ŠaknŲ vystymosi hormoninio reguliavimo tyrimai · abr – abscizo rūgštis (fitohormonas) ahp...

125
VYTAUTO DIDŽIOJO UNIVERSITETAS LIETUVOS AGRARINIŲ IR MIŠKŲ MOKSLŲ CENTRAS Miglė VAIČIUKYNĖ ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI POPULUS TREMULA L. IR JOS HIBRIDŲ BEI BETULA PENDULA ROTH IN VITRO KULTŪROSE Mokslo daktaro disertacija Žemės ūkio mokslai, Miškotyra (004 A) Kaunas, 2019

Upload: others

Post on 11-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

VYTAUTO DIDŽIOJO UNIVERSITETAS

LIETUVOS AGRARINIŲ IR MIŠKŲ MOKSLŲ CENTRAS

Miglė VAIČIUKYNĖ

ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI

POPULUS TREMULA L. IR JOS HIBRIDŲ BEI

BETULA PENDULA ROTH IN VITRO KULTŪROSE

Mokslo daktaro disertacija

Žemės ūkio mokslai, Miškotyra (004 A)

Kaunas, 2019

Page 2: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

UDK 577.175.1:581.144.2]:[582.681.81+582.632.1](043.3) Daktaro disertacija rengta 2014–2018 metais Lietuvos agrarinių ir miškų mokslų centro filiale Miškų institute pagal suteiktą Vytauto Didžiojo universiteto ir Lietuvos agrarinių ir miškų mokslų centro institucijoms 2019 m. vasario 22 d. įsakymu Nr. V-160 doktorantūros teisę. Moklinis vadovas: Dr. Sigutė Kuusienė (Lietuvos agrarinių ir miškų mokslų centras, Biomedicinos mokslai, Biologija, 010 N). Disertacija ginama miškotyros mokslo krypties taryboje: Pirmininkas: Prof. dr. Darius Danusevičius (Vytauto Didžiojo universitetas, žemės ūkio mokslai, miškotyra, 004 A). Nariai: Prof. habil. dr. Pavelas Duchovskis (Lietuvos agrarinių ir miškų mokslų centras, žemės ūkio mokslai, agronomija, 001 A). Prof. dr. Virgilijus Baliuckas (Lietuvos agrarinių ir miškų mokslų centras, žemės ūkio mokslai, miškotyra, 004 A). Dr. Dainis Edgars Rungis (Latvijos miškų institutas „Silava“, žemės ūkio mokslai, miškotyra, 004 A). Dr. Sigita Jurkonienė (Gamtos tyrimų centras, biomedicinos mokslai, ekologija ir aplinkotyra, 012 N).

Disertacija ginama viešame miškotyros mokslo krypties tarybos posėdyje 2019 m. balandžio 12 d. 10 val. Vytauto Didžiojo universiteto Žemės ūkio akademijos centrinių rūmų posėdžio salėje, 217 kab. Adresas: Studentų g. 11, Akademija, Kauno r., LT-53361, Lietuva.

Su disertacija galima susipažinti Vytauto Didžiojo universiteto ir Lietuvos agrarinių ir miškų mokslų centro bibliotekose. ISBN 978-609-467-374-0

Page 3: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

VYTAUTAS MAGNUS UNIVERSITY

LITHUANIAN REASEARCH CENTRE FOR AGRICULTURE AND FORESTRY

Miglė VAIČIUKYNĖ

HORMONAL REGULATION OF ROOT DEVELOPMENT IN IN VITRO

CULTURES OF POPULUS TREMULA L. AND ITS HYBRIDS AND

BETULA PENDULA ROTH

Doctoral Dissertation

Agriculture Sciences, Forestry (004 A)

Kaunas, 2019

Page 4: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

The dissertation was prepared at the Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry during the period of 2014–2018. The main supervisor: Dr. Sigutė Kuusienė (Lithuanian Research Centre for Agriculture and Forestry, Biomedical Sciences, Biology, 010 N). The dissertation is defended at the Council of Forestry Science at the Vytautas Magnus University and Lithuanian Research Centre for Agriculture and Forestry: Chairman: Prof. dr. Darius Danusevičius, Vytautas Magnus University (Agriculture Sciences, Forestry – 004 A). Members: Prof. habil. dr. Pavelas Duchovskis, Lithuanian Research Centre for Agriculture and Forestry (Agriculture Sciences, Agronomy, 001 A). Prof. dr. Virgilijus Baliuckas, Lithuanian Research Centre for Agriculture and Forestry (Agriculture Sciences, Forestry, 004 A). Dr. Dainis Edgars Rungis, Latvian State Forest Research Institute “Silava” (Agriculture Sciences, Forestry, 004 A). Dr. Sigita Jurkonienė, Nature Research Centre (Biomedical sciences, Ecology and Environmental Sciences, 012 N). Defence of the dissertation will take place at the public meeting of the Council of Forestry Science on 12 th of April 2019, at 10 a.m. in room No 217 of Vytautas Magnus University Agriculture Academy. Adress: Studentų g. 11, Akademija, Kauno distr., LT-53361, Lithuania.

Page 5: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

5

TURINYS

Pagrindinės sąvokos ir santrumpos ............................................................................................. 7 

ĮVADAS ........................................................................................................................................... 8 

1. LITERATŪROS APŽVALGA .................................................................................................. 13 

1.1. Populus ir Betula augalų genčių reikšmė miškininkystėje bei tyrimai in vitro sistemoje . 13 1.1.1. Tuopos (Populus) ...................................................................................................................... 13 1.1.2. Beržai (Betula) .......................................................................................................................... 14 

1.2. Augalų hormonai ir jų įtaka šaknų indukcijai bei vystymuisi ............................................ 16 1.2.1. Šaknų indukcija ir vystymasis ................................................................................................... 16 1.2.2. Auksinas .................................................................................................................................... 18 1.2.3. Citokininai ................................................................................................................................. 20 1.2.4. Abscizo rūgštis .......................................................................................................................... 21 1.2.5. Giberelinai ................................................................................................................................. 24 

2. TYRIMO MEDŽIAGA IR METODAI ..................................................................................... 26 

2.1. Tyrimo objektai .................................................................................................................. 26 

2.2. Tiriamojo darbo aprašymas ir taikomi metodai.................................................................. 27 

2.2. Tiriamos cheminės medžiagos in vitro eksperimentuose ................................................... 29 

2.3. Tyrimų seka ir duomenų analizė ........................................................................................ 30 

3. REZULTATAI IR JŲ APTARIMAS ........................................................................................ 35 

3.1. Betula pendula Roth eksplantų pirminio vystymosi in vitro kultūroje bruožai, sietini su natūraliu šaknų formavimosi potencialu ................................................................................... 35 

3.1.1. In vitro kultūros sterilumo ir gyvybingumo įtaka ..................................................................... 35 3.1.2. Ūglių in vitro kultūroje morfologinių parametrų įtaka .............................................................. 36 3.1.3. Apibendrinimas ......................................................................................................................... 40 

3.2. Svarbiausių hormonų kiekio reguliacija, lemianti Populus pridėtinių šaknų formavimąsi ir vystymąsi in vitro kultūroje ................................................................................................... 41 

3.2.1. Auksinų IAR ir ISR pernašos inhibicijos įtaka šaknų vystymuisi ............................................ 41 3.2.2. Citokinino BAP įtaka šaknų vystymuisi ................................................................................... 45 3.2.3. Abscizo rūgšties įtaka šaknų vystymuisi ................................................................................... 48 3.2.4. Giberelino įtaka šaknų vystymuisi ............................................................................................ 49 3.2.5. Apibendrinimas ......................................................................................................................... 52 

3.3. Endogeninių hormonų kiekių ypatumai skirtinga šaknijimosi geba pasižyminčių Populus (P. tremula, P. tremuloides × P. tremula, P. alba L.× P. tremula) bei B. pendula genotipų ūgliuose ..................................................................................................................................... 53 

3.3.1. Endogeninių hormonų kiekių ypatumai ūgliuose ...................................................................... 53 3.3.2. Apibendrinimas ......................................................................................................................... 57 

3.4. Svarbiausi morfologinio atsako į hormonų kiekio reguliaciją skirtumai tarp tiriamų P. tremula ir jos hibridų bei B. pendula genotipų .......................................................................... 58 

3.4.1. Morfologinio atsako į hormonų kiekio reguliaciją skirtumai .................................................... 58 3.4.2. Apibendrinimas ......................................................................................................................... 64 

3.5. Šaknų ir ūglių in vitro vystymosi rodiklių tarpusavio ryšys skirtingais endogeninių hormonų kiekiais pasižymėjusiuose medžių genotipuose ......................................................... 65 

Page 6: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

6

3.5.1. Šaknų ir ūglių in vitro vystymosi rodiklių tarpusavio ryšys kontrolinėmis sąlygomis ............. 65 3.5.2. Šaknų ir ūglių in vitro vystymosi rodiklių tarpusavio ryšys PBZ taikymo metu ...................... 69 3.5.3. Apibendrinimas ......................................................................................................................... 72 

IŠVADOS ...................................................................................................................................... 74 

LITERATŪROS SĄRAŠAS ......................................................................................................... 76 

SUMMARY OF DISSERTATION „HORMONAL REGULATION OF ROOT DEVELOPMENT IN IN VITRO CULTURES OF POPULUS TREMULA L. AND ITS HYBRIDS AND BETULA PENDULA ROTH“ ............................................................................ 89 

SANTRAUKA ............................................................................................................................. 117 

Mokslinių straipsnių disertacijos tema sąrašas ............................................................................ 119 

Padėka .......................................................................................................................................... 120 

Curriculum vitae ........................................................................................................................... 121 

Page 7: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

7

Pagrindinės sąvokos ir santrumpos

ABR – abscizo rūgštis (fitohormonas)

AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą į

branduolį

AHP6 – Arabidopsis histidino fosfotransferazės baltymas 6, slopinantis citokininų signalą

BAP – 6-benzilamino purinas (citokininų klasės fitohormonas)

DELLA – specifiniai baltymai (pagrindiniai giberelinų signalinio kelio reguliatoriai)

GA3 – giberelino rūgštis (giberelinų klasės fitohormonas)

GA4+7 – giberelino A4 ir A7 mišinys (giberelinų klasės fitohormonai)

IAR – 3-indolilacto rūgštis (auksinų klasės fitohormonas)

ISR – 3-indolsviesto rūgštis (auksinų klasės fitohormonas)

NCED – 9-cis-epoksikarotenoido dioksigenazė (pagrindinis ABR biosintezės fermentas)

PBZ – paklobutrazolis (giberelinų sintezės inhibitorius)

ProCa – proheksadionas-Ca (giberelinų sintezės inhibitorius)

TIBR – 2,3,5-trijodbenzoinė rūgštis (auksino pernašos inhibitorius)

WPM – sumedėjusių augalų maitinamoji terpė (ang. Woody Plant Medium)

Z – zeatinas (fitohormonas)

ŠŠ (ang. LR) – šalutinės šaknys (ang. lateral roots)

Page 8: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

8

ĮVADAS

Miško medžių, kaip ir kitų augalų, šaknų architektūros bei formavimosi supratimas yra

labai svarbus miškotyros moksluose. Tai turi esminę reikšmę augalo įsitvirtinimui, efektyviam

vandens ir maistinių medžiagų pasisavinimui, augalų ir mikroorganizmų bendruomenių

įkūrimui. Visa tai lemia gerą miško medžių produktyvumą, adaptyvumą ir kitas savybes.

Mokslininkai, pasitelkdami įvairias priemones, ieško naujų galimybių miško medžių savybėms

gerinti. Tokias galimybes atveria medžių biotechnologija, kadangi audinių kultūra yra

neatsiejama nuo šios technologijos. Atliekant medžių dauginimą mikrovegetatyviniu metodu

(audinių kultūroje), gaunami genetiškai identiški augalai, sutrumpinama selekcinio periodo

trukmė, pasiekiamas aukštas dauginimo koeficientas, padauginamos tos medžių rūšys, kurios

gamtoje nelinkusios daugintis vegetatyviškai, ir kt.

Vykdant augalų mikrovegetatyvinį dauginimą audinių kultūroje, augalo šaknijimasis yra

vienas iš esminių procesų, itin lemiančių viso darbo sėkmę. Augalo šaknies, kaip ir kitų augalo

organų, formavimąsi reguliuoja įvairūs biocheminiai signalai ir juos valdantis genų tinklas

(Orman-Ligeza et al., 2013). Augalininkystėje vienos iš svarbiausių reguliacijos signalus

perduodančių molekulių yra fitohormonai, kurie turi kritinę reikšmę visiems augalų vystymosi

procesams, įskaitant šaknų formavimąsi. Fitohormonų veikla augale greičiausiai pasireiškia jų

biosintezės vietoje, tačiau taip pat šie junginiai gali būti transportuojami tarp augalo audinių.

Fitohormonų signaliniai keliai paprastai sukelia tam tikrus atsakus genų ekspresijos lygyje.

Bendrinė fitohormonų tarpusavio ryšių strategija yra kontroliuoti kitų hormonų signalinio

žemėlapio specifinius svarbiausius komponentus. Tokiu būdu fitohormonai gali turėti įtakos kitų

fitohormonų sintezei (hormonų lygiui), jautrumui (hormonų atsakui) bei transportui (hormonų

išsidėstymui) (Santner et al., 2009; Santner and Estelle, 2009).

Miško medžių šaknų formavimosi tyrimų pagrindą taip pat sudaro fitohormonų sistemos

veikimas ir susijusių genų raiška. Keičiantis (dėl natūralių procesų ar tikslingos žmonių veiklos)

hormonų sintezę ir aktyvumą lemiančių molekulių kiekiui bei pačių hormonų kiekiui, vyksta ir

atitinkami šaknų formavimosi pokyčiai. Įvairiose augalų rūšyse molekulių, dalyvaujančių

tokiuose mechanizmuose, kiekiai gali skirtis ir lemti skirtingas šaknų sistemos vystymosi

galimybes. Taigi, siekiant surinkti daugiau naujų ir įvairiapusiškesnių žinių apie šaknų

vystymosi kontrolės mechanizmus, labai svarbu į tokius tyrimus įtraukti skirtingas medžių rūšis.

Atliktas tiriamasis darbas yra skirtas šaknų vystymosi hormoninio reguliavimo tyrimui

Populus (tuopų) ir Betula (beržų) gentyse. Žinoma, kad šių medžių genčių in vitro kultūros

pasižymi radikaliais šaknijimosi skirtumais: dauguma mikrovegetatyviškai dauginamų Populus

Page 9: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

9

genties atstovų, įskaitant drebulę P. tremula, lengvai formuoja pridėtines šaknis, o tokiu pačiu

metodu dauginami beržai šaknis formuoja itin sunkiai. Kol kas nėra duomenų, kurie leistų šiuos

skirtumus pagal in vitro šaknijimosi pajėgumą aiškiai sieti su atitinkamais hormoninės sistemos

veiklos ar kitų biocheminių veiksnių skirtumais minėtose medžių gentyse.

Tyrimo metu naujai gautos žinios gali būti panaudotos praktiškai sprendžiant aktualias

drebulių ir beržų dauginimo bei auginimo problemas. Tai ypač svarbu pastariesiems, kadangi

siekiant efektyviau taikyti mikrovegetatyvinį dauginimą trumpos apyvartos beržo želdinių

veisimui, visų pirma reikia ištyrinėti ir sustiprinti šių medžių šaknų sistemos vystymąsi, tokiu

būdu pagerinant jų adaptyvumą ex vitro sąlygomis. Sėkminga medžių mikrovegetatyvinio

dauginimo sistema gali būti efektyviai taikoma perspektyvių miško želdinių veisimui.

Tyrimų hipotezė

Tarp Populus ir Betula genčių yra esminiai hormonų morfogenetinio poveikio skirtumai,

kurie lemia specifinius pridėtinių šaknų formavimosi ypatumus šių medžių in vitro kultūrose.

Darbo tikslas

Nustatyti biocheminius veiksnius, lemiančius pridėtinių šaknų formavimosi bei jų įtakos

ūglių vystymuisi skirtumus tarp Populus ir Betula genčių atstovų in vitro sistemoje.

Darbo uždaviniai

1. Nustatyti karpotojo beržo (Betula pendula Roth) eksplantų pirminio vystymosi in vitro

kultūroje bruožus, sietinus su natūraliu šaknų formavimosi potencialu tolesniame

dauginime.

2. Paprastosios drebulės (Populus tremula L.) in vitro kultūroje nustatyti, kurių hormonų

kiekio reguliacija turi didžiausią įtaką pridėtinių šaknų formavimuisi ir vystymuisi.

3. Nustatyti endogeninių hormonų kiekių ypatumus skirtinga šaknijimosi geba pasižyminčių

Populus (P. tremula, P. tremuloides × P. tremula, P. alba L.× P. tremula) bei B. pendula

genotipų ūgliuose.

4. Nustatyti svarbiausius morfologinio atsako į hormonų kiekio reguliaciją skirtumus tarp

tiriamų P. tremula ir jos hibridų bei B. pendula genotipų kultūrų.

5. Nustatyti šaknų ir ūglių in vitro vystymosi rodiklių tarpusavio ryšius skirtingais

endogeninių hormonų kiekiais pasižymėjusiose medžių genotipų kultūrose.

Darbo mokslinis naujumas

Pirmą kartą nustatyti pradinės karpotojo beržo (Betula pendula Roth) in vitro subkultūros

eksplantų bruožai, sietini su individualių beržo genotipų gebėjimu formuoti šaknis vėlesnėse

kultūros stadijose: žalios viršūnės ant terpės be hormonų bei eksplantų gyvybingumo išlaikymas

ant citokininu (BAP) papildytos terpės.

Page 10: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

10

Pirmą kartą nustatyta, kad šaknų formavimosi drebulės in vitro kultūroje, sutrikdyto

naudojant auksino pernašos inhibitorių (TIBA), negali atkurti maitinamosios terpės papildymas

auksinu indolilacto rūgštimi.

Pirmą kartą nustatyti vidinių fitohormonų koncentracijų skirtumai mikrovegetatyviškai

dauginamų Populus bei Betula genotipų, pasižyminčių skirtingomis morfogenetinėmis

savybėmis, eksplantų ūgliuose. Nustatyta, kad Populus genotipų eksplantuose auksino

indolilacto rūgšties koncentracijos yra žymiai aukštesnės negu karpotojo beržo eksplantuose,

nepriklausomai nuo jų šaknų formavimosi gebos. Tačiau šaknis in vitro kultūroje formuojančio

beržo genotipo eksplantuose nustatyta žymiai aukštesnė abscizo rūgšties koncentracija, negu

šaknų neformuojančio beržo eksplantuose, kuriuose nustatyta aukštesnė citokinino zeatino

koncentracija.

Pirmą kartą nustatyta, kad abscizo rūgštis skatina, o giberelino sintezės inhibitorius

paklobutrazolis slopina šalutinių šaknų formavimąsi ant in vitro išaugusių karpotojo beržo

pridėtinių šaknų. Taip pat nustatyta, kad beržo in vitro kultūroje, priešingai negu tirtų Populus

genotipų kultūrose, abscizo rūgštis neturi neigiamo poveikio ūglio augimui ir pridėtinių šaknų

formavimuisi.

Darbo praktinė reikšmė

Nustatytas augalinės medžiagos paruošimo sodinimui į in vitro sistemą metodinių sąlygų

patikslinimas leidžia efektyviau kurti gyvybingas Betula pendula Roth mikroūglių kultūras.

Nustatyti nuo genotipo priklausomi pirmų subkultūrų bruožai leidžia prognozuoti tiriamo

karpotojo beržo genotipo šaknijimosi potencialą tolesniuose in vitro kultūros etapuose bei

vykdyti ankstyvą genotipų atranką. Sukurtos stabilios šaknis formuojančios skirtingų Betula

pendula Roth genotipų in vitro kultūros.

Nustatyti Populus bei Betula mikrovegetatyviškai dauginamų genotipų vidinių

fitohormonų koncentracijų savitumai in vitro eksplantuose bei šių eksplantų morfologinio atsako

į giberelino ir abscizo rūgščių kiekio reguliaciją skirtumai leidžia parengti optimalų augimo

reguliatorių panaudojimo planą produktyviam ūglių ir šaknų vystymuisi in vitro kultūroje. Tai

yra svarbu siekiant efektyviau taikyti mikrovegetatyvinį dauginimą perspektyvių trumpos

apyvartos miško želdinių veisimui.

Ginamieji teiginiai

1. Betula pendula Roth eksplantų vystymosi ypatumai pirminiame in vitro kultūros etape

atspindi natūralų šaknų formavimosi potencialą tolesniame dauginime.

2. Paprastosios drebulės (Populus tremula L.) in vitro kultūroje fitohormonų auksinų bei

giberelinų kiekio reguliacija turi didžiausią įtaką pridėtinių šaknų formavimuisi ir

vystymuisi.

Page 11: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

11

3. Skirtinga šaknijimosi geba pasižyminčių Populus (P. tremula, P. tremuloides × P. tremula,

P. alba L.× P. tremula) ir B. pendula genotipų ūglius skiria endogeninių indolil-3-acto bei

abscizo rūgščių kiekių ypatumai.

4. Svarbiausi skirtumai tarp P. tremula ir jos hibridų bei B. pendula genotipų kultūrų yra susiję

su morfologinio atsako į giberelino ir abscizo rūgščių kiekio reguliaciją.

5. Skirtingi endogeninių hormonų kiekiai tirtų medžių genotipų kultūrose lemia savitus šaknų

ir ūglių in vitro vystymosi rodiklių tarpusavio ryšius.

Disertacijos aprobavimas

Disertacijos tyrimų rezultatai paskelbti penkiuose moksliniuose straipsniuose, pristatyti

penkiose tarptautinėse konferencijose.

Išspausdintų straipsnių sąrašas:

1. Vaičiukynė M., Žiauka J., Kuusienė S. 2016. Fitohormonai ir jų vaidmuo reguliuojant

sumedėjusių augalų šaknų indukciją ir vystymąsi. Miškininkystė, 1 (79): 69–79.

2. Vaičukynė M., Žiauka J., Kuusienė S. 2017. Factors that determine shoot viability and root

development during in vitro adaptation and propagation of silver birch (Betula pendula

Roth). Biologija, 63 (3): 246–255.

3. Vaičukynė M., Žiauka J., Kuusienė S. 2018. Hormonų veiklos reguliacijos įtaka Populus

tremula L. pridėtinių šaknų formavimuisi ir vystymuisi in vitro kultūroje. Miškininkystė, 1

(82): 16–26.

