic Treatment of the Parametric decay oflarge-Amplitude Alfven Waves, Jou. Geophys. Res., 95, 10525,1990.

    Kaup, D.J., and Newell, A.C., An exact Solution for a DerivativeNonlinear Schroedinger Equation, J. Math. Phys., 19, 798, 1978.

    Kennel, C. F., Buti, B., Hada, T. and Pellat, R., Nonlinear,Dispersive, EllipticallyPolarized Alfven Waves, Phys. Fluids, 31,1949, 1988.

    Verheest, F. and Buti, B., Parallel Solitary Alfven Waves inWarmMultispecies Beam-Plasma Systems J. Plasma Phys., 47, 15,1992.

    Velli, M., Buti, B., Goldstein, B.E. and Grappin, R., Propagation andDisruption of Alfvenic solitons in the Expanding Solar Wind in SolarWind Nine, AIP Proceedings, 47_1, Eds. S. Habbal et al., p. 445,American Institute of Physics, 1999.

    Winske, D. and M.M. Leroy, Hybrid Simulation Techniques applied tothe Earth's Bow Shock in Computer Simulations of Space Plasmas ,Eds. H. Matsumoto and T. Sato (D. Reidel, Hingham, Mass., 1985),p. 25.

    61

  • Review Article:

    Buti, B., Chaos in Magnetoplasmas, Nonlinear Processes^ rrrGeophysics, 6^129, 1999.

    62