alexander aleksandrov oak ridge national laboratory oak ridge, usa

35
Spallation Neutron Source Project: Commissioning Results, First Operation Experience, and Upgrade Plans Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

Upload: bin

Post on 16-Jan-2016

49 views

Category:

Documents


0 download

DESCRIPTION

Spallation Neutron Source Project: Commissioning Results, First Operation Experience, and Upgrade Plans. Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA. Neutrons probe a broad range of length scales. Neutron scattering. Spallation-Evaporation Production of Neutrons. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

Spallation Neutron Source Project: Commissioning Results, First

Operation Experience, and Upgrade Plans

Alexander Aleksandrov

Oak Ridge National LaboratoryOak Ridge, USA

Page 2: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Nanoscale sc ience and technology presents extraordinary opportunities

DNA

Microelectromechanical Devices

Fly ash

Atoms of silicon

Head of a pin

Quantum corral of 48 iron atoms

Human hair

Red blood cells

Ant

Mic

row

orl

d

0.1 nm

1 nanometer (nm)

0.01 m10 nm

0.1 m100 nm

0.01 mm10 m

0.1 mm100 m

1 cm10-2 m

10-3 m

10-4 m

10-5 m

10-6 m

10-7 m

10-8 m

10-9 m

10-10 m

Visiblespectrum

Na

no

wo

rld

103 nanometers

106 nanometers

Dust mite

ATP synthase

Nanotube electrode Nanotube transistor

1 angstrom

Neu

tro

n s

catt

erin

g

Neutrons probe a broad range of length scales

Page 3: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

FissionFission chain reaction continuous flow 1 neutron/fission

SpallationSpallationno chain

reactionpulsed operation 30

neutrons/proton Time resolved exp.

Spallation-Evaporation Production of Neutrons

Page 4: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

• The SNS began operation in 2006

• At 1.4 MW it will be ~7x ISIS, the world’s leading pulsed spallation source

• The peak neutron flux will be ~20-100x ILL

• SNS will be the world’s leading facility for neutron scattering

• It will be a short drive from HFIR, a reactor source with a flux comparable to the ILL

The Spallation Neutron Source

Page 5: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

The Spallation Neutron Source Partnership

~177 M$ ~60 M$

~113 M$~20 M$

Description AcceleratorProject Support 75.6Front End Systems 20.8 20.8Linac Systems 315.9 315.9Ring & Transfer Systems 142.0 142.0Target Systems 108.2Instrument Systems 63.3Conventional Facilities 378.9Integrated Control Systems 59.7 59.7BAC 1,164.4Contingency 28.3

TEC 1,192.7R&D 100.0 80.0

Pre-Operations 119.0 95.2

TPC 1,411.7 713.6

~63 M$

~106 M$

SNS-ORNL Accelerator systems: ~167 M$

At peak : ~500 People worked on the constructionof the SNS accelerator Oak Ridge, TN

35° 49' N , 83° 59' W

Page 6: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Spring 1999

Page 7: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Spring 2000

Page 8: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Spring 2001

Page 9: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Spring 2002

Page 10: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Spring 2003

Page 11: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Spring 2006

Page 12: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

SNS Accelerator Complex

945 ns

1 ms macropulse

Cur

rent

mini-pulse

H- stripped to protons

Cur

rent

1ms

Front-End: Produce a 1-msec long, chopped,

low-energy H- beam

LINAC: Accelerate the beam to

1 GeV

Accumulator Ring: Compress 1 msec

long pulse to 700 nsec

Deliver beam to Target

Chopper system makes

gaps

Ion Source2.5 MeV 1000

MeV86.8 MeV

CCL SRF, =0.61SRF, =0.81

186 MeV 387 MeV

DTLRFQ

Page 13: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

The SNS Target: 2-MW Design

• Cavitation-induced pitting is an issue.

• Options for mitigation:

•Materials, Geometry

• 25 kJ/pulse at 7x15cm beam size sets of transverse and longitudinal shock wave.