4. Vaičukynė M., Vertelkaitė L., Žiauka J., Kuusienė S. 2018. Betula sp. svarba, tyrimų plėtra

ir panaudojimo perspektyvos. Miškininkystė, 1 (82): 38–45.

5. Vaičiukynė M., Žiauka J., Žūkienė R., Vertelkaitė L., Kuusienė S. 2019. Abscisic acid

promotes root system development in birch tissue culture: a comparison to aspen culture

and to conventional rooting-related growth regulators. Physiologia Plantarum, 165(1): 114–

122. (IF=2,58).

Tarptautinių konferencijų, kuriose pristatyti pranešimai, sąrašas:

1. International scientific conference „Plant Organ Growth Symposium 2015“, Gentas, Belgija

(2015). Stendinis pranešimas: „Abscisic acid influence on root growth control in shoot

cultures of different Populus genotypes“.

2. International scientific conference „Plant Biology Europe EPSO/FESPB 2016 Congress“,

Praha, Čekijos Respublika (2016). Stendinis pranešimas: „Auxin transport inhibitor 2,3,5-

triiodobenzoic acid does not mimic the adventitious shoot formation-promoting effect of

exogenously applied cytokinin in aspen shoot culture“;

Page 12: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

12

3. The 5th international conference of young scientists „The young scientists for advance of

agriculture“, Vilnius, Lithuania (2016). Žodinis pranešimas: „Effects of different exogenous

auxins on aspen morphogenesis in vitro in the context of auxin transport inhibition by 2,3,5-

triiodobenzoic acid“.

4. International Conference „Smart Bio“, Kaunas, Lietuva (2017). Stendinis pranešimas:

„Factors that Determine Shoot Viability and Root Development during in vitro Adaptation

and Propagation of Birch (Betula pendula)“.

5. International Conference „8th International Symposium on Root Development“, Umėja,

Švedija (2017). Stendinis pranešimas: „Comparison of exogenous auxin and paclobutrazol

effects on aspen and birch in vitro cultures in respect of adventitious root formation“.

Disertacijos apimtis ir struktūra

Disertaciją sudaro 6 dalys: įvadas, literatūros apžvalga, tyrimų medžiaga ir metodai,

rezultatai ir jų aptarimas, išvados, literatūros sąrašas. Darbo apimtis yra 88 puslapiai (116 psl su

anglų kalbos santrauka). Darbą iliustruoja 19 paveikslėlių ir 4 lentelės. Literatūros sąrašą sudaro

231 bibliografiniai šaltiniai.

Page 13: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

13

1. LITERATŪROS APŽVALGA

1.1. Populus ir Betula augalų genčių reikšmė miškininkystėje bei tyrimai in

vitro sistemoje

1.1.1. Tuopos (Populus)

Populus genties atstovai, kuriems priklauso drebulė (Populus tremula L.), yra plačiai

paplitę po visą Euraziją bei Šiaurės Ameriką, todėl turi didelę ekologinę reikšmę šių žemynų

šalių miškų ekosistemų struktūrai ir funkcijoms (Kouki et al., 2004; Karnosky et al., 1996).

Populus – tai magnolijūnų (Magnoliophyta) skyriaus, magnolijainių (Magnoliopsida) klasės,

gluosninių (Salicaceae) šeimos medžiai (Rae et al., 2007). Populus gentyje yra 110 rūšių, iš jų –

daug hibridų ir kultūrinių veislių.

Lietuvoje iš šios genties atstovų natūraliai paplitusi ir labai dažna medžių rūšis yra drebulė

(Populus tremula L.). Tradicinių miškų industrijoje Populus genties atstovų vertė didėja,

kadangi drebulė ir kitos tuopų rūšys naudojamos bioenergetikos gamyboje (Karacic ir Weih,

2006), fitoremediacijoje (Laureysens et al., 2005) bei sudaro kraštovaizdžio dalį urbanizuotose

ekosistemose (Pihlajaniemi et al., 2007). Populus genties atstovai turi keletą pagrindinių bruožų,

kurie daro juos puikiais trumpos apyvartos želdiniais: tai greitas augimas juvenaliniame periode,

polinkis daugintis vegetatyviškai, lengva adaptacija masiniam dauginimui (Dickmann, 2001).

Dideliu produktyvumu pasižymi vadinamosios hibridinės drebulės – greitai augantys

drebulių (Populus tremula L.) ir smulkiadančių tuopų (Populus tremuloides Michx.) tarprūšiniai

hibridai (Yu, 2001). Hibridinių drebulių plantacijos naudingos tuo, kad jomis galima apauginti

apleistas žemės ūkio paskirties žemes, miškų pakraščius bei melioracijos nualintas vietoves. Per

pastaruosius dešimtmečius daugiau nei 4500 ha Šiaurės Europos plotų apželdinta hibridinių

drebulių plantacijomis (Tullusa et al., 2012). Įveisiant šios genties atstovų želdinius bei jų

biomasę panaudojant kaip produkciją bioenergetikai, apsaugomas natūralių miškų tvarumas bei

kaupiama miškų biomasė.

Populus rūšių skirtingų populiacijų morfologija ir fiziologija yra stipriai susijusi su

aplinka. Visa tai parodo, kad bet koks atsakas į stresą priklauso ne tik nuo rūšies, bet taip pat ir

nuo genotipo (Braatne et al., 1992; Dunlap and Stettler, 2001). Todėl tuopų genties atstovų

kultivavimo produktyvumas priklauso nuo įvairių aplinkos bei ūkininkavimo technologijų

savybių, bet, svarbiausia, nuo pasirinkto genotipo. Hibridinių drebulių sėkliniai palikuonys

pasižymi aukštu augimo parametrų bei kitų ūkiniu požiūriu svarbių savybių kintamumo lygiu,

Page 14: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

14

todėl vertingų genotipų atrinkimas ir kloninių sodmenų auginimas užtikrina ženklų selekcinį

efektą (Pliūra, 2000; Yu, 2001). Atrinktų vertingų Populus genties genotipų klonų padauginimas

laboratorinėmis sąlygomis padidina tyrimų efektyvumą. Populus genties klonai yra kultivuojami

dviem in vitro kultivavimo būdais: kaip nauji eksplantai (pumpuras, stiebo dalis, dulkidė, šaknis

ar daigas) ir kaip kaliaus kultūra (Ahuja, 1987; Sellmer et al., 1989; Thakur et al., 2006). Tačiau

kadangi Populus genties atstovai pasižymi gera ūglių in vitro regeneracija, taikomuose

biotechnologiniuose tyrimuose šie medžiai dažniausia dauginami mikroūglių kultūros metodu.

Nuo tada, kai tuopos tapo modeliniu organizmu medžių biotechnologijoje, išsamūs faktai apie jų

mikroūglių kultūros metodus yra plačiai atskleisti (Ahuja, 1987; Sellmer et al., 1989). Populus

mikroūglių kultūros metodas – unikali priemonė reprodukcinės medžiagos kaupimui ir

dauginimui in vitro sistemoje, vertingų formų, hibridų ar genotipų atrankai, išsaugojimui ir

klonavimui. Ypač aktualu tampa sveikos Populus reprodukcinės medžiagos kaupimas, kadangi

tarp šios genties atstovų stebimas labiausiai paplitusių infekcinių ligų tipo puvinių paplitimas.

Drebulių arealuose aptinkama drebulinė pintainė (Phellinus tremulae), kuri yra vienas iš

labiausiai paplitusių kempininių grybų Lietuvos miškuose ir sukelia drebulės kamieno puvinį.

Nustatyta, kad 60 metų drebulynuose dauguma medžių yra pažeisti (Valstybinė miškų tarnyba,

2018). Taip pat Populus mikroūglių kultūros metodas naudojamas genetinės inžinerijos

bandymuose bei medžiagos, naudojamos audinių ir ląstelių biotechnologijos manipuliacijoms

vykdyti, palaikymui (McCown, 1985; Smith and McCown, 1982; Russell and McCown, 1988;

Hoenicka et al., 2006; Yadav et al., 2010).

1.1.2. Beržai (Betula)

Betula genties atstovai plačiai paplitę Eurazijoje ir Šiaurės Amerikoje. Šiauriniuose

pasaulio regionuose šios genties atstovai yra viena svarbiausių lapuočių medžių rūšių (Ryynänen

et al., 2005). Betula turi didelę ekologinę reikšmę miškų tvarumui. Beržai yra labai svarbūs

Šiaurės Europos spygliuočių miškų biologinei įvairovei bei daugybei kitų gyvybės formų,

egzistuojančių kartu su beržais: mikoriziniams grybams, žolėdžiams, medžius pūdantiems

grybams, saprofitiniams vabzdžiams (Hynynen et al., 2010). Betula – magnolijūnų

(Magnoliophyta) skyriaus, magnolijainių (Magnoliopsida) klasės, beržinių (Betulaceae) šeimos

medžiai. Betula gentyje yra 40 rūšių (Furlow, 1990).

Lietuvoje yra keturios beržų rūšys: karpotasis (B. pendula), plaukuotasis (B. pubescens),

liekninis (B. humilis) ir beržas keružis (B. nana). Karpotasis beržas – viena dažniausiai

pasitaikančių Lietuvos miškuose vietinių medžių rūšių. Beržynai kartu su plaukuotuoju beržu

sudaro 20 % Lietuvos miškų teritorijos (Baliuckienė and Baliuckas, 2006). Beržai yra šviesai

reikli pionierinė rūšis, kuri greitai užima atvirus plotus gaisravietėse bei kirtavietėse dėl gero

Page 15: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

15

sėklų produktyvumo ir greito augimo juvenaliniame periode (Fischer et al., 2002). Šiaurinėse ir

Baltijos šalyse karpotasis ir plaukuotasis beržai dažnai auga kartu su pušimis ir paprastosiomis

eglėmis, o beržų dominuojantys medynai užima beveik 8 mln. ha (Rytter et al., 2008). Visas

Šiaurinių ir Baltijos šalių miškų plotas yra 69 mln. ha, kur apie 54 mln. ha yra panaudojama

komerciniais tikslais. Beržai su kitomis medžių rūšimis – paprastosiomis eglėmis,

paprastosiomis pušimis, alksniais – sudaro 95 % visos šiame regione augančios žaliavos (Rytter

et al., 2013). Šie faktai pabrėžia Betula genties medžių svarbą bioenergetikos gamybai šiuose

regionuose. Gamtinės kilmės ir dirbtinių plantacijų beržai taip pat yra naudojami kaip žaliava

faneros gamyboje ir lentpjūvėse (Ryynänen et al., 2005).

Lietuvoje beržų auginimas plantacijoje yra ekonomiškai perspektyvus, kadangi beržo

medienos kainos yra gana aukštos. Beržas pasižymi aukštu regeneracijos potencialu ir sparčiu

augimo greičiu net ir skurdžiame dirvožemyje, todėl tinka apauginti apleistas žemės ūkio

paskirties žemes (Walle et al., 2007). Taigi našių beržynų veisimas ir auginimas

nenaudojamuose žemės ūkio plotuose yra labai perspektyvus. Ankstyvojoje augimo stadijoje

sodinukų ūgliai augia daug greičiau nei sėjinukai, nors 4–5 metais sėjinukai praauga sodinukus.

Tačiau beržo sodinukai turi didesnius lapus, didesnį chlorofilų kiekį, tankesnę karūną nei

sėjinukai (Kauppi et al., 1988). Mikrovegetatyviškai, iš kamieninių eksplantų ir kaliuso,

padauginti beržai pasižymi vienodesniu aukščiu ir kamieno apimtimi, mažesniu kamieno

įtrūkimų ir didesniu brandos požymių skaičiumi bei ankstyvesniu žydėjimu nei sėjinukai (Jones

et al., 1996). Beržų vegetatyvinis dauginimas yra būdas įveisti trumpos apyvartos želdinius

(Hynynen et al., 2010).

Vegetatyvinio dauginimo metu skirtingų beržo sodinukų produktyvumas ir pumpurų

skaičius skiriasi bei priklauso nuo motininio medžio, kelmo aukščio ir kirtimo laiko (Ferm and

Kauppi, 1990). Beržas pasižymi sunkiu šaknijimusi vegetatyvinio dauginimo metu, todėl

daugelis metodų buvo kuriami ir tobulinami šaknijimo paskatinimui. Iš tirtų metodų geriausias

rezultatas buvo pasiektas naudojant in vitro dauginimą. Beržas buvo vienas iš pirmųjų miško

medžių, pradėtų kultivuoti in vitro. Betula genties atstovų mikrodauginimas pirmą kartą buvo

atliktas mokslininkų Huhtineno ir Yahyaoglu (Huhtinen and Yahyaoglu, 1974). Eksplantų

viršūnės, tarpubambliai, mazgai, jauni lapai, pažastiniai pumpurai, brazdas buvo naudojami kaip

ekslpantai regeneruoti B. pendula ir B. pubescens (Huhtinen and Yahyaoglu, 1974; Chalupa,

1981; Srivastava and Steinhauer, 198la, 198lb; Simola, 1985; Ryynanen and Ryynanen, 1986).

In vitro tyrimai buvo vykdomi siekiant pagerinti sąlygas beržų in vitro auginimui (Kontseva,

2009); tiriant aplinkos veiksnių įtaką beržų šaknijimuisi in vitro (Bojarczuk, 2000; Wynne et al.,

2002), morfologijai in vitro (Ryynänen et al., 2005).

Page 16: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

16

Naujausi in vitro tyrimai su beržų atstovais atliekami įvairiais tikslais: siekiant optimizuoti

kaliaus indukcijos bei ląstelių kultūrų suspensijos palaikymo protokolą bei pagerinti jų

antioksidantinį aktyvumą, medžiagų, pavyzdžiui, betulino ir betulino rūgšties, kaupimąsi (Hajati

et al., 2016); siekiant pagerinti beržų B. pendula (Vaičiukynė et al., 2017), B. lenta (Rathwell et

al., 2016) atstovų stabilios in vitro kultūros gavimo protokolus; siekiant ištirti beržo endofitinių

bakterijų bendruomenes, lyginant daigo ir brandžių medžių pavyzdžius (Koivusaari et al.,

2018); klimato kaitos atžvilgiu įvertinti padidėjusios oro drėgmės poveikį beržo augavietėse

dirvožemio mikroorganizmų bendruomenių struktūrai (Truu et al., 2017); siekiant įvertinti beržo

eksplantų ūgliuose esančių fitohormonų kiekius (Steupp et al., 2017) ir augimo reguliatorių

poveikį in vitro kultūros vystymuisi (Lebedev et al., 2018) bei pritaikyti gautus rezultatus klonų

dauginimui.

Visi šie su Betula ir jų in vitro dauginimu susiję tyrimai ir jų rezultatai pasitarnaus gerinant

beržų trumpos apyvartos želdinių veisimą. Betula mikroūglių kultūros metodas ypač aktualus

tampa sveikos Betula reprodukcinės medžiagos kaupimui, kadangi tarp šios genties atstovų

stebimas puvinių paplitimas (Green and MacAskill, 2007). Nors, naujausių tyrimų duomenimis,

vienas iš beržo puvinius sukeliančių grybų – beržinis pintenis (Fomitopsis betulina (anksčiau –

Piptoporus betulinus) – gali būti laikomas perspektyviu naujų sveikatos priežiūros ir kitų

biotechnologijų produktų kūrimo šaltiniu (Pleszczyńska et al., 2017), vis dėlto jis kelia grėsmę

beržo medienos kokybei (Žižka et al., 2010). Lietuvos miškuose beržo paplitimo arealuose

beržinis pintenis (Fomitopsis betulina) yra dažnas ir taip pat sukelia medienos branduolio puvinį

(Valstybinė miškų tarnyba, 2018). Betula mikroūglių kultūros metodas taip pat padėtų išlaikyti

aukštos kokybės Betula genetinę medžiagą audinių ir ląstelių biotechnologijos manipuliacijoms

vykdyti.

1.2. Augalų hormonai ir jų įtaka šaknų indukcijai bei vystymuisi

1.2.1. Šaknų indukcija ir vystymasis

Medžiams reikia adaptuotis prie nejudraus gyvenimo būdo ir išvystyti tam tikrą raidos

plastiškumą, kad jie galėtų formuoti naujus organus, nukreiptus į maistinius šaltinius ar labiau

apšviestas vietas, ir t. t. Pagrindinis šio plastiškumo vaidmuo tenka ūglių ir šaknų apikalinėms

meristemoms, susidarančioms embriogenezės metu (Paquette and Benfey, 2001; Veit, 2004) ir

išliekančioms aktyvioms visą augalo gyvenimą (Casimiro et al., 2003). Daugumos aukštesniųjų

augalų šaknų sistema sudaryta iš pirminių (taip pat vadinamų pagrindinėmis), šoninių ir

pridėtinių šaknų (Rose, 1983). Pirminė šaknis vystosi iš sėklos, o šoninės šaknys išsivysto iš

Page 17: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

17

šaknies audinių. Pridėtinės šaknys yra inicijuojamos iš kitų nei šaknies audinių, pavyzdžiui,

hipokotilio ar stiebo. Dauginant medžius in vitro vegetatyviniu būdu šaknys auga iš eksplanto

stiebo ir yra vadinamos pridėtinėmis, o iš jų išaugusios šaknys – šoninėmis šaknimis. Todėl

tyrinėjant vegetatyviškai dauginamų medžių in vitro šaknijimąsi svarbu suprasti ir išsiaiškinti

pridėtinių ir šalutinių šaknų vystymosi mechanizmus.

Pridėtinės šaknys gali išsivystyti tiesioginės organogenezės keliu iš stiebo ar lapo ir netgi iš

senų šaknų kitų audinių nei periciklas. Jos iš stiebo audinių (brazdo ar kitų meristeminių

ląstelių) gali susiformuoti natūraliomis sąlygomis arba jų formavimasis gali būti sukeltas

stresinėmis aplinkos sąlygomis, pavyzdžiui, mechaniniais pažeidimais ar taikant audinių

kultūros metodą, t. y. ūglių regeneraciją (Li et al., 2009). Pridėtinių šaknų formavimas yra

kritinis vegetatyvinio dauginimo veiksnys. Efektyvi šaknijimosi technologija gali turėti įtakos

aukštos kokybės šaknų sistemos formavimuisi (De Klerk et al., 1997). Šaknų sistemos kokybę

apibūdina šaknų skaičius ir jų ilgis (Mohammed ir Vidaver, 1990). Pridėtinių šaknų

formavimosi procesas susideda iš trijų tarpusavyje susijusių fiziologinių etapų: indukcijos,

inicijavimo ir raiškos. Kiekvieno iš šių etapų vyksmui reikalingos skirtingos sąlygos. Indukcijos

etapas apima molekulinius ir biocheminius reiškinius be matomų pokyčių. Iniciacijos metu

vyksta ląstelių dalijimasis ir šaknų pirmapradė organizacija. Ekspresijos etapu stiebo viduje

vyksta šaknies užuomazgos susiformavimas ir išoriškai pastebimas šaknies atsiradimas (Li et

al., 2009). Vegetatyviniame dauginime efektyviai šaknų sistemai gauti svarbios ne tik

pridėtinės, bet taip pat ir iš jų išsivystančios šoninės šaknys. Jos vystosi iš periciklo – specifiškai

diferencijuotų ląstelių, esančių aplink šaknies aktinostelę. Šoninių šaknų vystymasis prasideda,

kai keletas periciklo ląstelių ištįsta radialine kryptimi ir tangentiškai pasidalina. Būtent šios

dukterinės ląstelės ir sudaro šoninės šaknies užuomazgą, kuri auga per tolesnius pirminės

šaknies sluoksnius, kol iškyla. Iškilusi užuomazga yra aktyvuojama ir tampa funkcionuojančia

šoninių šaknų meristema (Malamy and Benfey, 1997).

Cheminiai ir fizikiniai faktoriai, kurie daro įtaką šaknijimuisi, yra šie: augalų augimo

reguliatoriai (Wiesman et al., 1989), maistinės medžiagos (svarbiausia – angliavandenių šaltinis)

(Wiesman and Lavee, 1995), temperatūra ir šviesa (Haising, 1982; Correa and Fett-Neto, 2004),

augalų gaminamų dujų kaupimasis aplinkoje (Žiauka et al., 2013; Žiauka et al., 2014). Visi šie

veiksniai lemia pridėtinių ir šoninių šaknų indukciją ir vystymąsi, kurie vyksta iš meristemų,

kurių veiksnumas yra reguliuojamas būtent augalo hormonų signaliniais keliais. Augalų

hormonai yra gaminami visose augalo dalyse. Pagrindinės svarbiausios hormonų sintezės vietos

yra jauni lapai, ūglio viršūnės (auksinas), šaknų galiukai (citokininai) ar besivystančios sėklos

(giberelinai), ramybės būsenos sėklos, pumpurai (abscizo rūgštis) (Ljung et al., 2001; Aloni et

al., 2005; Moore, 1998; Jones ir Phillips., 1966).

Page 18: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

18

Augalų hormonų kiekybinis nustatymas augale atliekamas panaudojant masės

spektrometriją. Hormonai nustatinėjami taikant dujų chromatografiją – dvigubąją masių

spektrometriją (GS-MS/MS). Pavyzdžiui, tyrimai atlikti su baltažiedžiu vaireniu (Arabidopsis

thaliana L.), nustatant IAR, ABR ir kitų hormonų kiekius (Müller et al., 2002). Taip pat

pasitelkiant efektyviąją skysčių chromatografiją (angl. high performance liquid

chromatography, HPLC) tyrimai atlikti su obels (Malus Mill.) genties atstovais, nustatant

giberelino A3, ABR, IAR ir kitų hormonų kiekius (Bendokas ir Stanys, 2009; Sakalauskaitė ir

kt., 2007) bei su tuopų (Populus L.) genties atstovais nustatant giberelinų, IAR (Zawaski et al.,

2011) ir citokininų kiekius (Chen et al., 2010) bei su tuopų (Populus L.) genties atstovais

nustatant citokininų (Strand et al., 1992) ir kitų fitohormonų kiekius (Jinlong et al., 2013).

Taigi fitohormonai yra labai svarbūs šaknijimuisi ir jų taikymas gali padėti kontroliuoti

medžių in vitro šaknijimąsi, nors žinios apie medžių pridėtinių šaknų vystymąsi yra ribotos.

Pavyzdžiui, transkripcijos lygyje identifikuoti tiktai du genai, kurie sumedėjusiose augalų rūšyse

reguliuoja pridėtinių šaknų formavimąsi (Leguѐ et al., 2014). Pagrindiniai augalų hormonai,

lemiantys šaknijimąsi, yra auksinai, citokininai, abscizo rūgštis bei giberelinai, kurių įtaka

šaknijimuisi aptarta tolesniuose skyriuose.

1.2.2. Auksinas

Auksinas kaip mobilus augimo reguliatorius buvo pradėtas tyrinėti Charles'o ir Franko

Darwinų ir paminėtas jų knygoje „The Power of Movement in Plants“ (Darwin and Darwin,

1880). Jo izoliavimas buvo atliktas šiek tiek vėliau mokslininko Wento (1926). Per pastaruosius

dešimtmečius auksinas yra sparčiai tyrinėjamas. Gausu rezultatų, susijusių su auksino

receptoriais, nešėjais, sinteze bei jo inaktyvavimu (Leyser, 2010). Auksinas sumedėjusiems

augalams yra labai svarbus ir atlieka šias funkcijas: inicijuoja meristemų aktyvumą, slopina

vystymąsi pumpurų ramybės periode, inicijuoja šaknų vystymąsi, dalyvauja krentant lapams,

žiedams ir vaisiams, stimuliuoja ląstelių dalijimąsi, daro įtaką fototropizmui, stimuliuoja etileno

produkciją, susilpnina ląstelės sienelių uždarumą (Moore, 1998). Auksinas yra vienas iš

pagrindinį vaidmenį šaknų vystymesi atliekančių fitohormonų (Tanimoto, 2005).

Vienas iš pagrindinių augalų sintezuojamų auksinų yra indolil-3-acto rūgštis (IAR).

Auksino biosintezė nėra visiškai suprasta dėl daugybės sudėtingų ryšių ir juose dalyvaujančių

fermentų, kurių funkcijos yra daugialypės (Zhao, 2010). Genetiniai ir biocheminiai tyrimai

atskleidė, kad pagrindinis auksino pirmtakas augaluose yra triptofanas. Taip pat yra nustatyta ir

nuo triptofano nepriklausančių auksino biosintezės kelių, tačiau žinios apie juos yra ribotos.

Yra keturi su triptofanu susiję augaluose vykstančios auksino biosintezės keliai: YUUCA

(YUC) kelias, indolo-3-piruvato rūgšties kelias, indolo-3-acetamido kelias bei indolo-3-

Page 19: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

19

acetaldoksimo kelias (anksčiau vadintas CYP79B). Tačiau ne visi šie keliai egzistuoja

skirtingose augalų rūšyse (Zhao, 2010). Pagrindinis auksino biosintezės kelias yra YUUCA

(YUC) kelias, kadangi YUC genas yra plačiai paplitęs po visas augalų rūšis (Gallavoti et al.,

2008). YUC genų šeima koduoja flavinų monoksigenazės baltymus, kurie katalizuoja

pagrindinius auksino biosintezės etapus (Zhao et al., 2001). Skirtingas molekulinio auksino

kiekis sukelia skirtingus genų ekspresijos procesus, kurie nulemia ląstelių vystymosi kelius.

Šaknyse aukštas auksino kiekis stimuliuoja ląstelių dalijimąsi, o žemas sukelia ląstelių plėtimąsi

(Doerner, 2008).

Daugiausia auksinas yra sintezuojamas jaunuose lapuose (Ljung et al., 2001) ir tiesiogiai

pernešamas brazdo indais iš ūglių link šaknies apikalinės meristemos (Blilou et al., 2005;

Petrasek and Friml, 2009). Tačiau auksinas taip pat sintezuojamas ir šaknyse (Ljung et al.,

2005). Didžiausią įtaką šaknies augimui turi auksino koncentracijos gradientas, susidarantis

išilgai šaknies meristemos. Šis koncentracijos gradientas priklauso nuo auksiną atgabenančių

nešiklių, priklausančių AUXIN RESISTANT 1 (AUX1) ir LIKE-AUX1 baltymų šeimoms, bei

auksiną išgabenančių nešiklių, priklausančių PINs ir ATP – BINDING CASSETE (ABC)

baltymų šeimoms (Blilou et al., 2005; Kleine-Vehn, 2006; Grieneisen et al., 2007). Pasyvi

auksino pernaša yra reguliuojama per specifinius transporto inhibitorius. Vienas iš jų yra 2,3,5-

trijodbenzoinė rūgštis (TIBA). TIBA yra sintetinis cheminis junginys, tyrėjų naudojamas

pridedant į auginamosios terpės sudėtį. Jis daro įtaką auksino kaupimuisi ląstelėje slopindamas

auksino pernašą iš ląstelės. Nustatyta, kad TIBA konkuruoja su auksinu dėl prisijungimo vietos,

esančios membranoje, ir taip veikia auksino pernašą (Goldsmith, 1977).

Auksinas lemia periciklo meristeminių ląstelių diferenciaciją į šoninių šaknų užuomazgą.

Būtent PIN3, kuris randamas endodermyje ankstyvoje šoninių šaknų iniciavimo stadijoje, lemia

tinkamą auksino gradientą, kontroliuojantį nediferencijuotų meristeminių ląstelių virtimą į

šaknies užuomazgą (Peret et al., 2009; Marhavy et al., 2013). Pasirodžius šoninių šaknų

užuomazgai, auksinas yra kaupiamas šaknies galiuke. Tinkamas maksimalus auksino kiekis yra

pagrindinis veiksnys šakniai toliau vystantis (Petrasek and Friml, 2009). Užuomazgos gale

susikaupęs auksinas taip pat veikia kaip signalas gretimoms ląstelėms, kad žievės ir epidermio

ląstelės sintezuotų LAX3 (LIKE AUX1 3) baltymą, kuris lemia greta esančių ląstelių

atsiskyrimą taip sudarydamas sąlygas užuomazgai išlįsti (Swarup et al., 2008). Kaip ir

šoninėms, taip ir pridėtinėms šaknims vystantis auksinas labai svarbus. Nustatyta, kad didėjanti

auksino biosintezę lemiančio geno (YUCCA1 (YUC1)) ekspresija stiprina pridėtinių šaknų

vystymąsi ir iš kaliaus, ir iš stiebo. Stiebe esančiose parenchiminėse ląstelėse užfiksuota auksino

biosintezei įtaką darančio geno (OsYUC1-GUS) ekpsresija, parodanti vietinę auksino biosintezę

stiebo induose (Yamamoto et al., 2007). Taip pat yra tyrimų, atskleidžiančių auksino įtaką

Page 20: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

20

šoninių šaknų vystymuisi panaudojant auksino transporto inhibitorių TIBA. Nustatyta, kad eglės

(Picea abies ((L.) Karst.)) sėjinukų augimas ant terpės su TIBA ženkliai sumažino šoninių šaknų

vystymąsi (Karabaghli-Degron et al., 1988).

1.2.3. Citokininai

Citokininai yra augalų hormonai, taip pat priklausantys augimo aktyvatorių grupei, kurie

stimuliuoja ląstelės dalijimąsi ir didėjimą bei kitus procesus (Moore, 1998). Iš viso nustatyta

apie 200 natūralių ir sintetinių citokininų. Natūralūs citokininai, augaluose gaminami natūraliai,

yra adenino dariniai su prijungta isopreno arba aromatine grupe. Pagal prijungtą grupę

citokininai skirstomi į izopreninius ir aromatinius citokininus. Geriausiai žinomas augalų

izopreninis citokininas yra zeatinas, kuris pirmą kartą buvo rastas javuose, o vėliau – ir

daugybėje kitų augalų rūšių (Salisbury and Ross, 1992). Tiek anksčiau, tiek dabar tyrimuose,

susijusiuose su medžiais, citokininai daugiausia naudojami mikrodauginimui, ypač audinių

kultūros metoduose (Ridge, 1991). Citokininai sumedėjusiems augalams yra labai svarbūs ir

atlieka šias funkcijas: sulėtina augalų senėjimą, stimuliuoja ląstelių dalijimąsi, sulaiko vaisių

nukritimą, esant šviesos trūkumui palaiko sėklų dygimą, įveikia viršūninį dominavimą, skatina

besėklių vaisių produkciją, stimuliuoja ir daro įtaką kaliaus diferenciacijai (Moore, 1998).

Sveikuose augaluose ūglių ir šaknų gyvos ląstelės sugeba produkuoti citokininus (Aloni et

al., 2005; Tanaka et al., 2006). Šio hormono gamyba reguliuojama pagal sintezuojamų ląstelių

vietą, esančią augalo kūne, ląstelių vystymosi stadiją bei yra lemiama aplinkos sąlygų.

Pagrindinė citokininų sintezės vieta yra augalo šaknies galiukas (Aloni et al., 2005). Citokininų

biosintezė ir homeostazė kontroliuojamos vidinių ir išorinių veiksnių, pavyzdžiui, kitų

fitohormonų ir neorganinių azoto šaltinių (Sakakibara, 2006). Izopreninių citokininų biosintezė

prasideda adenozino fosfato-izopentaniltransferazės (IPT) katalizuojama reakcija, kaip substratą

panaudojant adenozin-5-fosfatą (ATP, ADP ir AMP) ir dimetilalilo difosfatą (DMAPP) arba

hidroksimetilbutenilo difosfatą (HMBDP) (Hwang and Sakakibara, 2006). Šaknies galiuko

ląstelėse pagaminti citokininai plazmodezma, kuri tęsiasi į meristemines ir ilgėjimo zonas, ir iš

diferenciacijos vietų medienos indais dideliu srautu transportuojami į besivystančius augalo

organus (Aloni et al., 2006). Citokininų degradacija vykdoma vienu žingsniu ir yra

katalizuojama citokininų oksidazės/dehidrogenazės fermentų (Werner et al., 2006). Iš citokininų

gamybos vietų signalas, reikalingas reguliuoti diferenciaciją ir vystymąsi, sklinda specifiniais

keliais ir skirtingais mechanizmais (Aloni et al., 2005). Signalas yra priimamas trijų

membraninių baltymų – histidino kinazės receptorių: AHK2, AHK3 ir CRE1/AHK4 (Inoue

et al., 2001; Yamada et al., 2001). Toliau fosfotransmiteriniais baltymais (AHPs) (Hutchison

et al., 2006) į branduolį perduodamas signalas, kur B tipo atsako reguliatoriais aktyvuojama

Page 21: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

21

geno, koduojančio citokinino atsaką, ekspresija (Mason et al., 2005). Nustatyta, kad vienas iš

Arabidopsis AHP šeimos baltymas AHP6 neturi histidiną prijungiančios liekanos, todėl veikia

kaip neigiamas citokininų signalo reguliatorius (Moreira et al., 2013). Nustatyta, kad AHP6

ekspresijai įtakos turi auksinas ir šaknyse esant didelei auksino koncentracijai skatinama

citokininų signalo inhibitoriaus AHP6 transkripcija (Bishopp et al., 2011).

Strigolaktonai – natūralūs augalų cheminiai junginiai, jau keletą dešimtmečių žinomi dėl

gebėjimo skatinti parazitinių augalų, pavyzdžiui, džioveklės (Orobanche reticulata Wallr.),

dygimą. Dabar jie įvardijami kaip nauja hormonų grupė, koordinuojanti ūglių ir šaknų

vystymąsi bei atsaką į aplinkos veiksnius (Koltai, 2011). Šis hormonas veikia taip pat, kaip

citokininų inhibitorius, kuris blokuoja citokininų transportavimą į pumpurus bei citokininų

ekspresiją ūgliuose (Dun et al., 2012).

Citokininai yra svarbūs faktoriai, reguliuojantys šaknų augimą, ypač ląstelių diferenciaciją

šaknies ilgėjimo zonoje (Dello et al., 2007). Esant normaliai citokininų fiziologinei

koncentracijai slopinamas šoninių šaknų formavimasis (Torey, 1986). Transgeniniuose

augaluose, sintezuojančiuose mažą citokininų kiekį, nustatyta padidėjusi šaknies meristema,

pastebėtas šoninių šaknų formavimasis, vykstantis arčiau viršūninės meristemos, padidėjęs

šaknų šakojimasis bei sustiprėjęs pridėtinių šaknų formavimasis (Werner et al., 2003; Lohar

et al., 2004). Nustatyta, kad citokininai neigiamai veikia šoninių šaknų formavimąsi ir augimą,

stabdydami šoninių šaknų formavimuisi reikalingo auksino gradiento susidarymą (Marhavý

et al., 2011).

1.2.4. Abscizo rūgštis

Abscizo rūgštis yra augalų augimo reguliatorius, aptinkamas visuose aukštesniuosiuose

augaluose, reguliuojantis daugelį augimo ir diferenciacijos fiziologinių procesų (Creelman,

1989; Creelman, 1990). Šis cheminis junginys buvo atrastas tyrinėjant medvilnės vaisiaus

kritimo priežastis. Buvo nustatyta, kad jis paspartina medvilnės vaisių kritimą, todėl visų pirma

jis buvo pavadintas abscisin II (angl. abscission – nupjovimas) (Ohkuma et al., 1963). Vėliau šis

fitohormonas buvo pavadintas abscizo rūgštimi (ABR) (Addicot et al., 1968). Nuo tada, kai jis

pirmą kartą buvo izoliuotas iš medvilnės vaisiaus (Ohkuma ir kt., 1963) ir vėliau – iš figmedžio

lapų (Cornforth et al., 1965), prasidėjo šio hormono tyrimai. Buvo plėtojami tyrimai, susieti su

ABR vaidmenimi augalų, taip pat ir sumedėjusių, augime, įvardijant šį hormoną augimo

inhibitoriumi (Zeevaart and Creelman, 1988; Jiang and Hartung, 2007; Luo et al., 2014). Augalų

tyrimuose, susietuose su augalų atsaku į stresines aplinkos sąlygas, įvardinant ABR augalų

atsako į aplinkos dirgiklius mediatoriumi (Cochard et al., 1996; Li et al., 2003; Zhao and Guo,

2011). Lietuvoje daugiausia sumedėjusių augalų fitohormonų ir jų atsako į stresą (Sakalauskaitė

Page 22: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

22

et al., 2007b) tyrimų vykdoma Lietuvos agrarinių ir miškų mokslų centro filialuose. Abscizo

rūgštis sumedėjusiems augalams yra labai svarbi ir atlieka šias funkcijas: indukuoja ramybės

būseną, skatina lapų senėjimą bei lapų, žiedų ir vaisių kritimą, slopina sėklų dygimą, gali

skatinti arba slopinti žydėjimą, dalyvauja aplinkos streso valdyme, slopina augalų užsigrūdinimą

(Moore, 1998).

Tradiciškai ABR vadinama streso hormonu, nes išoriškai pridėta ji neigiamai veikia

augalo augimą (Jiang and Hartung, 2007). Pirminiai tyrimai apie ABR poveikį šaknies

formavimuisi ir vystymuisi rodė įvairius rezultatus: kartais ABR taikymas lemdavo šaknies

augimo slopinimą (Jones et al., 1987; Pilet et al., 1981; Watts et al., 1981), kartais – skatinimą

(Mulkey et al., 1983; Pilet et al., 1987; Watts et al., 1981). Buvo nustatyta, kad visi šie ABR

poveikio šaknies augimui skirtumai priklauso nuo pirminės šaknies augimo greičio ir

naudojamos ABR koncentracijos: didesnė koncentracija siejama su augimo slopinimu (Pilet

et al., 1987; Mulkey et al., 1983).

Dabartiniuose tyrimuose taip pat teigiama, kad ABR slopina šoninės šaknies augimą bei

lemia šaknies ilgėjimą streso metu (Signora et al., 2001). Signora ir bendradarbių grupė teigia,

kad 1 µmol l-1 ABR slopina Arabidopsis šoninių šaknų vystymąsi ir, jų teigimu, tai vyksta iškart

po šoninių šaknų užuomazgos atsiradimo ir prieš pat šoninių šaknų meristemos aktyvavimą

(Signora et al., 2001). Guo ir kt. (2009) teigia, kad ABR slopina šoninių šaknų vystymąsi

didėjant endogeninės ABR kiekiui. Nors, kitų mokslininkų teigimu, 10 µmol l-1 ABR skatina

šakniaplaukių formavimąsi ir šoninių šaknų užuomazgų iniciaciją jaunose pirminėse sėklų

šaknelėse (Chen et al., 2006). Taigi, kaip ir ankstesnių, taip ir šio dešimtmečio tyrimų rezultatai

yra skirtingi ir sukelia įvairių diskusijų bei interpretacijų.

Abscizo rūgštis natūraliai gaminama augale tam tikrais kiekiais, tačiau jos kiekis padidėja

streso sąlygomis (Zhao and Guo, 2011). Abscizo rūgštis yra sintezuojama šaknyse, gausiau streso

metu, ir vėliau transportuojama į ūglius (Jiang and Hartung, 2007). ABR vaidina svarbų vaidmenį

vykstant šaknų formavimuisi (Smet et al., 2003). Aukštesniuose augaluose ABR gaminama

plastidėse dviem keliais: vienas tiesiai iš farnezildifosfato (Hirai et al., 2000), kitas – oksidacinio

skaldymo keliu skaldant 9-cis-epoksikarotenoidą iš violaksantino, kuris suformuotas karotinoidų

biosintezės kelyje, iki 9-cis-neoksantino, ir kitus junginius, galiausiai iki ABR. Biocheminiai ir

genetiniai tyrimai parodė, kad 9-cis-epoksikarotenoido skaldymas 9-cis-epoksikarotenoido

dioksigenaze (NCED) yra limituojantis žingsnis ABR biosintezėje (Taylor and Smith, 1967; Han

et al., 2004). Ištirti ABR sintezės inhibitoriai, pavyzdžiui, abaminas (ABR biosintezės

inhibitorius su amino dalimi) ir NDGA (angl. nordihydroguaiaretic acid), kurių veikimas

pasireiškia per NCED aktyvumo slopinimą. Nustatyta, kad sausros metu ABR skatinamą

žiotelių uždarymą gali stabdyti abu šie inhibitoriai, tačiau abamino sukeltas žiotelių uždarymo

Page 23: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

23

slopinimas yra kompensuojamas papildomu ABR kiekiu, o NDGA sukeltas slopinimas yra

stipresnis ir nekompensuojamas papildomu ABR kiekiu. Taigi NDGA taikymas in vivo gali būti

toksiškas. Be to, pačią ABR sintezę abaminas inhibuoja stipriau nei NDGA, todėl abaminas

įvardijamas kaip specifinis ABR inhibitorius (Han et al., 2004).

Šaknų, kaip ir kitų augalo organų, formavimasis visų pirma prasideda nuo ląstelių

inicijavimo. Šoninių šaknų medienos periciklo ląstelių inicijavimas vyksta G1-S ląstelės ciklo

stadijose ir yra skatinamas augalų hormono auksino (Casimiro ir kt., 2003; Himanen et al.,

2002). Šiuo metu nėra stiprių įrodymų, kad ABR lemtų šoninių šaknų inicijavimą, tačiau yra

keletas tyrimų, kurie teigia esamą ryšį tarp auksino ir ABR šoninių šaknų inicijavimo metu. G1-

S stadija iš dalies reguliuojama su Kip susijusių baltymų (angl. Kip-related proteins (KRPs))

kiekiu, kurie yra ląstelės ciklo inhibitoriai (Verkest et al., 2005).

Nustatyta, kad auksinas ir ABR pasižymi priešingu veikimu: auksinas mažina KRP kiekį

(t. y. mažina inhibitorių kiekį, taip aktyvindamas inicijavimą) (Himanen et al., 2002), ABR

didina KRP kiekį (t. y. didina inhibitorių kiekį, taip slopindamas inicijavimą) (Wang et al.,

1998). Šoninių šaknų inicijavimas yra susijęs su KRP kiekiu, nes augaluose gaminamas

baltymas KRP2 stabdo medienos polių periciklo ląstelių dalijimąsi ir taip lemia ženkliai

sumažėjusį šoninių šaknų skaičių (Himanen et al., 2002). Taip pat šoninių šaknų inicijavimas

yra analizuojamas genomo transkripcijos lygyje. Nustatyta, kad inicijavimo metu aktyvus genas

yra 9-CIS-EPOXYCAROTENOID DIOXYGENASE 9 (NCED9), kuris vaidina svarbų vaidmenį

ABR biosintezėje (Taylor et al., 2000). Taip pat yra tyrimų rezultatų, kurie parodo, kad po

inicijavimo atsiradus šoninių šaknų užuomazgoms, ABR slopina šoninių šaknų pirminį

vystymąsi, kontroliuodama šoninių šaknų meristemų aktyvumą (De Smet et al., 2003).

Po augalo įsikūrimo svarbus jo gyvavimo žingsnis yra adaptacija prie besikeičiančių

aplinkos sąlygų. Streso sąlygomis ABR gali būti labai svarbi slopinant šoninių šaknų meristemų

aktyvumą kontroliuojant šaknies šakojimąsi (Signora et al., 2001). Tačiau taip pat yra atlikta

tyrimų, įrodančių, jog tiek streso, tiek normaliomis aplinkos sąlygomis optimalus ABR kiekis

gali turėti teigiamos įtakos in vitro klonuotų hibridinių drebulių ūglių adaptacijai ex vitro

sąlygomis dėl padidėjusio šaknų ir ūglių augimo (Žiauka ir kt., 2011). Taigi balansas tarp

auksino skatinamų ir ABR slopinamų signalinių kelių kontroliuoja šoninių šaknų vystymąsi.

Tačiau ABR sukeltas šoninių šaknų meristemų aktyvavimo stabdymas nebepanaikinamas

auksino poveikiu (De Smet et al., 2003). Taip pat abscizo rūgšties poveikis tyrinėtas

panaudojant jos biosintezės inhibitorių abaminą. Nustatyta, kad egzogeninis abamino

panaudojimas skatina šoninių šaknų mazgų formavimąsi (Suzuki et al., 2004). Taigi tyrimai,

susieti su ABR poveikiu šaknims, yra labai svarbūs ir esminiai norint pagerinti pridėtinių bei

šalutinių šaknų vystymąsi.

Page 24: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

24

1.2.5. Giberelinai

Giberelinai yra esminiai augalų hormonai. Giberelinų cheminių formų yra apie du šimtus,

tačiau vos keletas jų yra biologiškai aktyvios. Aktyvūs giberelinai per visą augalų gyvavimo

ciklą kontroliuoja daugybę vystymosi ir augimo procesų (Richards et al., 2001; Sun and Gubler,

2004). Normaliam vystymuisi ir augimui užtikrinti augalams labai svarbu sintezuoti optimalų

biologiškai aktyvių giberelinų kiekį. Aukštesnieji augalai sintezuoja biologiškai aktyvius

giberelinus: A1, A3, A4 ir A7 (Hedden and Phillips, 2000). Giberelinai sumedėjusiems augalams

yra labai svarbūs ir atlieka šias funkcijas: stimuliuoja ląstelių ilgėjimą, didina tarpubamblių ilgį,

indukuoja kai kurių rūšių žydėjimą, pertraukia augalo ramybės būseną, sustiprina geotropizmą,

skatina besėklių vaisių gamybą (Moore, 1998).