• Needs to be exchanged every 3 month

1 mm

Pits on inner surface in this geometry

Page 14: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

17 Instruments Now Formally Approved

•Fundamental Physics to Engineering

•Chemistry to “Genomes to Life”

Page 15: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

The SNS Main Parameters

1.1071.0981.058Ring rf frequency [MHz]

0.20.150.15Ring space-charge tune spread, Qsc

683691695Pulse length on target [ns]

707068Chopper beam-on duty factor [%]

6.06.06.0Linac beam macro pulse duty factor [%]

654226Average macropulse H- current [mA]

925938Peak Current from front end system

3.92.51.6Linac average beam current [mA]

5.03.01.4Beam power on target, Pmax [MW]

12 + 8 (+1 reserve)12 + 8 (+1 reserve)12SRF cryo-module number (high-beta)

1.6

1.0 / 1060

35 (+2.5/-7.5)

27.5 (+/- 2.5)

33+48

11

1000

Baseline

2.5

1.0 / 1100

31

27.5 (+/- 2.5)

33+80 (+4 reserve)

11

1300

Upgrade

3.8

1.0 / 1110

34

27.5 (+/- 2.5)

33+80 (+4 reserve)

11

1400

Ultimate

Ring bunch intensity [1014]

Ring injection time [ms] / turns

Kinetic energy, Ek [MeV]

Peak gradient, Ep (=0.81 cavity) [MV/m]

Peak gradient, Ep (=0.61 cavity) [MV/m]

Number of SRF cavities

SRF cryo-module number (med-beta)

1.1071.0981.058Ring rf frequency [MHz]

0.20.150.15Ring space-charge tune spread, Qsc

683691695Pulse length on target [ns]

707068Chopper beam-on duty factor [%]

6.06.06.0Linac beam macro pulse duty factor [%]

654226Average macropulse H- current [mA]

925938Peak Current from front end system

3.92.51.6Linac average beam current [mA]

5.03.01.4Beam power on target, Pmax [MW]

12 + 8 (+1 reserve)12 + 8 (+1 reserve)12SRF cryo-module number (high-beta)

1.6

1.0 / 1060

35 (+2.5/-7.5)

27.5 (+/- 2.5)

33+48

11

1000

Baseline

2.5

1.0 / 1100

31

27.5 (+/- 2.5)

33+80 (+4 reserve)

11

1300

Upgrade

3.8

1.0 / 1110

34

27.5 (+/- 2.5)

33+80 (+4 reserve)

11

1400

Ultimate

Ring bunch intensity [1014]

Ring injection time [ms] / turns

Kinetic energy, Ek [MeV]

Peak gradient, Ep (=0.81 cavity) [MV/m]

Peak gradient, Ep (=0.61 cavity) [MV/m]

Number of SRF cavities

SRF cryo-module number (med-beta)

Page 16: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

• 65 kV, 45 mA H- ion source

• Electrostatic LEBT with pre-chopper

• 2.5 MeV 402.5 MHZ RFQ

• 3.6 m long MEBT with chopper and beam diagnostics

Front End (injector)

Page 17: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

402.5 MHz Drift Tube Linac (DTL)

• DTL accelerates beam to 87 MeV

• System includes 210 drift tubes in six separate tanks (37m total length)

• Inside drift tubes: permanent magnet quadrupoles, electromagnetic dipole correctors, strip-line beam position monitors (BPM)

Page 18: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Drift Tube Linac in the tunnel

Page 19: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

805 MHz Coupled-Cavity Linac (side coupled)

• CCL accelerates beam to 187 MeV

• System consists of 48 accelerating segments, 48 quadrupoles, 32 steering magnets and diagnostics (55 m total length)

Bridge Coupler 44 final machining

Page 20: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Coupled-Cavity Linac in the tunnel

Page 21: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

805MHz Super Conducting RF Linac (SCL)

• SCL accelerates beam from 187 to 1000 MeV

• 81 6-cell superconducting cavities in 23 cryo-modules (157m)

• Cavities are operated at 2.1K or 4.2K

• Two cavities geometries are used to cover broad range in particle velocities

Cavities are assembled into strings

Medium beta cavity

High beta cavity

Page 22: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Superconducting Cavity Performance

Nr

of

Cav

itie

sN

r o

f C

avit

ies

High Beta

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28E0 (MV/m)

Freq

uen

cyMedium Beta

01234567

0 2 4 6 8 10 12 14 16 18 20 22 24

E0 (MV/m)

Fre

qu

en

cy

Page 23: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Super Conducting Linac in the Tunnel

Page 24: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

High-Power RF Systems

• Compact High Voltage Converter Modulators using solid state devices (IGBT)

• High-Power RF System: klystrons, waveguides, circulators

– 7 402.5 MHz 2.5 MW klystrons

– 4 CCL 5 MW Klystrons

– 81 SCL 550 kW klystrons

Page 25: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Cavity field and phase droop with feedback alone (left) and feedback + feedforward (right) beam loading compensation.