Giberelinų biosintezė vykdoma jaunuose lapuose ir viršūniniuose pumpuruose bei

šaknų galiukuose (Jones and Phillips., 1966). Giberelinų biosintezė yra reguliuojama dviejų

genų šeimų, koduojančių giberelinų 20-oksidazes (GA20ox) ir GA 3-oksidazes (GA3ox),

kurios katalizuoja galinius sintezės etapus (Chiang et al., 1995; Phillips et al., 1995).

Pagrindiniai giberelinų signalinio kelio reguliatoriai yra branduolyje lokalizuoti augimą

slopinantys DELLA baltymai (Peng et al., 1997), priklausantys transkripcijos reguliatorių

GRAS šeimai (Bolle, 2004). Tačiau giberelinų homeostazė taip pat priklauso nuo jų vertimo

į neaktyvias formas. Pagrindinis gerai žinomas inaktyvacijos kelias – tai 2β hidrolizacija,

katalizuojama giberelinų 2-oksidazės (GA2ox) (Rieu et al., 2008).

Taip pat yra išsiaiškinti kiti du giberelinų vertimo į neaktyvias formas keliai: vienas yra

katalizuojamas P450 mono-oksigenazės (Zhu et al., 2006), o kitas vyksta per GA metilinimą

(Varbanova et al., 2007). Giberelinų biosintezę reguliuojančių oksidazių veikla priklauso nuo

DELLA baltymų ir pačių aktyvių giberelinų. Aktyvūs giberelinai slopina oksidazių genų raišką

(Ait Ali et al., 1999), o DELLA baltymai skatina aktyviųjų giberelinų susidarymą (Dai et al.,

2007). Nustatyta, kad patys giberelinai reguliuoja DELLA baltymų lygį, skatindami jų skaidymą

(Dill et al., 2004). Taip pat nustatyti įvairūs giberelinų sintezės inhibitoriai. Vienas iš jų yra

paklobutrazolis (PBZ), kuris blokuoja nuo citochromo P450 priklausomas monoksigenazes, taip

slopindamas giberelinų biosintezės eigoje vykstančią ent-kaureno rūgšties oksidaciją į ent-

kaurenoinę rūgštį. Kitas inhibitorius – proheksadiono kalcis (ProCa) – blokuoja giberelinų

sintezę, slopindamas neaktyvių giberelino formų virtimą aktyviomis (Rademacher, 2000).

Aktyvūs giberelinai lemia augalo šaknų augimą ir vystymąsi. Giberelinų įtaka šoninių

šaknų formavimuisi yra nepakankamai ištirta. Kai kurių tyrėjų rezultatai rodo, kad giberelinai

slopina medžių šoninių šaknų formavimąsi. Keletas rezultatų su medžių rūšimis parodo, kad

giberelinų biosintezės inhibitoriai, tokie kaip paklobutrazolis (PBZ), gali stimuliuoti pridėtinių ir

šoninių (Chaney, 2003; Watson, 2004) šaknų formavimąsi. Nustatyta, kad giberelinų sintezės

Page 25: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

25

blokavimas esant mažesniam DELLA baltymų kiekiui sukelia tuopų genties atstovų šaknų

biomasės padidėjimą veikiausiai dėl didesnio šoninių šaknų skaičiaus (Busov et al., 2006). Kiti

tyrimų rezultatai rodo, kad didesnį nei įprastai giberelino kiekį lemiančios genų mutacijos bei

egzogeninio giberelino taikymas drebulėse slopina šoninių ir pridėtinių šaknų formavimąsi

(Eriksson et al., 2000). Gou ir bendradarbiai (2010) nustatė, kad in vitro sąlygomis išoriškai

taikomas giberelinas teigiamai veikia tuopų genties atstovų šoninių šaknų prolifereciją ir

ilgėjimą. Taip pat jų gauti rezultatai parodė, kad giberelinai neigiamai veikia šoninių šaknų

formavimąsi, slopindami šoninių šaknų užuomazgos iniciaciją. Šių mokslininkų teigimu,

giberelino įtaka šaknims formuojantis yra siejama giberelino bendrais signaliniais keliais su

kitais hormonais, pavyzdžiui, auksinu ir abscizo rūgštimi. Visų pirma nustatyta, kad auksino

kiekis didėja su giberelinų trūkumu susijusiose ir giberelinams nejautriose mutantų šaknyse.

Antra, genai, koduojantys auksino atsako ir transportavimo sistemas, parodė ekspresijos

pokyčius sistemose, susijusiose su šoninių šaknų formavimusi. Galiausiai vieno geno,

koduojančio auksino transportavimą, sukelta padidinta ekspresija padidina šoninių šaknų

formavimąsi ir su giberelinų trūkumu susijusiuose, ir giberelinams nejautriuose mutantuose.

Praėjus vienai dienai po giberelinų išorinio taikymo tarp tuopų genties atstovų šio geno

ekspresija buvo slopinama. Tai leidžia manyti, jog tuopų genties atstovams giberelinas

moduliuoja šaknų vystymąsi, sąveikaudamas su auksino transportu. Taigi giberelinas susietas su

auksinu, kuris, kaip jau minėta ankstesniuose poskyriuose, tiesiogiai veikia šoninių šaknų

formavimąsi. Taip pat giberelinas gali netiesiogiai turėti įtakos ABR biosintezei ir jos atsakui.

Būtent su giberelinų trūkumu susijusiuose ir giberelinams nejautriuose tuopų genties atstovų

mutantuose šoninių šaknų proliferacija siejama su sumažėjusia ABR koncentracija ir ABR

biosintezės bei signalinių kelių genų slopinamu reguliavimu (Gou et al., 2010).

Page 26: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

26

2. TYRIMO MEDŽIAGA IR METODAI

2.1. Tyrimo objektai

Tyrimai vykdyti Lietuvos agrarinių ir miškų mokslų centro (LAMMC) filialo Miškų

instituto Miško augalų biotechnologijų laboratorijoje.

Šio tyrimo objektai – Populus ir Betula genčių atstovai bei jų in vitro kultūros. Tiriamieji

darbai atlikti su keturių Populus ir septynių Betula genotipų klonais. Populus atstovams buvo

paimta miško rinktinių medžių augalinė medžiaga. Beržo atstovams buvo paimta neužkrėstų

puviniu medžių, kurie rasti miško sėkliniame medyne (43BSM001), bei šiltnaminės karpotojo

beržo sėklinės plantacijos (Dubravos eksperimentinės-mokomosios miškų urėdijos

šiltnamiuose) (šio darbo metu buvo vykdomas pastarųjų genotipų in vitro sterilios kultūros

gavimas (3.1. skyrius)) augalinė medžiaga. Populus ir Betula genotipų klonai padauginti ir

išauginti in vitro kultūroje. Tyrimui pasirinkti drebulės, hibridinės drebulės genotipų medžiai bei

beržo genotipų medžiai ir rastų neužkrėstų puviniu medžių miško sėklinis medynas yra įtraukti į

2015 m. Lietuvos miško sėklinės bazės sąvadą. Jų aprašymai pateikti 1 lentelėje.

Tyrime naudojamų visų Populus bei neužkrėstų puviniu Betula pendula genotipų klonų

in vitro kultūros gautos prieš dešimt metų. Taigi tyrime naudoti stabilių in vitro kultūrų kelis

metus gyvuojantys ūgliai. Šešių papildomų Betula pendula genotipų in vitro kultūros

gaunamos vykdant šį darbą (3.1. skyrius). Pirminių eksplantų gavyba vykdyta ankstyvą

pavasarį iš tiriamojo medžio lajų paimant šakas su ramybės būsenoje esančiais

vegetatyviniais pumpurais, kuriems sąlygos prasiskleisti sudarytos laboratorijoje. Ūgliams

užaugus iki poros centimetrų ilgio, jie buvo nuskinti. Prieš perkėlimą ant maitinamosios

terpės ūgliai buvo dezinfekuoti panaudojant 50 % „Ace“, 75 % etilo alkoholio ir 0,1 %

sidabro nitrato tirpalus, po kiekvieno tirpalo panaudojimo ūgliai nuplauti dezinfekuotu

vandeniu. Atlikus dezinfekciją, ūgliai buvo patalpinti in vitro kultūroje perkeliant ant

maitinamosios terpės uždaruose in vitro induose. Gyvybingi drebulės ir beržo eksplantai

pusę metų kas mėnesį buvo perkeliami ant šviežios maitinamosios terpės taip gaunant

sterilias, gyvybingas, naujus ūglius formuojančias drebulės ir beržo kultūras. Šių kultūrų

ūgliai naudoti tiriamojo darbo eksperimentuose.

Page 27: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

27

2.2. Tiriamojo darbo aprašymas ir taikomi metodai

Tyrimo metu naudotas aukštesniųjų augalų in vitro kultūros metodas, t. y. augalų kultūros

auginimas ant maitinamosios terpės steriliomis sąlygomis, sudarant dirbtines aplinkos sąlygas

(Pierik, 1997). Eksperimentuose naudotas in vitro kultūros metodas – mikroūglių kultūra.

Mikroūglių kultūrai gauti izoliuota augalo dalis – šiuo atveju augalo viršūnė ar stiebo atkarpa su

bent vienu pumpuru (eksplantas) – auginta in vitro sąlygomis (Ahuja, 1987). Ruošiantis

eksperimentams bandomieji ūgliai auginti ant standartinės maitinamosios terpės be papildomų

augimo reguliatorių (tik su mineralinėmis druskomis ir vitaminais) (apie keturis mėnesius).

Visuose eksperimentuose standartinės maitinamosios terpės gamybai naudotas

sumedėjusių augalų maitinamosios terpės preparatas (ang. Woody Plant Medium (WPM))

(McCown and Lloyd, 1981). Gamybos eigoje terpė papildyta 2,5 % sacharozės bei 0,4 % gelrito

(pastarasis – terpės sukietinimui). Eksperimentams skirtos standartinės terpės rūgštingumas pH

4,8. Kontrolinių eksplantų sodinimui visuose eksperimentuose naudota terpė WPM be augimo

reguliatorių. In vitro kultūrų auginimui naudoti stikliniai mėgintuvėliai (150 mm aukščio ir 20

mm skersmens).

Tyrimų eigoje palaikytos standartinės eksplantų in vitro auginimo sąlygos: 16 h

fotoperiodas (apšvietimas 30 µmol m-2 s-2) ir 25/18 °C („diena“/„naktis“) temperatūros režimas.

Kiekviename tyrimo etape atskiro genotipo eksperimentams naudota po 30 eksplantų kiekvienai

cheminio junginio poveikio eksperimentinei grupei bei 30 eksplantų – kontrolinei grupei.

Praėjus 20 bei 40 eksplantų auginimo ant šviežios maitinamosios terpės dienų fiksuoti

eksperimentų rezultatai (drebulės ir beržo eksplantų ir jų šaknų vystymosi rodikliai). Rezultatai

analizuoti ir cheminių junginių deriniai ir koncentracijos parinkimas buvo atlikti pasitelkiant

šiuos kriterijus (svarbos mažėjimo tvarka): 1) didžiausias patikimai besiskiriančių nuo kontrolės

parametrų skaičius; 2) mažiausia koncentracija; 3) vieno iš parametrų apskaičiuota mažiausia

tikimybė, kad jis yra didesnis (mažesnis) negu kontroliniame variante.

Page 28: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

28

2.1. lentelė. Tyrimuose naudoti drebulės ir jos hibridų bei karpotojo beržo genotipai Table 2.1. Original donor trees of Populus or its hybrids and Betula pendula genotypes used in the study

Rūšis ar

hibridas / Species or

hybrid

Medžio kodas Lietuvos miško sėklinės bazės

sąvade / Tree code in the database of the

Lithuanian State Forest Service (2015)

Koordinatės (girininkija) /

Coordinates (of the forest enterprise)

Medžio charakteristikos 2015 m. / Tree characteristics in 2015

Amžius, metai / Age

in years

Aukštis, m / Height in

metres

Skersmuo, m / Diameter in

metres

Populus

tremula L.

18DPL037 55°22' ŠP; 22°14' RI

(Pagramančio) 60 33 0,64

17DPL038 55°15' ŠP; 23°20' RI

(Šimkaičių) 70 33 0,64

P. tremuloides Michx. × P. tremula L.

51DF1001 54°51' ŠP; 24°04' IR

(Vaišvydavos) 21 24 0,33

P. alba L. × P. tremula

L. 51DhPL022

54°51' ŠP; 24°03' RI (Vaišvydavos)

40 34 0,63

Betula pendula Roth

49BPL073 55°06' ŠP; 24°22' RI

(Pageležių) 100 28 0,45

51BPL088 54°47' ŠP; 24°4' RI

(Šilėnų) 65 28 0,43

01BPL115 56°16' ŠP; 24°48' IR

(Spalviškių) 50 34,5 0,35

20BPL125 55°42' ŠP; 24°23' RI

(Vainagių) 60 32 0,40

52BPL171 54°47' ŠP; 23°38' RI

(Šališkių) 70 33 0,44

22BPL195 55°07' ŠP; 21°53' RI

(Pagėgių) 65 28 0,35

Rūšis / Species

Miško sėklinio medyno kodas Lietuvos

miško sėklinės bazės sąvade / Seed stand code in the

database of the Lithuanian State Forest Service (2015)

Koordinatės (girininkija) /

Coordinates (of the forest enterprise)

Medyno charakteristikos 2015 m. / Stand characteristics in 2015

Plota, ha / Area in hectares

Alt, m / Alt, yr

Betula pendula Roth

43BSM001

56°18'00,37'' ŠP; 23°39'01,20'' RI

(Satkūnų)

5,6

49

Tyrimo eigoje matuota bei rezultatų vertinimui naudota šie vystymosi rodikliai

(parametrai): pirminio vystymosi in vitro kultūroje eksplantų vertinimo etape ūglių spalva,

apibūdinanti gyvybingumo laipsnį (rudas eksplantas – 0 %; žalias stiebas (t. y. ir ruda viršūnė) –

40–70 %; žalia viršūnė (t. y. ir žalias stiebas) – 100 %); pridėtinių šaknų skaičius ir jų ilgis,

šalutinių šaknų skaičius, pagrindinio ūglio ilgis, vieno eksplanto ūglių skaičius, kaliuso ilgis ir

plotis bei svoris (šaknų neformuojančio Betula genotipo 43BSM001(1) atveju). Šalutinių šaknų

tankis kiekvienam eksplantui su šaknimis apskaičiuotas dalinant šalutinių šaknų skaičių iš

bendro pridėtinių šaknų ilgio. Kaliaus tankis apskaičiuotas dalijant svorį iš tūrio, o pats tūris

apskaičiuotas pagal semi-sferoido tūrio (1) formulę (Lorite et al., 2010):

Page 29: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

29

V=(4/3Πr2h)2 (1)

čia: Π – matematinė konstanta, r – kaliuso spindulys, h – kaliuso aukštis.

Augalų fitohormonų koncentracijos nustatymas vykdytas naudojant efektyviąją skysčių

chromatografiją (ESC, angl. HPLC) (Sakalauskaitė ir kt., 2007b). Populus ir B. pendula in vitro

kultūrų eksplantų ekstraktai paruošti, 1 g šviežios ūglių masės sutrinant grūstuve ir

ekstrahuojant 10 ml 85 % metanoliu 24 valandas 4 °C temperatūroje. Homogenatas

centrifuguotas 13500 × g 5 min., tuomet gautas supernatantas surinktas ir iki HPLC analizės

atlikimo laikytas -80 °C temperatūroje. Augalų ekstrakcijos buvo analizuojamos modifikuotu

HPLC metodu pagal Bendoką ir kt. (Bendokas et al., 2017). Augalų hormonai buvo atskirti ir

kiekybiškai įvertinti HPLC metodu naudojant Agilent 1200 serijos HPLC sistemą (Agilent

Technologies Inc., USA) su diodų matricos detektoriumi. Pavyzdžiai filtruoti panaudojant

švirkšto filtrus su PVDF membrana (porų diametras 0,22 µm), prieš infekciją praskiesti 10 kartų

(injekcijos kiekis 20 µl) ir atskirti atvirkštinės fazės kolonėlėmis (Spherisorb ODS2, 4 × 125

mm, Waters Corporation, USA); Quaternary tirpikliu (A – 50 % metanolis, B – 50 % metanolis,

1,2 % acto rūgštis, C – vanduo, D – metanolis) gradientinis išplovimas buvo atliktas taip:

pradinės sąlygos 10 % B, 60 % C; 10,5 min. 50 % B, 15,75 min. 50 % B; 23 min. 40 % B, 60 %

D, 30 min. 40% B, 60% D, 32 min. 10 % B, 60 % C. Pavyzdžiai buvo papildyti standartiniu

mišiniu. Giberelinai (GA3 ir GA7) bei absizo rūgštis (ABA) detektuoti esant 254 nm bangos

ilgiui, o auksinai – indolil-3-acto rūgštis (IAA) ir indolil-3-sviesto rūgštis (IBA) – 280 nm.

Indentifikavimui ir kiekybiniam įvertinimui buvo naudoti šių hormonų GA3, IAA, IBA, ABA

(Sigma, Vokietija) ir GA7 (TransMIT, Vokietija) standartai. Analičių smailės pozicijos

indentifikuotos pagal sulaikymo laiką, persidengimą su standarto piku bei spektrines savybes.

Eksperimentas kartotas tris kartus.

2.2. Tiriamos cheminės medžiagos in vitro eksperimentuose

Darbo metu buvo tirta įvairių cheminių medžiagų poveikis drebulės ir jos hibridų bei

karpotojo beržo skirtingų genotipų pridėtinių šaknų vystymuisi ir morfologijai. Tirtų cheminių

medžiagų sąrašas pateiktas 2 lentelėje.

Page 30: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

30

2.2. lentelė. Eksperimentų metu naudotos cheminės medžiagos Table 2.2. The chemicals used in the experiment

Cheminė medžiaga / Chemical material

Trumpinys / Abbreviation

Gamintojas / Manufacturer

Apibūdinimas / Description

Tirpalo paruošimui naudojamas tirpiklis /

Solvent used to prepare the solution

Abscizo rūgštis / Abscisic acid

ABR / ABA

Sigma–Aldrich Chemie GmbH,

(Vokietija / Germany)

Augalų hormonas /

Plant hormone NaOH

Citokininas (6-benzilaminopurinas) /

Cytokinin 6-benzylaminopurine

BAP

Sigma–Aldrich Laborchemikalien, GmbH, (Vokietija /

Germany)

Augalų hormonas /

Plant hormone NaOH

Giberelinas A3 (giberelino rūgštis) /

Gibberellin A3 (gibberellic acid)

GA3

Sigma–Aldrich Chemie GmbH,

(Vokietija / Germany)

Augalų hormonas /

Plant hormone C2H5OH

Giberelinas A4+7

(mišinys) / Gibberellin A4+7

(mixture)

GA4/7

Sigma–Aldrich Chemie GmbH,

(Vokietija / Germany)

Augalų hormonas /

Plant hormone C2H5OH

Paklobutrazolis / Paclobutrazol

PBZ

Sigma–Aldrich Laborchemikalien, GmbH, (Vokietija /

Germany)

Giberelinų sintezės

inhibitorius / Inhibitor of gibberellin synthesis

H2O

3-indolilacto rūgštis / Indolyl-3-acetic acid

IAR / IAA

Sigma–Aldrich Laborchemikalien, GmbH, (Vokietija /

Germany)

Augalų hormonas /

Plant hormone NaOH

3-indolilsviesto rūgštis / indolyl 3-

butyric acid ISR / IBA

Sigma–Aldrich Laborchemikalien, GmbH, (Vokietija /

Germany)

Augalų hormonas /

Plant hormone C2H5OH

2,3,5-trijodbenzoinė rūgštis / 2,3,5-

triiodobenzoic acid TIBR / TIBA

Sigma–Aldrich Chemie GmbH,

(Vokietija / Germany)

Auksino pernašos

inhibitorius / Auxin transport

inhibitor

NaOH

2.3. Tyrimų seka ir duomenų analizė

Tyrimų seka. Pagal darbo pradžioje iškeltus uždavinius sudarytas darbo planas. Darbo

tyrimas suskirstytas į dalis, kurių eiliškumas pateiktas 3 lentelėje. Šios dalys atitinka tam tikrą

darbo uždavinį (kiekvieno uždavinio ir atitinkamos tyrimų dalies numeriai sutampa).

Sudarytasis darbo planas detaliau aptartas kitose pastraipose.

1. Pirmojo etapo tikslas – nustatyti karpotojo beržo (Betula pendula Roth) eksplantų

pirminio vystymosi in vitro kultūroje bruožus, sietinus su natūraliu šaknų formavimosi

Page 31: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

31

potencialu tolesnio dauginimo eigoje. Šio eksperimento metu buvo atliekama šešių Betula

pendula genotipų (01BPL115, 20BPL125, 52BPL171, 22BPL195, 51BPL088, 49BPL073)

sterilių kultūrų gavimas. Darbe tirta in vitro kultūroje augusių 12 dienų po pasodinimo šių

genotipų eksplantų būklė (gyvybingumas, infekcija) skirtingomis taikytomis sąlygomis:

laikotarpis tarp šakų surinkimo iki dezinfekcijos ir in vitro pasodinimo, BAP išoriškas taikymas

papildant juo in vitro mėgintuvėliuose terpės sudėtį.

2. Antrojo etapo tikslas – Populus atstovuose nustatyti cheminius veiksnius, lemiančius

pridėtinių šaknų formavimąsi. Šioje dalyje naudoti natūralių hormonų pernašos ar sintezės

inhibitoriai arba hormonai, slopinantys kitų hormonų signalą. Hormonų, kurių sintezė, pernaša

ar signalas tyrimo metu slopinama, iki šiol žinomas poveikis augalų šaknų vystymuisi trumpai

aprašytas 1.2.2.–1.2.5. (literatūros) poskyriuose. Stebint ir matuojant morfologinius šaknų

rodiklius, kaip aprašyta 2.1. poskyryje, nustatyta, ar hormonas/inhibitorius turi statistiškai

reikšmingą poveikį šiems rodikliams, kad būtų galima teigti, jog tiriamasis hormonas Populus

atstovuose yra esminis šaknų sistemos vystymosi reguliatorius. Kiekvienoje atskiroje pirmojo

etapo dalyje (a, b, c, d) su drebulės 18DPL037 genotipu buvo atlikta optimalios cheminio

veiksnio ir atoveiksmio koncentracijos nustatymas (optimali veiksnio koncentracija – mažiausia

(iš kelių tiriamų), sukelianti statistiškai reikšmingą (P < 0,01) pridėtinių šaknų skaičiaus pokytį,

lyginant su kontroliniais eksplantais; optimali atoveiksmio koncentracija – mažiausia, kuri,

naudojama drauge su nustatytąja optimalia veiksnio koncentracija, atkuria tokį pridėtinių šaknų

skaičių, kuris nebesiskiria (P>0,05) nuo kontrolinių eksplantų). Pagal anksčiau minėtus

kriterijus pasirinktos veiksnio ir atoveiksmio koncentracijos išbandytos sudarant tokias

eksperimentines imtis: 1) kontroliniai eksplantai (terpė be augimo reguliatorių); 2) veiksnys; 3)

veiksnys + atoveiksmis; 4) atoveiksmis.

a) Auksino IAR pernašos inhibicijos įtakos šaknų vystymuisi tyrimas. Naudotas veiksnys –

2,3,5-trijodbenzoinė rūgštis (TIBR), inhibuojanti auksino pernašą. Naudotos TIBR

koncentracijos 5, 10, 15 µmol/l parinktos atsižvelgiant į literatūrą (Da-Xi et al., 2003). Naudoti

atoveiksmiai – 3-indolilacto rūgštis (IAR) bei 3-indolilsviesto rūgštis (ISR). Naudotos IAR bei

ISR koncentracijos 1, 3, 5 µmol/l parinktos atsižvelgiant į literatūrą (Bishopp et al., 2011).

b) Citokinino BAP įtakos šaknų vystymuisi tyrimas. Naudotas veiksnys – BAP. Naudotos

BAP koncentracijos 1, 3, 5 µmol/l parinktos atsižvelgiant į literatūrą (Lohar et al., 2004).

Naudotas atoveiksmis – 3-indolilacto rūgštis (IAR), kurios koncentracijai didėjant skatinama

citokininų inhibitoriaus AHP6 ekspresija. Naudotos IAR koncentracijos 1, 3, 5 µmol/l parinktos

atsižvelgiant į literatūrą (Bishopp et al., 2011).

c) ABR įtakos šaknų vystymuisi tyrimas. Naudotas veiksnys – abscizo rūgštis (ABR).

Naudotos ABR koncentracijos 1 ir 3 µmol/l parinktos atsižvelgiant į literatūrą (Žiauka, 2012).

Page 32: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

32

d) Giberelino įtakos šaknų vystymuisi tyrimas. Naudotas veiksnys – paklobutrazolis

(PBZ), kuris slopina giberelinų sintezę slopindamas giberelinų tam tikro etapo biosintezės

junginių oksidaciją. Naudotos PBZ koncentracijos 0.5, 1, 3 µmol/l parinktos atsižvelgiant į

literatūrą (Žiauka et al., 2010). Naudotas atoveiksmis – giberelinas A4/7 (GA4/7). Naudotos GA4/7

koncentracijos 1, 3, 5 µmol/l parinktos atsižvelgiant į literatūrą (Žiauka et al., 2010; Žiauka,

2012).

3. Trečiojo etapo tikslas – nustatyti endogeninių hormonų sudėties ypatumus skirtinga

šaknijimosi geba pasižyminčių Populus (P. tremula, P. tremuloides × P. tremula, P. alba L.× P.

tremula) bei B. pendula genotipų ūgliuose. Šio etapo metu buvo siekiama išsiaiškinti Populus ir

Betula ūgliuose gaminamus augimo reguliatorius ir jų koncentracijas (mg/g šviežios masės).

Hormonų, kurių gamyba vykdoma ūgliuose, sintezė aprašyta 1.2.2.–1.2.5. (literatūros)

poskyriuose. Šios dalies tyrimai atlikti su Populus ir Betula genotipais, nurodytais 1 lentelėje.

Šio etapo dalyje nustatyta hormonų koncentracijos, esančios augalų ūgliuose. Tyrimas atliktas

bendradarbiaujant su Vytauto Didžiojo universiteto Gamtos mokslų fakulteto Aplinkos tyrimų

centru ir jos mokslininkais. Hormonų nustatymas vykdytas atliekant efektyviąją skysčių

chromatografiją (ESC, angl. HPLC) (Sakalauskaitė ir kt., 2007b; Bendokas et al., 2017), kaip

aprašyta 2.1. poskyryje.

4. Ketvirtojo etapo tikslas – nustatyti svarbiausius morfologinio atsako į cheminę hormonų

veiklos reguliaciją skirtumus tarp tiriamų P. tremula ir jos hibridų bei B. pendula genotipų.

Poveikis įvertintas stebint ir matuojant fiziologinius ir morfologinius šaknų rodiklius, kaip

aprašyta 2.1. poskyryje. Šios dalies tyrimai atlikti su Populus ir Betula genotipais, nurodytais 1

lentelėje. Remiantis etapo 2 ir 3 rezultatais pagal nustatytas chemines medžiagas, skatinančias

pridėtinį šaknijimąsi Populus atstovuose bei vidines ūgliuose esančias fitohormonų

koncentracijas, atrinkti cheminiai junginiai IAR, ABR, PBZ taikyti skirtingų tirtų genotipų in

vitro kultūroms.

5. Penktojo etapo tikslas – nustatyti šaknų ir ūglių in vitro vystymosi rodiklių tarpusavio

ryšius skirtingais endogeninių hormonų kiekiais pasižymėjusiuose medžių genotipuose. Šaknų ir

ūglio ryšys buvo įvertintas analizuojant fiziologinius ir morfologinius eksplantų, augintų

kontrolinėmis (terpėje be hormonų) ir eksperimentinėmis (terpėje, papildytoje 1 µmol/l PBZ)

sąlygomis, šaknų ir ūglių rodiklius, nustatant koreliacijos koeficientus (įvertinamas ir jo

patikimumas) tarp atskirų šaknų rodiklių ir ūglio rodiklių tiesinėje skalėje. Papildomai

analizuota morfologiniai parametrai, nustatyti skirtingais eksplanto augimo etapais. Šios dalies

tyrimai atlikti su Populus ir Betula genotipų, atrinktų pagal 3 ir 4 etapo rezultatus, nurodytų 1

lentelėje, rodikliais.

Page 33: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

33

2.3. lentelė. Tyrimų seka Table 2.3. Parts of the research plan

r./ No.

Tyrimo dalis / Parts of the research

Cheminės medžiagos, naudotinos maitinamosios terpės papildymui

specifiniuose eksperimentuose / Chemical material used to supplement the

nutritional medium in specific experiments

1. Betula pendula Roth eksplantų pirminio vystymosi in vitro kultūroje bruožų, sietinų su natūraliu šaknų formavimosi potencialu tolesnio dauginimo eigoje, nustatymas / Research, in in vitro culture, those features of the initial development of Betula pendula Roth explants that are related to the natural potential of root formation in the course of further propagation

Hormonas: BAP. / Hormone: BAP.

2.

Populus tremula L. in vitro kultūroje didžiausią įtaką pridėtinių šaknų formavimuisi ir vystymuisi darančių hormonų veiklos reguliacijų nustatymas / Research the regulation of hormonal activity that has a major influence on the formation and development of adventitious roots of Populus tremula L. in in vitro culture.

Hormonai: ABR; IAR; giberelinai A4/7; BAP. Hormonai bei jų sintezės arba pernašos inhibitoriai: ABR; IAR; giberelinai A4/7;

BAP; TIBR; PBZ. / Hormones: ABA, IAA, gibberellin A4/7, and

BAP. Hormones and their synthesis or transport inhibitors: ABA, IAA, gibberellins A4/7,

BAP, TIBA, and PBZ. 3. Endogeninių hormonų sudėties ypatumų skirtinga

šaknijimosi geba pasižyminčių Populus (P. tremula, P. tremuloides × P. tremula, P. alba L.× P. tremula) bei B. pendula genotipų ūgliuose nustatymas / Research the composition of endogenous hormones in shoots of Populus (P. tremula, P. tremuloides × P. tremula, P. alba L. × P. tremula) and B. pendula genotypes with different rooting abilities.

-

4. Svarbiausių morfologinio atsako į cheminę hormonų veiklos reguliaciją skirtumų tarp tiriamų P. tremula ir jos hibridų bei B. pendula genotipų nustatymas / Research the most important differences of the morphological response to the regulation of the chemical hormone activity among the investigated P. tremula, its hybrids and B. pendula genotypes.

Hormonai ir jų inhibitoriai, reguliuojantys šaknų vystymąsi IAR, ABR ir PBZ (pagal 2 ir 3 etapo rezultatus) / Hormones and their inhibitors that regulate root development:

IAA, ABA, and PBZ (according to results of parts 2 and 3)

5. Šaknų ir ūglių in vitro vystymosi rodiklių tarpusavio ryšių skirtingais endogeninių hormonų kiekiais pasižymėjusiuose medžių genotipuose nustatymas / Research the relation between the in vitro development of characteristic of roots and shoots of tree genotypes that differ in endogenous hormone amount.

Hormono giberelino inhibitorius: PBZ (pagal 2, 3 bei 4 etapo rezultatus) /

Inhibitor of the hormone gibberellin: PBZ (according to results of parts 2, 3 and 4)

Statistinė duomenų analizė. Vertinant rezultatus, apskaičiuoti nustatytų vystymosi

parametrų (2.2. sk.) bei vidinių fitohormonų koncentracijų vidurkiai, pagal kiekvieno vidurkio

standartinį nuokrypį apskaičiuotos standartinės paklaidos. Tyrimo eigoje naudojant Microsoft

Excel 2010 statistinę programą gautų duomenų statistinė analizė atlikta tokia tvarka:

a) pagal Stjudento t-kriterijų, modifikuotą imtims su galimai skirtingomis variacijomis,

įvertintas atskirų bandymo vidurkių skirtumo patikimumas (Welch, 1947);

Page 34: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

34

b) tiriant ryšio tarp požymio ir veiksnio (koncentracijos) stiprumą – koreliaciją,

koreliacijos koeficiento (r) patikimumas vertintas pagal kriterijų tr. tr kriterijus apskaičiuotas

koreliacijos koeficiento r ir koreliacijos koeficiento paklaidos Sr santykiu. Apskaičiuotas

koreliacijos koeficientas yra statistiškai patikimas, jei tikimybės lygis yra lygus arba didesnis už

95 proc.

Page 35: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

35

3. REZULTATAI IR JŲ APTARIMAS

3.1. Betula pendula Roth eksplantų pirminio vystymosi in vitro kultūroje

bruožai, sietini su natūraliu šaknų formavimosi potencialu

3.1.1. In vitro kultūros sterilumo ir gyvybingumo įtaka

Po 12 dienų nuo skirtingų Betula pendula genotipų eksplantų pasodinimo in vitro

kultūroje, eksplantų su infekcija dalis svyravo, priklausomai nuo genotipo, nuo 0 (01BPL115,

20BPL125, 52BPL171, 22BPL195, 51BPL088, 49BPL073) iki 80 % (22BPL195).

*

***

0

20

40

60

80

100

01BPL115 20BPL125 52BPL171 22BPL195 51BPL088 49BPL073

Eks

pla

ntų

su

infe

kcija

dal

is, %

/R

ate

of

infe

cte

d

exp

lan

ts,%

laikotarpis 1 savaitė / storage time 1 weeklaikotarpis 2 savaitės / storage time 2 weeks

***

***

**

*

0

20

40

60

80

100

01BPL115 20BPL125 52BPL171 22BPL195 51BPL088 49BPL073

Ru

eks

pla

ntų

dal

is, %

/

Rat

e o

f b

row

n e

xpla

nts

,%

laikotarpis 1 savaitė / storage time 1 weeklaikotarpis 2 savaitės / storage time 2 weeks

A

B

3.1. pav. Su infekcija (A) ir rudų (B) eksplantų dalis skirtingose Betula pendula genotipų kultūrose po 12 dienų po pasodinimo in vitro ant kontrolinės terpės be augimo reguliatorių. „Laikotarpis“ nurodo laiką tarp šakų surinkimo nuo medžių ir eksplantų dezinfekcijos. Patikimai besiskiriantys taikytų laikotarpių duomenys pažymėti: * (P < 0,05) , ** (P < 0,01), *** (P < 0,01) Fig. 3.1. Rates of infected (A) and brown (B) explants in different Betula pendula genotypes following 12 days after introduction in vitro on a hormone-free medium. “Storage time” refers to a time span between collecting of branches from the trees and disinfection of explants. Significant differences between the tested storage times are labeled: * (P < 0.05) , ** (P < 0.01), *** (P < 0.01)

Page 36: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

36

Kai kurių genotipų kultūrose nustatyta, kad infekcijos dalis priklausė nuo laikotarpio tarp

šakų surinkimo nuo donorinių medžių ir eksplantų dezinfekcijos (3.1. pav. A). Ryškiausi

skirtumai (P < 0,001) šiuo atveju nustatyti 22BPL195 genotipo atžvilgiu: eksplantų grupėje,

kurioje taikytas vienos savaitės laikotarpis, nebuvo nustatyta infekcija nė viename iš eksplantų,

o grupėje, kurioje taikyta dviejų savaičių laikotarpis, infekcijos dažnis siekė 80 %. Įdomu tai,

kad 01BPL115 genotipo kultūra buvo vienintelė, kurios eksplantuose, dezinfekuotuose po

savaitės nuo šakų surinkimo, buvo nustatytas mažas infekcijos dažnis (20 %), nors dviejų

savaičių taikymo atveju nė viename šio genotipo pavyzdyje infekcija nenustatyta. Tačiau

ilgesnio šakų laikymo laikotarpio prieš eksplantų pasodinimą į in vitro kultūrą neigiamas efektas

dar labiau išryškėja pagal rudų (nebegyvybingų) eksplantų dalį. Visose tirtose genotipų

kultūrose rudų eksplantų dalis buvo patikimai didesnė, jei šakų laikymo laikotarpis buvo dvi

savaitės, palyginus su viena savaite (3.1. pav. B). Patikimiausi skirtumai (P < 0,001) nustatyti

01BPL115 ir 20BPL125 genotipų kultūrose, kuriose buvo palyginti mažai rudų eksplantų (20

%), jei taikytas vienos savaitės laikymo laikotarpis, tačiau beveik visi arba visi (20BPL125

genotipe) eksplantai buvo prarasti dėl rudavimo, kai taikytas dviejų savaičių laikotarpis.

Ankstesnėse in vitro studijose apie veiksnius, lemiančius Betula pendula eksplantų

gyvybingumą, didelis dėmesys buvo skirtas tam tikrų aplinkos sąlygų ir cheminių priemonių

taikymui šviežiose in vitro kultūrose (Bojarczuk et al., 2000; Wynne et al., 2002). Šis tyrimas

parodė, kad surinktos augalinės medžiagos paruošimo sąlygos, t. y. laikotarpis tarp šakų

surinkimo iki mėginių dezinfekcijos bei pasodinimo in vitro gali turėti lemiamą įtaką eksplantų

in vitro gyvybingumui.

3.1.2. Ūglių in vitro kultūroje morfologinių parametrų įtaka

Atsižvelgiant į ilgesnio laikotarpio taikymo neigiamą poveikį ūglių gyvybingumui,

tolesniuose šio skyrelio rezultatuose pateikti eksplantų, kurie buvo pasodinti į in vitro kultūrą po

vienos savaitės laikymo, duomenys. Analizuojant šių eksplantų rezultatus atsižvelgta į terpės,

papildytos BAP (24 µmol·L-1), poveikį in vitro kultūrų būklei. Tarp skirtingų genotipų kultūrų

vidutinė eksplantų su žaliu stiebu dalis (po 12 dienų in vitro) svyruoja nuo 60 % (22BPL195,

51BPL088,49BPL073) iki 100 % (52BPL171) (3.2. pav. A) ant terpės be hormonų ir nuo 0 %

(51BPL088, 49BPL073) iki 80 % (52BPL171) ant terpės su BAP (3.2. pav. B). Šioje pradinėje

in vitro kultūros stadijoje BAP poveikis eksplantų gyvybingumui buvo neigiamas. Tačiau ir

terpėje be augimo reguliatorių tik dalis eksplantų su žaliu stiebu buvo kartu ir su žaliomis

viršūnėmis. Pavyzdžiui, nors visi 52BPL171 genotipo eksplantai buvo su žaliu stiebu, tiktai 20

% iš jų buvo ir su žaliomis viršūnėmis (3.2. pav. A). Iš visų tirtų genotipų išsiskyrė 01BPL115 ir

51BPL088 genotipų kultūros: visi jų eksplantai su žaliu stiebu buvo ir su žaliomis viršūnėmis.

Page 37: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

37

01BPL115 genotipo kultūra, auginta ant terpės be hormonų, buvo vienintelė su didžiausia dalimi

(80 %) eksplantų su žaliomis viršūnėmis. Įdomu tai, kad 22BPL195 genotipas buvo vienintelis

iš visų šešių tirtų genotipų, kurio dalis eksplantų, augintų ant terpės, papildytos BAP, buvo su

žalia viršūne (40 %), nors visi šio genotipo eksplantai, auginti ant terpės be hormonų, buvo be

žalios viršūnės (3.2. pav.).

B BA

B B B

a

b,c

c

d

a,b

b,c

0

20

40

60

80

100

01BPL115 20BPL125 52BPL171 22BPL195 51BPL088 49BPL073

Eks

pla

ntų

dal

is, %

/ R

ate

of

exp

lan

ts,

%

žalias stiebas / green stem žalia viršūnė / green apexA

A

B

A

A

C Cb b b

a

b b0

20

40

60

80

100

01BPL115 20BPL125 52BPL171 22BPL195 51BPL088 49BPL073

Eks

pla

ntų

dal

is, %

/ R

ate

of

exp

lan

ts,

%

žalias stiebas / green stem žalia viršūnė / green apexB

3.2. pav. Žalių eksplantų dalis skirtinguose Betula pendula genotipuose 12 dienų po pasodinimo in vitro ant terpės be augimo reguliatorių (A) arba terpės, papildytos 24 µmol·L-1 6-benzylaminopurinu (B). Patikimai besiskiriantys genotipai pažymėti vienodomis raidėmis. Didžiosiomis raidėmis pažymėti skirtumai tarp eksplantų, turinčių žalią viršūnę, o mažosiomis raidėmis – eksplantų, turinčių žalią stiebą Fig. 3.2. Rates of green explants in different Betula pendula genotypes following 12 days after introduction in vitro on a hormone-free medium (A) or a medium with 24 µmol·L-1 of 6-benzylaminopurine (B). Birch genotypes labeled with the same letter do not differ significantly (P < 0.05) from each other. Upper-case letters signify differences in respect of explants with a green stem and lower-case letters – of explants with a green apex

Apibendrinant, nustatytas didelis eksplantų gyvybingumo skirtumas tarp tiriamų Betula

pendula genotipų kultūrų. 52BPL171 genotipo kultūra turėjo didžiausią dalį eksplantų su žaliu

stiebu tiek ant terpės be hormonų, tiek ant terpės, papildytos BAP. Panašiu stiebų gyvybingumu

pasižymėjo ir 01BPL115 genotipo kultūra. Tačiau pastarojo genotipo eksplantai ant terpės be

hormonų stipriai skyrėsi nuo 52BPL171 genotipo kultūros savo gebėjimu išlaikyti taip pat ir

žalias viršūnes (3.2. pav. A). Šių dviejų genotipų kultūros taip pat skyrėsi savo eksplantų

morfometriniais parametrais. Nors abiejų kultūrų eksplantų, turinčių išsivysčiusius lapus, dalys

Page 38: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

38

buvo ganėtinai panašios (45–50 % ir 20–40 %), tačiau eksplantai, turintys šoninius ūglius,

nustatyti tik 52BPL171 genotipo kultūroje (50 % prieš 0 % 01BPL115 genotipe; 3.3. pav.). Be

01BPL115 genotipo, dar dviejų genotipų – 51BPL088 bei 49BPL073 – eksplantai, auginti ant

kontrolinės terpės, buvo be šoninių ūglių. Įdomu tai, kad pastarųjų dviejų genotipų kultūros

buvo tos pačios, kurios ant terpės su BAP pasižymėjo mažiausiu gyvybingumu, vertinant žalių

eksplantų dalis (3.2. pav. B).

Toks nuo genotipo priklausomas kultūrų bruožas – žalios eksplantų viršūnės pirmoje

subkultūroje – nustatytas kaip svarbus faktorius, leidžiantis nustatyti, koks likimas laukia

tiriamo genotipo in vitro kultūros, labiausiai atsižvelgiant į šaknijimosi potencialą. Šis

pastebėjimas gali būti siejamas su natūraliais auksinais, kadangi žinoma, jog šis hormonas

gausiausiai yra sintezuojamas šalia ūglio viršūnės esančiuose jaunuose lapuose (Ljung et al.,

2001) ir transportuotas brazdu link stiebo apatinės dalies gali stimuliuoti pridėtinių šaknų

vystymąsi (Blilou et al., 2005; Petrasek and Frimley, 2009). Šis visuotinai pripažintas augalo

auksinų sintezės, transporto ir veikimo modelis pateikia galimą paaiškinimą, kaip žalios

eksplantų viršūnės pirmoje in vitro subkultūroje išlaikymas galėjo prisidėti prie vieno beržo

genotipo – 01BPL115 – kultūros efektyvaus šaknijimosi potencialo vėlesnėje audinių kultūros

stadijoje.