Phase width of the bunch along the pulse with feedback alone (left) and feedback + feedforward (right)

Digital Low Level RF system

Page 26: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

SNS Central Helium Liquefying Facility

• Cold box specifications are:

• 8300 Watts on the shield

• 2400 Watts @ 2.1Kelvin

• 15g/s Liquefaction

Page 27: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Circumference 248 m

Energy 1 GeV

Revolution period 1 μs

Number of turns 1060

Final Intensity 1.5x1014

Peak Current 52 A

Number of magnets >300

(bend and focusing)

The SNS Accumulator Ring

Page 28: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Ring Installation Progress

Page 29: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

SNS Liquid Mercury Target

Page 30: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

SNS Remote Handling Manipulators

Page 31: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Commissioning Timeline

2002 2003 2004 2005 2006

DTL Tanks 1-3

Front-End

DTL Tank 1

DTL/CCL

SCL

Ring

Target

Page 32: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

5x1013/pulse Protons Delivered to the Target

Final RTBT Beam Current Monitor

Ring Beam Current Monitor

Beam on Target View Screen

Page 33: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

1st “Production Run”

Page 34: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

Transition to Operation

0

500

1000

1500

2000

2500

0 12 24 36Months

Bea

m P

ower

(kW

), P

rodu

ctio

n H

rs

50

55

60

65

70

75

80

85

90

95

Rel

iabi

lity

Beam Power GoalNeutron Production HoursReliability

0

500

1000

1500

2000

2500

0 12 24 36Months

Bea

m P

ower

(kW

), P

rodu

ctio

n H

rs

50

55

60

65

70

75

80

85

90

95

Rel

iabi

lity

Beam Power GoalNeutron Production HoursReliability

FY08FY07 FY09

Page 35: Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

The SNS Power Upgrade Main Parameters

1.1071.0981.058Ring rf frequency [MHz]

0.20.150.15Ring space-charge tune spread, Qsc

683691695Pulse length on target [ns]

707068Chopper beam-on duty factor [%]

6.06.06.0Linac beam macro pulse duty factor [%]

654226Average macropulse H- current [mA]

925938Peak Current from front end system

3.92.51.6Linac average beam current [mA]

5.03.01.4Beam power on target, Pmax [MW]

12 + 8 (+1 reserve)12 + 8 (+1 reserve)12SRF cryo-module number (high-beta)

1.6

1.0 / 1060

35 (+2.5/-7.5)

27.5 (+/- 2.5)

33+48

11

1000

Baseline

2.5

1.0 / 1100

31

27.5 (+/- 2.5)

33+80 (+4 reserve)

11

1300

Upgrade

3.8

1.0 / 1110

34

27.5 (+/- 2.5)

33+80 (+4 reserve)

11

1400

Ultimate

Ring bunch intensity [1014]

Ring injection time [ms] / turns

Kinetic energy, Ek [MeV]

Peak gradient, Ep (=0.81 cavity) [MV/m]

Peak gradient, Ep (=0.61 cavity) [MV/m]

Number of SRF cavities

SRF cryo-module number (med-beta)

1.1071.0981.058Ring rf frequency [MHz]

0.20.150.15Ring space-charge tune spread, Qsc

683691695Pulse length on target [ns]

707068Chopper beam-on duty factor [%]

6.06.06.0Linac beam macro pulse duty factor [%]

654226Average macropulse H- current [mA]

925938Peak Current from front end system

3.92.51.6Linac average beam current [mA]

5.03.01.4Beam power on target, Pmax [MW]

12 + 8 (+1 reserve)12 + 8 (+1 reserve)12SRF cryo-module number (high-beta)

1.6

1.0 / 1060

35 (+2.5/-7.5)

27.5 (+/- 2.5)

33+48

11

1000

Baseline

2.5

1.0 / 1100

31

27.5 (+/- 2.5)

33+80 (+4 reserve)

11

1300

Upgrade

3.8

1.0 / 1110

34

27.5 (+/- 2.5)

33+80 (+4 reserve)

11

1400

Ultimate

Ring bunch intensity [1014]

Ring injection time [ms] / turns

Kinetic energy, Ek [MeV]

Peak gradient, Ep (=0.81 cavity) [MV/m]

Peak gradient, Ep (=0.61 cavity) [MV/m]

Number of SRF cavities

SRF cryo-module number (med-beta)