A,BA,B

A

A,B A,BB

c

b

a

b,cc c

0

20

40

60

80

100

01BPL115 20BPL125 52BPL171 22BPL195 51BPL088 49BPL073

Eks

pla

ntų

dal

is, %

/R

ate

of

exp

lan

ts,

%

su lapais / with leaf su šoniniais ūgliais / with secondary shoots

3.3. pav. Eksplantų, pasižyminčių ypatingomis morfologinėmis struktūromis (lapais, šoniniais ūgliais), dalis skirtinguose „Betula pendul“a genotipuose 12 dienų po pasodinimo „in vitro“ ant kontrolinės terpės be augimo reguliatorių. Patikimai nesiskiriantys (P < 0,05) genotipai pažymėti vienodomis raidėmis. Didžiosiomis raidėmis pažymėti skirtumai tarp eksplantų, turinčių lapus, o mažosiomis raidėmis – eksplantų, turinčių šoninius ūglius Fig. 3.3. Rates of explants with particular morphological structures (leaves, secondary shoots) in different “Betula pendula” genotypes after 12 days on a hormone-free medium. Birch genotypes labeled with the same letter do not differ significantly (P < 0.05) from each other. Upper-case letters signify differences in respect of explants with leaves and lower-case letters – of explants with secondary shoots

Page 39: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

39

Daugumoje ankstesnių studijų apie B. pendula mikrodauginimą rekomenduojama naudoti

citokininus kaip augimo reguliatorius ne tik dauginimui, bet ir beržo in vitro kultūrai gauti

(Chalupa et al., 1981; Ditmar,1991; Huetteman et al., 1993). Atlikti tyrimai parodo, kad geresni

rezultatai eksplantų gyvybingumo atveju pirmoje in vitro subkultūroje gali būti pasiekti

naudojant auginimo terpę be citokininų. Gyvybingų eksplantų, ir ypač eksplantų su žaliomis

ūglių viršūnėmis, skaičius buvo sumažintas visose tirtų genotipų kultūrose, augintose ant terpės,

papildytos BAP. Dėl BAP poveikio žalios ūglio viršūnės praradimas gali būti siejamas su

auksinų-citokininų bendrais signaliniais keliais, kurie nustatyti kitų autorių (Marhavý et al.,

2011), kai padidėjęs citokininų kiekis sumažina auksinų transporto baltymus augalo ląstelės

membranoje. Šis su auksino transportavimu susijęs ryšys eksplantų (augintų ant terpės,

papildytos BAP) ūglio viršūnėje gali padidinti auksinų koncentraciją, dėl to viršūnė ruduoja:

vietinis auksino perteklius gali turėti herbicidinį poveikį (auksinų herbicidinis poveikis detaliai

aprašytas bendraautorių Kraft et al., 2007).

3.1. lentelė. Eksplantų dauginimo rezultatai dviejuose Betula pendula genotipuose po 12 mėnesių nuo sterilios in vitro kultūros gavimo Table 3.1. Explant propagation results in two Betula pendula genotypes after 12 months following the introduction to sterile in vitro culture

Genotipas / Genotype

Bendras eksplantų skaičius /

Total number of explants

Eksplantų su šaknų sistema dalis (nuo bendro eksplantų

skaičiaus), % / Rate of rooted explants

(from the total number), %

Padauginimo dažnis (nuo gyvybingų

eksplantų dalies po 12-dienų in vitro subkultūroje) /

Propagation rate (from the number of viable explants after

the first 12-days subculture in vitro)

Dažnis tarp bendro skaičiaus ekslpantų po 12 mėnesių ir

skaičiaus eksplantų su žaliomis viršūnėmis po 12-dienų in vitro

subkultūroje / Rate between the total number of explants after 12 months and the number of explants with a green apex after the first 12-

days subculture in vitro

01BPL115 201 88.1 6.7 12.6

52BPL171 44 2.3 1.2 11.0

Šaknis formuojantis 01BPL115 genotipas (šiame eksperimente pasižymintis 4,05 ± 0,46

pridėtinių šaknų ir 8,14 ± 1,38 šalutinių šaknų skaičiumi eksplantui) buvo lyginamas su dar

vienu Betula pendula genotipu – 43BSM001, kuris prieš dvejus metus buvo pasodintas in vitro,

bet auginamas ant terpės be augimo reguliatorių neformavo šaknų. Siekiant nustatyti, kaip šie du

genotipai skiriasi pagal savo atsakus į išoriškai taikomą citokininą, eksperimente, greta

kontrolinės, vėl buvo naudojama terpė, papildyta 24 µmol·L-1 BAP. Ant terpės su BAP

augintoje 01BPL115 genotipo kultūroje nustatyti statistiškai reikšmingi (P < 0,001) pokyčiai:

vidutinio ūglio ilgio sumažėjimas ir ūglių skaičiaus padidėjimas (3.4. pav. A-B). Tuo tarpu

43BSM001 genotipo eksplantams BAP pastebimo poveikio neturėjo. Vis dėlto įdomu, kad

Page 40: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

40

pastarojo genotipo eksplantai netgi ant kontrolinės terpės turėjo 5,4 karto didesnį ūglių skaičių

eksplantui nei 01BPL115 genotipo eksplantai. Šaknijimosi atžvilgiu bendras inhibuojantis BAP

poveikis gali būti stebimas tik 01BPL115 genotipo kultūroje (3.4 pav. C), kadangi 43BSM001

genotipo kultūra neformavo šaknų nė ant vienos šiame eksperimente naudotos terpės.

***

0

1

2

3

43BSM001 01BPL115

Ūg

lio

ilg

is, c

m/

Sh

oo

t le

ng

th, c

m

Kontrolė / ControlBAP

A

***

0

5

10

43BSM001 01BPL115

Ūg

lių

ska

ičiu

s ek

spla

ntu

i /

Sh

oo

t n

um

ber

per

ex

pla

nt

Kontrolė / ControlBAP

B

***

0

2

4

01BPL115

Ša

knų

ska

ičiu

s e

ks

pla

ntu

i /

Ro

ot

nu

mb

er

pe

r e

xp

lan

t

Kontrolė / ControlBAPC

3.4. pav. Morfologinės charakteristikos – ūglio ilgis (A), ūglio skaičius (B) ir šaknų skaičius (C) (vidurkis ± standartinė paklaida) – dviejų Betula pendula genotipų eksplantuose, augintuose skirtingose augimo terpėse (BAP – terpė, papildyta su 24 µmol·L-1 6-benzilaminopurinu). Statistiškai reikšmingai besiskiriantys pavyzdžiai, auginti skirtingose terpėse, pažymėti *** (P < 0,001) Fig. 3.4. Morphological characteristics – shoot length (A), shoots number (B) and roots number (C) per explant (mean ± SE) – in two Betula pendula genotypes on different nutrient media (BAP – medium supplemented with 24 µmol·L-1 of 6-benzylaminopurine). Significant differences between samples cultured on different media are labeled with *** (P < 0.001)

Įdomu tai, kad beržo genotipų in vitro kultūros, kuriose išliko gyvybingų ir dauginamų, bet

šaknų sistemos neformuojančių ūglių (52BPL171 ir 43BSM001), ant kontrolinės terpės vystėsi

panašiu būdu, kaip šaknis formuojančio 01BPL115 genotipo kultūra ant terpės su BAP, kur

šaknų formavimąsi pakeitė pridėtinių ūglių vystymasis. Taigi minėtų nesišaknijančių genotipų

kultūros kontrolinėje terpėje vystėsi tarsi patirdamos BAP poveikį. Viduje augalo produkuojami

arba iš išorės sukaupti citokininai gali prisidėti prie šio reiškinio. Nors pagrindinė augalo

citokininų biosintezės vieta traktuojama kaip šaknies galiukas (Aloni et al., 2005), tačiau taip

pat žinoma, kad ūglio viršūnė, pvz., pagal senesnius tyrimus apie šparagus (Yasunori et al.,

1980), yra vieta, kurioje augalų in vitro kultūros palaikymo metu gaminami citokininai. Taigi

hormonų gamyba ir balansas skirtinguose beržo genotipuose gali būti analizuojami tolesniuose

tyrimuose.

3.1.3. Apibendrinimas

Nustatyta, kad sėkmingam stabilios Betula pendula Roth in vitro kultūros gavimui

reikšmingą įtaką daro laikotarpis tarp šakų surinkimo iki mėginių dezinfekcijos bei įvedimo

etapo. Rekomenduojama, kad šis laikotarpis būtų ne ilgesnis nei viena savaitė, kadangi dviejų

Page 41: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

41

savaičių laikotarpis siejamas su eksplantų gyvybingumo praradimu. Taip pat reikšmingą įtaką

daro BAP panaudojimas, kai pirmoje subkultūroje BAP neturėjo reikšmingos įtakos eksplantų

gyvybingumui, tačiau vėlesnėse kultūros stadijose BAP lėmė ūglių regeneraciją. Nustatyta, kad

pirmoje subkultūroje augančių eksplantų žalia gyvybinga viršūnė eksplantams augant

kontrolinėje terpėje bei gyvybingumo palaikymas augant terpėje, papildytoje BAP, žymi šaknų

formavimosi vėlesnėse kultūros stadijose perspektyvas.

3.2. Svarbiausių hormonų kiekio reguliacija, lemianti Populus pridėtinių šaknų

formavimąsi ir vystymąsi in vitro kultūroje

3.2.1. Auksinų IAR ir ISR pernašos inhibicijos įtaka šaknų vystymuisi

Nustatant optimalią veiksnio – 2,3,5-trijodbenzoinės rūgšties (TIBR), inhibuojančios auksino

pernašą, koncentraciją, rezultatai parodė, kad naudota mažiausia 1 µmol/l koncentracija sukelė

statistiškai reikšmingą pridėtinių (P < 0,001) (3.5. B pav.) šaknų skaičiaus sumažėjimą, lyginant su

kontrolinių eksplantų duomenimis. Ūglių skaičiaus pokyčiui 1 µmol/l TIBR koncentracija

reikšmingos įtakos neturėjo. Lyginant su kontrolinių eksplantų duomenimis, didesnės naudotos

TIBR koncentracijos reikšmingai padidino ūglių skaičių. Įdomu tai, kad 5 µmol/l netgi labiau

padidino ūglių skaičių nei 15 µmol/l (3.5. A pav.), tačiau ir dar labiau nei 1 µmol/l sumažino

pridėtinių šaknų skaičių, lyginant su kontrolinių eksplantų duomenimis (3.5. B pav.). Duomenų iš

visos eksplantų imties rezultatai parodo, kad TIBR sumažina eksplantų, turinčių šalutines šaknis,

procentinę dalį. Šiuo atveju, kai 1 µmol/l neturėjo reikšmingos įtakos, lyginant su kontrolinių

eksplantų duomenimis, tai 5 ir 15 µmol/l koncentracija reikšmingai sumažino eksplantų su

šalutinėmis šaknimis dalį iki 75 bei 64 % (3.5. C pav.).

Toliau pateiktuose TIBR rezultatuose pridėtinių šaknų ilgio bei šalutinių šaknų tankio

duomenys nagrinėjami tik imties eksplantų su šalutinėmis šaknimis. Taigi šie duomenys

nagrinėjami TIBR 1, 5 ir 15 µmol/l koncentracijomis, kadangi pagal metodiką dėl jų poveikio

imties su šalutinėmis šaknimis procentinė dalis viršijo ½ visos imties (3.5. D, E, F pav.).

Pagrindinės šaknies ilgio atžvilgiu tik dėl 5 µmol/l TIBR koncentracijos poveikio susidarė

reikšmingas pokytis, kuris, priešingai nei bendro šaknų ilgio sumažėjimu visų naudotų

koncentracijų atžvilgiu, buvo teigiamas, lyginant su kontrolinių eksplantų duomenimis (3.5. D,

E pav.). Nors visos naudotos TIBR koncentracijos sumažina pridėtinių šaknų skaičių bei bendrą

jų ilgį, tačiau šalutinių šaknų tankio atžvilgiu, kai mažesnės koncentracijos neturėjo reikšmingos

įtakos, tai 15 µmol/l netgi padidino jų tankį (3.5. F pav.).

Atsižvelgiant į TIBR poveikį šaknų ir ūglių rodikliams parinkta optimali naudota

koncentracija – 5 µmol/l – buvo taikoma atoveiksmio IAR optimalios koncentracijos

Page 42: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

42

nustatymui. Rezultatai parodė, kad net didesnės naudotos IAR koncentracijos neturėjo

reikšmingo poveikio šaknų formavimuisi (3.6. B pav.), kai, taikant kombinaciją IAR ir TIBR,

priešingai nei tikėtasi IAR nepadėjo atkurti šio veiksnio (TIBR) neigiamo poveikio. Tačiau ši

kombinacija netgi lėmė dar didesnį šaknų skaičiaus sumažėjimą (P < 0,001), lyginant su

duomenimis eksplantų, augintų terpėje, papildytoje TIBR (3.6. B pav.). Ūglių skaičiui (P < 0,05)

reikšmingą poveikį turėjo 1 µmol/l IAR koncentracija, tačiau šis poveikis buvo neigiamas.

Taikant derinį IAR ir TIBR nė viena naudota derinio koncentracija neturėjo reikšmingo

poveikio ūglių skaičiaus pokyčiui, lyginant su duomenimis eksplantų, augintų terpėje,

papildytoje TIBR (3.6. A pav.).

c c

a

b

0

2

4

0 1 5 15

Ūg

lių s

kaič

ius

eksp

lan

tui

/ S

ho

ot

nu

mb

er p

er e

xpla

nt

A

a

b

c c

0

2

4

0 1 5 15

Šak

ska

ičiu

s ek

spla

ntu

i /

Ro

ot

nu

mb

er p

er e

xpla

nt

B

a

a,bb,c

c

0

25

50

75

100

0 1 5 15E

ksp

lan

tų s

u Š

Š d

alis

, %

/R

ate

of

exp

lan

ts

wit

h L

R,

%

C

b ba

b

0

2

4

6

0 1 5 15

Pag

r. š

akn

ies

ilgis

, cm

/ L

arg

est

roo

t le

ng

th,

cm

TIBR koncentracija µmol L-1 /

TIBA concentration, µmol L-1D

a

b,cb

c

0

2

4

6

0 1 5 15

Ben

dra

s ša

knų

ilg

is,

cm /

To

tal r

oo

t le

ng

th,

cm

TIBR koncentracija µmol L-1,

TIBA concentration, µmol L-1E

b a,bb

a

0

2

4

6

0 1 5 15

ŠŠ

tan

kis

vn

t /

cm /

LR

den

sity

, ro

ots

per

cm

TIBR koncentracija, µmol L-1 /

TIBA concentration, µmol L-1F

3.5. pav. Ūglių (A) ir pridėtinių šaknų (B) skaičius eksplantui, eksplantų su šalutinėmis šaknimis procentinė dalis (C), pagrindinės pridėtinės šaknies (D) ir bendras pridėtinių šaknų ilgis (E) bei šalutinių šaknų tankis (F) (vnt./cm) (vidurkis ± standartinė paklaida) eksplantuose, augintuose augimo terpėje su skirtingomis TIBR koncentracijomis (0, 1, 5 ir 15 µmol/l). A, B, C duomenys yra visos eksplantų imties, o D, E, F – imties, kurioje eksplantų su šalutinėmis šaknimis dalis didesnė nei ½ visos imties. Statistiškai reikšmingai besiskiriantys (P < 0,05) skirtingomis sąlygomis augintų pavyzdžių vidurkiai pažymėti skirtingomis raidėmis Fig. 3.5. Shoots (A) and adventitious roots (B) number per explant (mean ± SE), the rate of explants with lateral roots (C), main (D) and total (E) adventitious root length (mean ± SE) of explants, as affected by the presence of different TIBA concentrations (0, 1, 5 and 15 µmol/l) in the nutrient medium. A, B, C data are from the total number of explants, or D, E, F from the number when the part of explants with lateral roots exceeds ½ total number. Significantly different means of samples grown under different nutrient media conditions (P < 0.05) are labeled with different letters

Page 43: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

43

Rezultatai parodė, kad Populus tremula eksplantų in vitro kultūroje atžvilgiu IAR

naudojimas nesukėlė literatūroje minimo auksinų šaknų skatinimo poveikio, tuo labiau derinio

TIBR ir IAR taikymo metu šio fitohormono poveikis netgi priešingas. Taigi kaip atoveiksmis

buvo pasirinktas kitas auksinas – 3-indolilsviesto rūgštis (ISR). Šaknų skaičiaus atžvilgiu ISR

turėjo reikšmingą (P < 0,001) teigiamą poveikį, panaudojant 1 ir 3 µmol/l koncentracijas,

lyginant su kontrolinių eksplantų duomenimis (3.6. D pav.). Taip pat ISR poveikis derinyje su

TIBR atitiko tikėtąjį atoveiksmio poveikį šaknų skaičiaus atžvilgiu ir pasižymėjo neigiamo

TIBR poveikio atkūrimu, lyginant su eksplantais, augintais terpėje, papildytoje TIBR. Nustatyta,

kad mažiausia naudota 1 µmol/l ISR koncentracija lemia statistiškai reikšmingą (P < 0,001)

pridėtinių šaknų skaičiaus padidėjimą, lyginant su eksplantais, augintais ir kontrolinėje terpėje,

ir terpėje, papildytoje TIBR (3.6. D pav.). Ūglio rodiklių atžvilgiu ISR bei ISR ir TIBR derinio

taikymas neturėjo reikšmingo poveikio ūglių skaičiui, lyginant su eksplantų, augintų ir

kontrolinėje terpėje, ir terpėje, papildytoje TIBR, duomenimis (3.6. C pav.).

a

ba,b

n.p.a

0

1

2

TIBR 0 / TIBA 0 TIBR 5 / TIBA 5

Ūg

lių s

kaič

ius

eksp

lan

tui

/ S

ho

ot

nu

mb

er p

er

ex

pla

nt

IAR 0 / IAA 0 IAR 1 / IAA 1IAR 3 / IAA3 IAR 5 / IAA 5

A

A

n.p.

B B B

0

2

4

TIBR 0 / TIBA 0 TIBR 5 / TIBA 5

Šak

ska

ičiu

s ek

spla

ntu

i /

Ro

ot

nu

mb

er p

er e

xpla

nt

IAR 0 / IAA 0 IAR 1 / IAA 1IAR 3 / IAA3 IAR 5 / IAA 5

B

n.p.A,B

AA,B

B

0

1

2

TIBR 0 / TIBA 0 TIBR 5 / TIBA 5

Ūg

lių s

kaič

ius

eksp

lan

tui

/ S

ho

ot

nu

mb

er

pe

r e

xp

lan

t

ISR 0 / IBA 0 ISR 1 / IBA 1ISR 3 / IBA 3 ISR 5 / IBA 5

C

b

C

a

B

a

A

b

A,B

0

2

4

6

TIBR 0 / TIBA 0 TIBR 5 / TIBA 5

Šak

ska

ičiu

s ek

spla

ntu

i /

Ro

ot

nu

mb

er

pe

r ex

pla

nt

ISR 0 / IBA 0 ISR 1 / IBA 1ISR 3 / IBA 3 ISR 5 / IBA 5

D

3.6. pav. Ūglių (A, C) ir pridėtinių šaknų (B, D) skaičius eksplantui (vidurkis ± standartinė paklaida) eksplantuose, augintuose augimo terpėje su skirtingomis IAR (A, B) ir ISR (C, D) 0, 1, 3 ir 5 µmol/l koncentracijomis esant derinyje be arba su TIBR (5 µmol/l). Statistiškai reikšmingai besiskiriantys (P < 0,05) skirtingomis sąlygomis augintų pavyzdžių vidurkiai pažymėti skirtingomis raidėmis Fig. 3.6. Shoots (A, C) and adventitious roots (B, D) number per explant (mean ± SE) of explants, as affected by the presence of IAA (A, B) and IBA (B, D) at the concentrations of 0, 1, 3 and 5 µmol/l combination without and with TIBA (5 µmol/l) in the nutrient medium. Significantly different means of samples grown under different nutrient media conditions (P < 0.05) are labeled with different letters

Page 44: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

44

Šio tyrimo duomenimis, svarbiausio šaknų formavimosi fitohormono auksino rezultatai

buvo dviprasmiški, kai stipriai skyrėsi dviejų tirtų tipų auksinų poveikis. Gautus rezultatus

sunku interpretuoti, kadangi, nors pridėtinių šaknų formavimosi mechanizmai Populus ūglių in

vitro kultūroje pradėti tyrinėti ganėtinai senai ir tęsiami iki dabar (Ahuja, 1987; Sellmer et al.,

1989; De Almeida et al., 2017), tačiau palyginimui tikslių duomenų yra ribotai. Pastarojo

dešimtmečio tyrimuose daug dėmesio skiriama pridėtinių šaknų formąvimosi genetinės

kontrolės aspektams tirti (Gou et al., 2010; Yordanov et al., 2017; Baba et al., 2010; Nieminen

et al., 2008), o duomenų apie šių mechanizmų nagrinėjimą pasitelkiant natūralių hormonų

pernašos ar sintezės inhibitorius arba hormonus, lemiančiais kitų hormonų signalo slopinimą,

trūksta.

Pagal ankstesnius Populus tremula tyrimų rezultatus, auksino kiekis visame augale stipriai

priklauso nuo ūglio dalies, kurioje nustatytas didžiausias kiekis, o auksino transportavimas iš

ūglio į šaknis yra svarbus šaknų formavimosi faktorius (Eliasson, 1969; Eliasson, 1971;

Johanson et al., 2018). Taip pat mokslininko Yordan ir kolegų tyrimo duomenys atskleidė, kad

in vitro kultūroje Populus mutantų eksplantai su didesniais lapais turi įtakos geresnei pridėtinių

šaknų sistemai (Yordanov et al., 2017). Mūsų tyrime auksino transportavimo iš ūglių į šaknis

blokavimas TIBR taikymu siejasi su šių tyrimų rezultatais, kadangi TIBR slopino drebulės

pridėtinių šaknų formavimąsi ir vystymąsi. Šių mechanizmų sudėtingumą parodo begalės atliktų

genetinių tyrimų, susijusių su genų nustatymu ar sukurtų Populus ir kitų augalų mutantų

tyrinėjimams (Tuominen et al., 1995; Bustillo-Avendaño et al., 2018).

Taip pat tiriami ir kiti įvairūs veiksniai, lemiantys auksino pasiskirstymą augaluose, pvz.,

hibridinėse drebulėse (Mauriat et al., 2014; Abu-Abied et al., 2018). Auksino transportavimo

sudėtingumą ir svarbą atskleidžia ir mūsų tyrimas, kadangi išoriškai taikomame derinyje TIBR

kartu su vienu iš auksinų IAR, anaiptol ne ISR, IAR poveikis neatstoja vidinio auksino,

turėjusio difunduoti iš ūglio dalių, poveikio ir neatkuria neigiamo TIBR poveikio šaknų

atžvilgiu. Dauguma mokslininkų teigia vidinio ir išoriškai taikomo IAR teigiamą įtaką Populus

šaknų formavimuisi, tačiau mūsų tyrimo rezultatai išsiskyrė, kadangi išoriškai taikytas IAR

neturėjo įtakos šaknų formavimuisi drebulės eksplantų in vitro kultūroje (Yan et al., 2017;

Johanson et al., 2018). Tai galėjo lemti vidinės IAR koncentracijos bei auksinų transportavimo

mechanizmo ir ryšių su kitomis bioaktyviosiomis molekulėmis ypatumai mūsų tirtuose drebulės

eksplantuose, tačiau tokiems tvirtinimams būtini išsamesni tyrimai. Yan ir kolegų gautas ISR

teigiamas poveikis hibridinės drebulės eksplantų in vitro kultūroje šaknų sistemai sutampa su

mūsų tyrime gautais rezultatais, kai ISR teigiamas poveikis gautas drebulės pridėtinių šaknų

vystymuisi (Yan et al., 2017).

Page 45: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

45

Taigi šio poskyrio rezultatai parodo, kad derėtų atskirti tirtų auksinų tipų poveikį drebulės

in vitro kultūros vystymuisi priklausomai nuo to, ar moduliuojama vidiniais, ar išoriškai

taikomais auksinais. Ūglių atžvilgiu, nors išoriškai taikomi auksinai IAR ir ISR neturėjo

teigiamo poveikio, tačiau sustabdžius viduje sintezuojamų auksinų transportavimą iš ūglių į

šaknis, t. y. padidinus šių auksinų koncentraciją eksplanto ūgliuose, stebimas suintensyvėjęs

ūglių vystymasis. Tačiau, išsiskiriant šių dviejų auksinų tipų poveikiui, šaknų atžvilgiu išryškėja

neaiškumų. Išoriškai taikoma ISR, bet ne IAR, pagerina šaknų vystymąsi, tuo tarpu sustabdžius

vidinių auksinų transportavimą iš ūglių į šaknis, sumažėjęs auksinų kiekis šaknų sistemoje

stipriai neigiamai veikia šaknų vystymąsi. Galbūt neutralų išoriškai taikomų auksinų poveikį

ūglių vystymuisi bei IAR ir šaknų vystymuisi galima sieti su jų transportavimu iš terpės per

šaknis į ūglius. Taigi pagal šio skyriaus rezultatus nustačius, kad viduje sintezuojamų auksinų

transportavimas yra itin svarbus eksplantų organų formavimuisi, galima būtų teigti, kad išoriškai

taikomų auksinų transportavimas iš terpės per šaknis į ūglius taip pat gali turėti lemiamą

funkciją jiems veikiant. Taigi tai lieka atviras klausimas tolesniems tyrimams. Apibendrinant,

drebulės in vitro kultūros eksplantuose auksinų transportavimo blokavimas, panaudojant TIBR,

ne visais atvejais gali būti atkurtas išoriškai taikomais auksinais. Norint pagerinti drebulės in

vitro kultūros šaknų sistemą, patartina išoriškai taikyti ISR arba paskatinti vidinę auksinų

sintezę ir jų transportavimą šaknų link. Kaip pavyzdys – El-Showk ir bendraautoriai teigia, kad

auksinų transportavimas gali būti moduliuojamas visų kitų hormonų, ir jie iškelia mintį, kad tai

gali būti visų hormonų pagrindinė užduotis augale. Jų tyrimai parodo, kad auksinas yra stipriai

susietas su citokininu (El-Showk et al., 2013). Taigi šiuo tikslu tolesni tyrimai atlikti tiriant

citokininų įtaką drebulės šaknų vystymuisi.

3.2.2. Citokinino BAP įtaka šaknų vystymuisi

Nustatant optimalią veiksnio – citokinino (6-benzilaminopurino, BAP), slopinančio šaknų

formavimąsi, koncentraciją rezultatai parodė, kad 1 µmol/l buvo mažiausia koncentracija,

lemianti statistiškai reikšmingą (P < 0,001) pridėtinių šaknų skaičiaus sumažėjimą, lyginant su

kontrolinių eksplantų duomenimis (3.7. B pav.). Ūglių skaičiaus atžvilgiu visos naudotos BAP

koncentracijos reikšmingai padidino ūglių skaičių, lyginant su kontrolinių eksplantų

duomenimis (3.7. A pav.). Duomenų iš visos eksplantų imties rezultatai parodė, kad BAP itin

sumažina eksplantų, turinčių šalutines šaknis, procentinę dalį. Šiuo atveju 1 ir 3 µmol/l

koncentracija reikšmingai sumažino eksplantų su šalutinėmis šaknimis dalį iki 35 bei 13 %, kai

5 µmol/l – net iki 4 % (3.7. C pav.). Taigi pridėtinių šaknų ilgio ir šalutinių šaknų tankio

duomenys (3.7. D, E, F pav.) nagrinėjami pasitelkiant mažiausią iš naudotinų BAP 1 µmol/l

koncentraciją, nors dėl jos poveikio imties su šalutinėmis šaknimis procentinė dalis ir neviršijo

Page 46: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

46

½ bendros imties. Imties eksplantų su šalutinėmis šaknimis duomenys parodė, kad 1 µmol/l

BAP koncentracija didžiausios pridėtinės šaknies ilgio ir bendro pridėtinių šaknų ilgio atžvilgiu,

reikšmingo poveikio neturėjo, lyginant su kontrolinių eksplantų duomenimis (3.7 D, E pav.).

Nepaisant nepakeisto pridėtinių šaknų ilgio, 1 µmol/l BAP koncentracija reikšmingai sumažino

šalutinių šaknų tankį (3.7. F pav.). Atsižvelgiant į BAP poveikį šaknų ir ūglių rodikliams

parinkta optimali naudota koncentracija – 1 µmol/l – buvo taikoma atoveiksmio IAR optimalios

koncentracijos nustatymui.

c

b

a

a

0

5

10

15

0 1 3 5

Ūg

lių

ska

ičiu

s e

ksp

lan

tui

/ S

ho

ot

nu

mb

er p

er

exp

lan

t

A

a

b b

c

0

1

2

3

0 1 3 5

Šak

sk

aič

ius

ek

spla

ntu

i /

Ro

ot

nu

mb

er

per

ex

pla

nt

B

a

b

b,cc

0

25

50

75

100

0 1 3 5

Eks

pla

ntų

su

ŠŠ

dal

is,

%/

Rat

e o

f e

xp

lan

t w

ith

LR

, %

C

aa

0

1

2

3

4

0 1

Pa

gr.

ša

knie

s i

lgis

, c

m/

Lar

ges

t ro

ot

len

gth

, cm

BAP koncentracija, µmol L-1 /

BAP concentration µmol L-1D

aa

0

1

2

3

4

0 1

Ben

dra

s š

aknų

ilg

is,

cm

/ T

ota

l ro

ot

len

gth

, c

m

BAP koncentracija, µmol L-1 /

BAP concentration µmol L-1E

a

b

0

4

8

0 1

ŠŠ

ta

nk

is,

vn

t / c

m /

L

R d

ens

ity,

ro

ot

pe

r cm

BAP koncentracija, µmol L-1 /

BAP concentration µmol L-1F

3.7. pav. Ūglių (A) ir pridėtinių šaknų (B) skaičius eksplantui, eksplantų su šalutinėmis šaknimis procentinė dalis (C), pagrindinės pridėtinės šaknies (D) ir bendras pridėtinių šaknų ilgis (E) bei šalutinių šaknų tankis (F) (vnt./cm) (vidurkis ± standartinė paklaida) eksplantuose, augintuose augimo terpėje su skirtingomis BAP koncentracijomis (0, 1, 3 ir 5 µmol/l). A, B, C duomenys yra visos eksplantų imties, o D, E, F – imties, kurioje eksplantų su šalutinėmis šaknimis dalis didesnė nei ½ visos imties. Statistiškai reikšmingai besiskiriantys (P < 0,05) skirtingomis sąlygomis augintų pavyzdžių vidurkiai pažymėti skirtingomis raidėmis Fig. 3.7. Shoots (A) and adventitious roots (B) number per explant (mean ± SE), the rate of explants with lateral roots (C), main (D) and total (E) adventitious root length (mean ± SE) of explants, as affected by the presence of different BAP concentrations (0, 1, 3 and 5 µmol/l) in the nutrient medium. A, B, C data are from the total number of explants, or D, E, F from the number when the part of explants with lateral roots exceeds ½ total number. Significantly different means of samples grown under different nutrient media conditions (P < 0.05) are labeled with different letters

Naudoto BAP atoveiksmio – IAR, kurios koncentracijai didėjant skatinama citokininų

inhibitoriaus AHP6 ekspresija, rezultatai parodė, kad IAR taikymas derinyje IAR ir BAP

neturėjo reikšmingo poveikio pridėtinių šaknų skaičiui, lyginant su eksplantų, augintų terpėje,

papildytoje BAP, duomenimis. Taigi priešingai, nei tikėtasi, IAR neatkūrė šio veiksnio

Page 47: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

47

neigiamo poveikio pridėtinių šaknų skaičiaus atžvilgiu (3.8. B pav.). Ūglių skaičiaus atžvilgiu

taikant derinį IAR ir BAP visos naudotos koncentracijos neturėjo reikšmingo poveikio, lyginant

su eksplantų, augintų terpėje, papildytoje BAP, duomenimis (3.8. A pav.).

A,B

n.p.

A

BA,B

0

4

8

BAP 0 BAP 1

Ūg

lių s

kaič

ius

eksp

lan

tui

/ S

ho

ot

nu

mb

er p

er e

xpla

nt

IAR 0 / IAA 0 IAR 1 / IAA 1IAR 3 / IAA 3 IAR 5 / IAA 5

A

n.p.

n.p.

0

2

4

BAP 0 BAP 1

Šak

ska

ičiu

s ek

spla

ntu

i /

Ro

ot

nu

mb

er p

er e

xpla

nt

IAR 0 / IAA 0 IAR 1 / IAA 1IAR 3 / IAA 3 IAR 5 / IAA 5

B

3.8. pav. Ūglių (A) ir pridėtinių šaknų (B) skaičius eksplantui (vidurkis ± standartinė paklaida) eksplantuose, augintuose augimo terpėje su skirtingomis IAR 0, 1, 3 ir 5 µmol/l koncentracijomis esant derinyje be arba su BAP (1 µmol/l). Statistiškai reikšmingai besiskiriantys (P < 0,05) skirtingomis sąlygomis augintų pavyzdžių vidurkiai pažymėti skirtingomis raidėmis Fig. 3.8. Shoots (A) and adventitious roots (B) number per explant (mean ± SE) of explants, as affected by the presence of IAA at the concentrations of 0, 1, 3 and 5 µmol/l combination without and with BAP (1 µmol/l) in the nutrient medium. Significantly different means of samples grown under different nutrient media conditions (P < 0.05) are labeled with different letters

Šaknų formavimosi stabdymo faktorius citokininas drebulės eksplantams in vitro kultūroje

stabdė šaknų vystymąsi, kaip ir kitų autorių tyrimų su Populus ūgliais in vitro kutūroje

rezultatuose (Ramı´rez-Carvajal et al., 2009). Nors daugelio autorių, kaip ir mūsų rezultatai,

parodo, kad citokininas turi teigiamą poveikį ūglių vystymuisi, tačiau negalima nepastebėti ir

šaltinių, kuriuose teigiama, kad citokininas Populus ūglių in vitro kultūros regeneracijoje gali ir

neturėti teigiamo poveikio (Coleman et al., 1989). Šie duomenys gali būti susiję su citokininų

neigiamu poveikiu šaknų formavimuisi kaip svarbiam in vitro kultūroje augalo įsitvirtinimo

faktoriui. Nors yra duomenų, kad auksinas slopina citokinino signalą augale, tačiau mūsų tyrime

derinio BAP ir IAR išoriško taikymo metu naudotas auksinas IAR nesusilpnina neigiamo BAP

poveikio drebulės ūglių in vitro kultūroje šaknų atžvilgiu (Bishopp et al., 2011). Tai galėjo lemti

vidinių IAR bei BAP koncentracijų bei jų ryšių su kitomis bioaktyviomis molekulėmis ypatumai

mūsų tirtuose drebulės eksplantuose, tačiau tokiems tvirtinimams būtini išsamesni tyrimai. Taigi

atsižvelgiant į gan dažną citokininų naudojimą in vitro kultūrų ūglių dauginimui, patartina

išoriškai taikomą BAP drebulės in vitro kultūroms naudoti tik tikslingai, kadangi nustatyta, kad

BAP šioms kultūroms yra svarbus lemiamas šaknų sistemos formavimosi neigiamas faktorius.

Page 48: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

48

Taip pat šio tyrimo rezultatai parodė, kad išoriškai taikytas IAR neigiamo BAP poveikio

nesusilpnino, taigi galbūt šį klausimą reikėtų tirti per vidinės IAR sintezės skatinimą. Taigi

tolesniems tyrimams išoriškai taikomo BAP neigiamo poveikio šaknų sistemai kompensavimas

ar panaikinimas išlieka kaip svarbus tikslas drebulių mikrodauginimo protokolo tobulinimui.

Apibendrinant galima teigti, kad BAP susilpnina drebulės in vitro kultūros pridėtinių ir šalutinių

šaknų sistemos formavimąsi, o jo inhibicijos reguliavimas išoriškai taikant auksiną nėra

veiksmingas.

3.2.3. Abscizo rūgšties įtaka šaknų vystymuisi

Nustatant optimalią veiksnio – abscizo rūgšties (ABR), slopinančios šaknų formavimąsi,

koncentraciją, rezultatai parodė, kad 3 µmol/l koncentracija turėjo įtakos statistiškai

reikšmingam (P < 0,05) pridėtinių (3.9. B pav.) šaknų skaičiaus pokyčiui susidaryti, lyginant su

kontrolinių eksplantų duomenimis. Nors ABR sumažino pridėtinių šaknų skaičių, tačiau ūglių

skaičiaus atžvilgiu nė viena naudota koncentracija neturėjo įtakos statistiškai reikšmingiems

pokyčiams susidaryti, lyginant su kontrolinių eksplantų duomenimis (3.9. A pav.). Bendros

eksplantų imties rezultatai atskleidė, kad abi naudotos ABR koncentracijos sumažino eksplantų,

turinčių šalutines šaknis, procentinę dalį iki 60 % ir 50 % (3.9. C pav.). Taigi pridėtinių šaknų

ilgio ir šalutinių šaknų tankio duomenys (3.9. D, E, F pav.) buvo nagrinėjami pasitelkiant ABR

1 ir 3 µmol/l koncentracijas, kadangi dėl jų poveikio imties su šalutinėmis šaknimis procentinė

dalis viršijo ½ visos imties. Eksplantų imties su šalutinėmis šaknimis duomenys atskleidė, kad

pagrindinės pridėtinės šaknies ilgio, bendro pridėtinių šaknų ilgio bei šalutinių šaknų tankio

atžvilgiu nė viena naudota ABR koncentracija neturėjo reikšmingo poveikio, lyginant su

kontroliniais eksplantų duomenimis (3.9. D, E, F pav.).

Neigiamas pridėtinių šaknų formavimosi faktorius – abscizo rūgštis – sumažino pridėtinių

šaknų formavimąsi, tačiau neturėjo įtakos šaknų ilgiui drebulės ūgliams in vitro kultūroje.

Duomenų kiekis apie ABR poveikį Populus tremula L. ūglių in vitro kultūroje šaknų sistemai

yra ribotas, kadangi didžiausias dėmesys yra kreipiamas į jos poveikį streso sąlygomis (Luo et

al., 2009; Shi et al., 2015). Todėl šio tyrimo duomenų palyginimas su kitų autorių gautais

rezultatais yra ribotas. Apibendrinant rezultatus galima teigti, kad ABR slopina pridėtinių ir

šalutinių šaknų formavimąsi, bet šis hormonas nėra svarbiausias lemiamas faktorius šaknų

sistemos vystymesi tirtuose drebulės in vitro kultūros eksplantuose.

Page 49: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

49

a a

a

0

1

2

0 1 3

Ūg

lių s

kaič

ius

eksp

lan

tui

/ S

ho

ot

nu

mb

er p

er e

xpla

nt

A

aa,b

b

0

1

2

0 1 3

Šak

ska

ičiu

s ek

spla

ntu

i /

Ro

ot

nu

mb

er p

er e

xpla

nt

B

a b b

0

25

50

75

100

0 1 3

Eks

pla

ntų

su

ŠŠ

dal

is,

%/

Rat

e o

f ex

pla

nt

wit

h L

R,

%

C

a

a a

0

3

6

9

0 1 3

Pag

r. š

akn

ies

ilgis

, cm

/ L

arg

est

roo

t le

ng

th,

cm

ABR koncentracija, µmol L-1 /

ABA concentration µmol L-1D

a

aa

0

3

6

9

0 1 3

Ben

dra

s ša

knų

ilg

is,

cm/

To

tal r

oo

t le

ng

th,

cm

ABR koncentracija, µmol L-1 /

ABA concentration µmol L-1E

aa

a

0

2

4

0 1 3

ŠŠ

tan

kis,

vn

t / c

m/

LR

den

sity

, ro

ot

per

cm

ABR koncentracija, µmol L-1 /

ABA concentrationµmol L-1F

3.9. pav. Ūglių (A) ir pridėtinių šaknų (B) skaičius eksplantui, eksplantų su šalutinėmis šaknimis procentinė dalis (C), pagrindinės pridėtinės šaknies (D) ir bendras pridėtinių šaknų ilgis (E) bei šalutinių šaknų tankis (F) (vnt./cm) (vidurkis ± standartinė paklaida) eksplantuose, augintuose augimo terpėje su skirtingomis ABR koncentracijomis (0, 1 ir 3 µmol/l). A, B, C duomenys yra visos eksplantų imties, o D, E, F – imties, kurioje eksplantų su šalutinėmis šaknimis dalis didesnė nei ½ visos imties. Statistiškai reikšmingai besiskiriantys (P < 0,05) skirtingomis sąlygomis augintų pavyzdžių vidurkiai pažymėti skirtingomis raidėmis Fig. 3.9. Shoots (A) and adventitious roots (B) number per explant (mean ± SE), the rate of explants with lateral roots (C), main (D) and total (E) adventitious root length (mean ± SE) of explants, as affected by the presence of different ABA concentrations (0,1 and 3 µmol/l) in the nutrient medium. A, B, C data are from the total number of explants, or D, E, F from the number when the part of explants with lateral roots exceeds ½ total number. Significantly different means of samples grown under different nutrient media conditions (P < 0.05) are labeled with different letters

3.2.4. Giberelino įtaka šaknų vystymuisi

Nustatant optimalią veiksnio – paklobutrazolio (PBZ), inhibuojančio giberelinų sintezę,

koncentraciją rezultatai parodė, kad 0,5 µmol/l buvo mažiausia iš naudotinų koncentracija,

sukelianti statistiškai reikšmingą pridėtinių (P < 0,001) šaknų skaičiaus pokytį, lyginant su

kontrolinių eksplantų duomenimis (3.10. B pav.). Nors visos naudotos paklobutrazolio

koncentracijos padidino pridėtinių šaknų skaičių, tačiau ūglių skaičiaus pokyčiui nė viena

naudota koncentracija neturėjo reikšmingos įtakos (3.10. A pav.).

Page 50: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

50

a

a

a a

0

1

0 0,5 1 3

Ūg

lių

ska

ičiu

s e

ksp

lan

tui

/ S

ho

ot

nu

mb

er

per

exp

lan

t

A

a

bb b

0

4

8

12

0 0,5 1 3

Šak

ska

ičiu

s e

ksp

lan

tui

/ R

oo

t n

um

ber

per

exp

lan

t

B

aa a a

0

25

50

75

100

0 0,5 1 3

Eks

pla

ntų

su

ŠŠ

da

lis,

% /

R

ate

of

exp

lan

t w

ith

LR

, %

C

a,b

a

b b

0

1

2

3

0 0,5 1 3

Pa

gr.

ša

knie

s ilg

is,

cm /

Lar

ges

t ro

ot

len

gth

, c

m

PBZ koncentracija µmol L-1 /

PBZ concentration, µmol L-1D

b

aa a

0

3

6

9

0 0,5 1 3

Ben

dra

s ša

knų

ilg

is,

cm /

To

tal r

oo

t le

ng

th,

cm

PBZ koncentracija, µmol L-1 /

PBZ concentration, µmol L-1E

a a aa

0

2

4

0 0,5 1 3

ŠŠ

tan

kis,

vn

t / c

m /

LR

den

sity

, ro

ots

per

cm

PBZ koncentracija, µmol L-1 /

PBZ concentration,µmol L-1F

3.10. pav. Ūglių (A) ir pridėtinių šaknų (B) skaičius eksplantui, eksplantų su šalutinėmis šaknimis procentinė dalis (C), pagrindinės pridėtinės šaknies (D) ir bendras pridėtinių šaknų ilgis (E) bei šalutinių šaknų tankis (F) (vnt./cm) (vidurkis ± standartinė paklaida) eksplantuose, augintuose augimo terpėje su skirtingomis PBZ koncentracijomis (0, 0,5, 1 ir 3 µmol/l). A, B, C duomenys yra visos eksplantų imties, o D, E, F – imties, kurioje eksplantų su šalutinėmis šaknimis dalis didesnė nei ½ visos imties. Statistiškai reikšmingai besiskiriantys (P < 0,05) skirtingomis sąlygomis augintų pavyzdžių vidurkiai pažymėti skirtingomis raidėmis Fig. 3.10. Shoots (A) and adventitious roots (B) number per explant (mean ± SE), the rate of explants with lateral roots (C), main (D) and total (E) adventitious root length (mean ± SE) of explants, as affected by the presence of different PBZ concentrations (0, 0.5, 1 and 3 µmol/l) in the nutrient medium. A, B, C data are from the total number of explants, or D, E, F from the number when the part of explants with lateral roots exceeds ½ total number. Significantly different means of samples grown under different nutrient media conditions (P < 0.05) are labeled with different letters

Bendros eksplantų imties rezultatai atskleidė, kad visos naudotos PBZ koncentracijos

padidino eksplantų, turinčių šalutines šaknis, procentinę dalį iki 100 % (3.10. C pav.). Taigi

pridėtinių šaknų ilgio ir šalutinių šaknų tankio duomenys (3.10. D, E, F pav.) buvo nagrinėjami

pasitelkiant visas naudotas PBZ koncentracijas, kadangi dėl jų poveikio imties su šalutinėmis

šaknimis procentinė dalis viršijo ½ bendros imties. Eksplantų su šalutinėmis šaknimis imties

duomenys atskleidė, kad pagrindinės pridėtinės šaknies ilgio atžvilgiu nė viena naudota

koncentracija, nors ir reikšmingai skiriasi tarpusavyje savo poveikiu 0,5 su 1 ir 3 µmol/l, tačiau,

lyginant su kontrolinių eksplantų duomenimis, neturėjo reikšmingo poveikio (3.10. D pav.).

Nors visos naudotos PBZ koncentracijos padidino ne tik pridėtinių šaknų skaičių, bet ir bendrą

jų ilgį (3.10. E pav.), tačiau šalutinių šaknų tankio atžvilgiu nė viena naudota PBZ koncentracija

neturėjo reikšmingo poveikio (3.10. F pav.).

Page 51: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

51

Atsižvelgiant į PBZ poveikį šaknų ir ūglių rodikliams, parinkta optimali naudota

koncentracija – 1 µmol/l – buvo taikoma atoveiksmio GA4+7 optimaliai koncentracijai nustatyti.

Rezultatai parodė, kad 3 ir 5 µmol/l GA4+7 koncentracijos turėjo reikšmingos įtakos neigiamam

šaknų skaičiaus (P <0 ,001) pokyčiui susidaryti, lyginant su kontrolinių eksplantų duomenimis.

Taigi derinio GA4+7 ir PBZ taikymo metu GA4+7 susilpnino teigiamą PBZ įtaką šaknų skaičiaus

pokyčiui (P < 0,001), lyginant su šaknų skaičiumi eksplantų, augintų terpėje, papildytoje PBZ

(3.11. B pav.). Ūglio skaičiaus (3.11. A pav.) atžvilgiu naudotos visos GA4+7 koncentracijos

(P < 0,001, P < 0,01, P < 0,001) lėmė statistiškai reikšmingus teigiamus pokyčius, lyginant su

kontrolinių eksplantų duomenimis. Derinio GA4+7 ir PBZ taikyme GA4+7 turėjo įtakos

teigiamiems ūglio skaičiaus (P < 0,001) pokyčiams susidaryti, lyginant su ūglių skaičiumi

eksplantų, augintų terpėje, papildytoje PBZ (3.11. B pav.).

cB

bA

a,b

A

aA

0

1

2

3

PBZ 0 PBZ 1

Ūg

lių s

kaič

ius

eksp

lan

tui

/ S

ho

ot

nu

mb

er p

er e

xpla

nt

GA 0 GA 1 GA 3 GA 5

A

a

A

a

B

b

B

b

B

0

5

10

15

PBZ 0 PBZ 1

Šak

ska

ičiu

s ek

spla

ntu

i /

Ro

ot

nu

mb

er p

er e

xpla

nt

GA 0 GA 1 GA 3 GA 5

B

3.11. pav. Ūglių (A) ir pridėtinių šaknų (B) skaičius eksplantui (vidurkis ± standartinė paklaida) eksplantuose, augintuose augimo terpėje su skirtingomis GA4+7 0, 1, 3 ir 5 µmol/l koncentracijomis esant derinyje be arba su PBZ (1 µmol/l). Statistiškai reikšmingai besiskiriantys (P < 0,05) skirtingomis sąlygomis augintų pavyzdžių vidurkiai pažymėti skirtingomis raidėmis Fig. 3.11. Shoots (A) and adventitious roots (B) number per explant (mean ± SE) of explants, as affected by the presence of GA4+7 at the concentrations of 0, 1, 3 and 5 µmol/l combination without and with PBZ (1 µmol/l) in the nutrient medium. Significantly different means of samples grown under different nutrient media conditions (P < 0.05) are labeled with different letters

Svarbus pridėtinių šaknų formavimąsi stabdantis faktorius giberelinas turi itin reikšmingą

įtaką eksplanto vystymuisi, kadangi, nepaisant šaknų vystymosi stabdymo, lemia ūglio tįsimą.

Mūsų rezultatai taip pat atitinka kitų mokslininkų rezultatus, kuriais atskleidžiama, kad

giberelinai stabdo Populus šaknų sistemos formavimąsi (Gou et al., 2010; Mauriat et al., 2014;

Eriksson et al., 2000). Populus šaknų formavimosi skatinimas reguliuojant giberelino sintezę

tiriamas per transgeninius mutantus arba naudojant sintezės inhibitorių paklobutrazolį (Gou

et al., 2010; Mauriat et al., 2014; Allingham, 2005; Žiauka et al., 2010). Mūsų tyrimo rezultatai

taip pat atitinka šių mokslininkų rezultatus, kadangi PBZ stipriai padidino drebulės ūglių in vitro

Page 52: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

52

kultūroje šaknų vystymąsi. Svarbiausia yra tai, kad derinio GA ir PBZ išorinio taikymo metu

PBZ atkūrė neigiamą GA poveikį drebulės šaknų sistemai. Apibendrinant galima teigti, kad

PBZ turi itin reikšmingą teigiamą įtaką drebulės šaknų sistemai, slopindamas vidinę giberelinų

sintezę, o mažėjant giberelinų kiekiui sumažinamas neigiamas giberelinų poveikis šaknų

sistemos formavimuisi. Taigi galima teigti, kad giberelinai yra svarbūs šaknų sistemos

formavimąsi slopinantys faktoriai drebulės in vitro kultūroje.

3.2.5. Apibendrinimas

Nustatytos tirtų cheminių medžiagų,  darančių įtaką Populus tremula L. šaknų sistemos

formavimuisi in vitro ūglių kultūroje, išoriškai taikomos optimalios koncentracijos: 2,3,5-

trijodbenzoinės rūgšties (TIBR) – 5 µmol/l, 6-benzilaminopurino (BAP) – 1 µmol/l, abscizo

rūgšties (ABR) – 3 µmol/l ir paklobutrazolio (PBZ) – 1 µmol/l. Šių išoriškai taikomų veiksnių

bei jų optimalių koncentracijų nustatymo atveju panašaus stiprumo neigiamu poveikiu pridėtinių

šaknų skaičiui pasireiškė TIBR, BAP, kiek silpnesniu – ABR, o labiausiai išsiskyrė stipriu

teigiamu poveikiu – PBZ. Šalutinių šaknų atžvilgiu stipriausias neigiamas išoriškai taikomo

veiksnio poveikis nustatytas BAP atžvilgiu, o PBZ itin išsiskyrė stipriu teigiamu poveikiu.

Stipriausiu neigiamu išoriškai taikomo veiksnio poveikiu bendram šaknų ilgiui pasireiškė TIBR,

kai BAP ir ABR reikšmingo poveikio nenustatyta. Veiksnys PBZ taip pat, kaip ankstesnių

parametrų atžvilgiu, išsiskyrė itin teigiamu poveikiu. Endogeninių bioaktyvių veiksnių, darančių

įtaką Populus tremula L. in vitro kultūros šaknų sistemos formavimuisi, optimalių koncentracijų

poveikiai nebuvo visiškai susilpninti (atkurti) jiems taikytais atoveiksmių poveikiais.

Nagrinėjant veiksnio ir atoveiksmio derinius, reikšmingiausiu poveikiu išsiskyrė auksino

transportavimo blokavimo atkūrimas išoriškai taikomu ISR poveikiu bei PBZ teigiamo poveikio

šaknų sistemai silpninimas išoriškai taikomu GA poveikiu. Taigi rezultatų analizė parodė, kad

nepertraukiamas auksino transportavimas arba išoriškai taikoma ISR bei giberelinų sintezės

blokavimas arba išoriškai taikomas PBZ turi itin reikšmingą įtaką Populus tremula L. šaknų

sistemos formavimuisi. Apibendrinant, drebulės in vitro kultūros eksplantams auksinai turi

teigiamos įtakos šaknų sitemos formąvimuisi, tačiau jų transportavimo blokavimas panaudojant

TIBR ne visais atvejais gali būti atkurtas išoriniu šių hormonų taikymu. Neigiamu poveikiu

drebulės in vitro kultūrų šaknų sitemos formavimuisi pasižymi BAP, ABR ir GA. Tarp jų BAP

ir GA yra svarbiausi faktoriai, slopinantys šaknų sistemos vystymąsi tirtuose drebulės in vitro

kultūros eksplantuose, tačiau pasitvirtina tik GA sintezės stabdymas PBZ poveikiu, o BAP

inhibicijos reguliavimas panaudojant išoriškai taikomą auksiną nėra veiksmingas.

Page 53: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

53

3.3. Endogeninių hormonų kiekių ypatumai skirtinga šaknijimosi geba

pasižyminčių Populus (P. tremula, P. tremuloides × P. tremula, P. alba L.×

P. tremula) bei B. pendula genotipų ūgliuose

3.3.1. Endogeninių hormonų kiekių ypatumai ūgliuose

Ištyrus Populus ir Betula pendula in vitro kultūrų skirtingų genotipų fitohormonų

koncentracijas eksplantų ūgliuose nustatyta rezultatų skirtumai. Didžiausia IAR koncentracija

(45 ± 3,6 µg/g šviežios masės) pasižymėjo drebulės 17DPL038 genotipo eksplantai bei tarp

Populus genotipų nuo jo reikšmingai (P < 0,05) mažesne koncentracija skyrėsi tik hibridinės

drebulės 51DhPL022 genotipo eksplantų rezultatai (3.12. pav. C). Beržo atveju abiejų genotipų

eksplantuose buvo nustatytos tarpusavyje nesiskiriančios bei palyginus su Populus genotipų

rezultatais reikšmingai (P < 0,001) mažesnės IAR koncentracijos (3.12. pav. C). Populus ir

Betula in vitro kultūrų skirtumai išryškėja palyginus IAR koncentracijų ir šaknų skaičiaus

tendencijas. Populus genotipo eksplantuose nustatytos didelės IAR koncentracijos kartu gali

būti siejamos su nustatytu dideliu pridėtinių šaknų skaičiumi eksplantui. Gerai besišaknijančio

01BPL115 beržo genotipo eksplantų atveju, nors šaknų skaičius nesiskiria nuo daugumos

Populus genotipų eksplantų, nustatytas itin mažas IAR kiekis. Ūglių skaičiaus atžvilgiu galima

būtų teigti, kad esant didesnei IAR koncentracijai ir įprastiniam šaknų skaičiui, kaip Populus

genotipų eksplantų atveju, stebimas įprastas ūglių skaičius (nuo 1,03 ± 0,03 iki 1,6 ± 0,2 vienetų

eksplantui). Esant mažai IAR koncentracijai ir priedo mažam šaknų skaičiui, kaip beržo

43BMS001 genotipo eksplantų atveju, stebimas itin didelis ūglių skaičius (3.12. pav. A, B, C).

Nustatant kito auksino IBR koncentraciją eksplantų ūgliuose rezultatai parodė, kad didžiausiu

kiekiu itin išsiskyrė hibridinės drebulės 51DhPL022 genotipo eksplantai (23 ± 3,4 µg/g šviežios

masės). Kitų tirtų genotipų eksplantuose nustatyta itin mažos tarpusavyje nesiskiriančios IBR

koncentracijos (3.12. pav. D). Įdomu tai, kad didele IBR koncentracija pasižymintys

51DhPL022 genotipo eksplantai savo morfologiniais parametrais niekuo nesiskiria nuo kitų

Populus genotipų eksplantų (3.12. pav. A, B). Taigi auksinų atžvilgiu didesnės jo koncentracijos

stebimos Populus genotipo kultūrose, palyginus su žymiai mažesnėmis Betula pendula genotipų

kultūrose nustatytomis koncentracijomis.

Page 54: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

54

b

aa a

c

a

0

2

4

Sk

aiči

us

ek

spla

ntu

i,

Nu

mb

er p

er

exp

lan

t

Ašaknys / root

c d d d

a

b

0

5

10

15

20

Būgliai / shoot

a,ba a,b

b

c c0

10

20

30

40

50K

on

cen

trac

ija, µ

g/g

š

vie

žio

s m

asė

s /

Co

nce

ntr

atio

n, µ

g/g

fr

esh

wei

gh

t

CIAR / IAA

b b b

a

b b0

5

10

15

20

25

30D

ISR / IBA

bb

b bb

a

0

5

10

15

20

25

30

35

Ko

nce

ntr

acija

, µ

g/g

š

viež

ios

ma

sės

/ C

on

cen

tra

tio

n, µ

g/g

fr

esh

wei

gh

t

EABR / ABA

cd d

a

b

c02468

10121416F

Z

c c c

a

b b

0

200

400

600

Ko

nce

ntr

acija

µg

/g

švie

žio

s m

asės

/ C

on

cen

trat

ion

, µg

/g

fres

h w

eig

ht

GGA7

a

bb

a a

a

0

50

100

150

200H

GA3

3.12. pav. Pridėtinių šaknų (A) ir ūglių (B) skaičius eksplantui (vidurkis ± standartinė paklaida), ūglio hormonų (C – IAR; D – ISR; E – ABR; F – Z; G – GA7; H – GA3) koncentracija (vidurkis ± SE) skirtingų Populus (18DPL037, 17DPL038 – P. tremula; 51DF1001 – P. tremuloides × P. tremula; 51DhPL022 – P. alba × P. tremuloides) ir Betula pendula (43BSM001, 01BPL115) in vitro kultūrų genotipų eksplantų, augintų terpėje be hormonų. Reikšmingi skirtumai (P > 0,05) tarp skirtingų genotipų pažymėti skirtingomis raidėmis Fig. 3.12. Adventitious roots (A) and shoots (B) number per explant (mean ± SE), Shoot hormone (C – IAA; D – ISA; E – ABA; F – Z; G – GA7; H – GA3) concentrations (mean ± SE) in the in vitro cultures of different Populus (18DPL037, 17DPL038 – P. tremula; 51DF1001 – P. tremuloides × P. tremula; 51DhPL022 – P. alba × P. tremuloides) and Betula pendula (43BSM001, 01BPL115) genotypes on a hormone-free nutrient medium. Significant differences (P>0.05) between different genotypes are labeled with different letters

Miško medžių in vitro audinių kultūrų subkultivavimo produktyvumas stipriai priklauso

nuo vidinių fitohormonų kiekių, lemiančių fitohormonų veikimo mechanizmų stabilumą ir

tarpusavio ryšius (Stuepp et al., 2017). Vidinių fitohormonų kiekiai Populus ir Betula pendula

medžiuose pradėti tyrinėti ganėtinai seniai. Didelės IAR koncentracijos nustatytos drebulės

vegetatyvinių audinių kultūroje eksplanto stiebe ir šaknyse dar 1996 m., kai hibridinės drebulės

(P.tremula x P.tremuloides) stiebe – 1997 m. (Tuominen et al., 1997; Eliason, 1996). Vidinio

IAR nustatymo tyrimai su Betula pendula medžių pavyzdžiais vykdomi taip pat jau kelis

Page 55: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

55

dešimtmečius (Galoch et al., 1998; Rinne et al., 1993). Nors auksinų kiekybinio įvertinimo

metodinės dalys įvairių medžių klonų padauginimui yra plačiai išnagrinėtos dar visai neseniai

Steupp ir bendraautorių, tačiau naujų išsamesnių duomenų apie auksinų kiekius Populus ir

Betula pendula in vitro kultūrų eksplantuose yra ribotai (Steupp et al., 2017). Šių mokslininkų

teigimu, auksino detekcija yra sudėtinga, kadangi auksinų kiekis augale aptinkamas mažomis

koncentracijomis, o junginių, kurie trukdo auksinų detekcijai – didelėmis koncentracijomis.

Nors literatūroje minima, kad vidinės IAR koncentracijos nustatymas yra sudėtingesnis, kadangi

IBR junginiai yra stabilesni už IAR junginius fermentų aktyvumui, tačiau mūsų rezultatuose ši

tendencija neatsispindi (Riov, 1993; Ludwig-Müller et al., 2000). Mūsų tyrime didele vidine

IAR koncentracija Populus in vitro kultūrų genotipai stipriai skyrėsi nuo Betula genotipų, kai

IBR atžvilgiu tarp šių genčių atstovų skirtumo nenustatyta. Įdomu tai, kad, nepaisant mažų IBR

koncentracijų, tarp tirtų genotipų išskirtinai didelė koncentracija nustatyta hibridinės drebulės

51DhPL022 (P. alba × P. tremuloides) genotipo eksplantuose.

Didžiausia ABR koncentracija (22,3 ± 2,8 µg/g šviežios masės) pasižymėjo gerai šaknis

formuojančio beržo 01BPL115 genotipo eksplantų ūgliai (3.12. pav. E). Įdomu tai, kad šie ABR

rezultatai reikšmingai (P < 0,05) skyrėsi nuo šaknų neformuojančio beržo 43BMS001 genotipo

eksplantų rezultatų (3.12. pav. E), kai panašus skirtumas tarp šių beržo genotipų eksplantų

nustatytas ir pridėtinių šaknų skaičiaus atžvilgiu (3.12. pav. A). Populus genotipų eksplantų

ūgliai pasižymėjo reikšmingai tarpusavyje mažesnėmis bei nuo nesišaknijančio beržo

43BMS001 genotipo eksplantų nesiskiriančiomis ABR koncentracijomis (3.12. pav. E).

Atsižvelgiant į beržų genotipų eksplantų morfologinius parametrus, galima teigti, kad

01BPL115 genotipo eksplantų ABR koncentracijos skirtumas nuo 43BMS001 genotipo

eksplantų gali būti siejamas su šių genotipų skirtumu šaknų skaičiaus atveju. Kaip jau minėta,

tarp šių 01BPL115 beržo ir Populus genotipų eksplantų šaknų skaičiaus atveju, priešingai nei

IAR koncentracijos, didelių skirtumų nenustatyta. Taigi ABR koncentracijų skirtumus tarp šių

01BPL115 beržo ir Populus genotipų eksplantų galima būtų sieti su tarp jų nustatytais, kad ir

nežymiais ūglių skaičiaus skirtumais (3.12. pav. B, E).

Absizo rūgšties kiekybiniai nustatymai dažnai yra siejami su auksinų nustatymais, kaip

pavyzdys medžių rūšims nustatyti, priešingi pasiskirstymo modeliai (Mwange et al., 2005). Mūsų

tyrime taip pat atsispindi ši tendencija, o ypač tarp Populus atstovų, kur nustatyta didelė auksino

koncentracija, lydima mažos absizo rūgšties koncentracijos. Betula pendula atžvilgiu ši tendencija

pasirodė tik viename 01BPL115 genotipe, kuriame, skirtingai nei Populus, maža IAR koncentracija

lydima didelės absizo rūgšties koncentracijos. Dauguma ankstesnių literatūros šaltinių apie vidinius

ABR kiekius daugiausia sietina su ūglių pumpurų skleidimosi laikotarpiu ar stresinėmis aplinkos

sąlygomis tarp Betula (Rinne et al., 1998; Welling et al., 1997; Li et al., 2002) ir Populus (Rohde et

Page 56: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

56

al., 2002; Yin et al., 2004) atstovų. Įdomu tai, kad tirtame 01BPL115 genotipe ABR koncentracija,

išsiskirianti savo itin dideliu kiekiu nuo visų tirtų genotipų, net daugiau nei ketvirto karto skiriasi

nuo kito Betula 43BMS001 genotipo. Šie tyrimo rezultatai sutampa su Sasamota ir bendraautorių

rezultatais, kur dešimt kartų didesnis absizo rūgšties kiekis buvo nustatytas Betula atstovuose,

lyginant su Populus atstovais (Sasamoto et al., 2002).

Zeatino atžvilgiu reikšmingi skirtumai nustatyti ir tarp tam tikrų Populus genotipų

(P < 0,05) bei taip pat ir tarp beržo genotipų eksplantų (P < 0,05). Didžiausia Z koncentracija

(11,4 ± 2,6 µg/g šviežios masės) pasižymėjo hibridinės drebulės 51DhPL022 genotipo

eksplantai. Nors beržo 43BMS001 genotipo eksplantų Z rezultatai nuo 51DhPL022 genotipo

eksplantų reikšmingai skyrėsi net 2,9 karto, bet tarp likusiųjų, ir įdomiausia ir beržo 01BPL115

genotipo eksplantų, jis vis tiek pasižymėjo reikšmingai besiskiriančia didesne Z koncentracija

(3.12. pav. F). Nors 51DhPL022 genotipo eksplantai išsiskiria savo didele Z koncentracija, bet

neišsiskiria ūglių skaičiumi. Tai gali būti siejama su kitų fitohormonų išskirtinėmis

koncentracijomis. Taigi, kadangi beržo 43BMS001 genotipo ūgliuosiuose nenustatyta didelių

išsiskiriančių auksinų ir ABR koncentracijų, tai nustatyta palyginti didelė Z koncentracija gali

būti siejama su itin dideliu šio genotipo ūglių skaičiumi, palyginti su kitais tirtų genotipų

eksplantų duomenimis (3.12. pav. B, F).

Taip pat dar 1986 metais šių dviejų medžių rūšių palyginimas atliktas citokinino atžvilgiu.

Šios literatūros rezultatai parodo, kad tirto kinetino aktyvumas šių medžių besivystančiuose

pumpuruose po ramybės stadijos didesnis Populus atstovuose, lyginant su Betula, nors laiko

tarpų atžvilgiu kinetino aktyvumo skirtumai panašūs (Domanski and Kozlowski, 1968). Įdomu

tai, kad Betula 43BMS001 genotipas, pasižymintis panašia ABR koncentracija kaip ir Populus

atstovai, tarp jų – ir ABR didele koncentracija pasižyminčio Betula 01BPL115 genotipo,

išsiskyrė didesne citokinino koncentracija.

Iš visų tirtų fitohormonų didžiausia nustatyta koncentracija eksplantų ūgliuose išsiskyrė

giberelinai, kurių koncentracijos siekė šimtus µg/g šviežios masės (3.12. pav. G, H). Tuo pačiu

giberelino rezultatai patys nesklandžiausi ir itin skyrėsi to paties genotipo eksplantų atskirų

bandymų rezultatuose. Ypač sudėtinga interpretuoti GA7 rezultatus, kai, nepaisant vieno

bandymo metu nustatyto didelio kiekio, kito bandymo metu nenustatyta nė kiek. Nepaisant šių

nesklandumų, didžiausia GA7 koncentracija (500,5 ± 78,6 µg/g) pasižymėjo hibridinės drebulės

51DhPL022 genotipo eksplantai, reikšmingai išsiskiriantys nuo kitų, nors ir žymiai mažesnių,

tirtų genotipų eksplantų rezultatų. Tarpusavyje reikšmingai neiskiriantys GA7 koncentracijomis

beržo genotipų eksplantai reikšmingai išsiskyrė savo rezultatais nuo visų Populus genotipų

eksplantų rezultatų (3.12. pav. G). Kito tirto giberelino GA3 atžvilgiu nustatytos vidutinės

koncentracijos neviršijo 200 µg/g ribos, nors nustatyti skirtumai itin svyravo priklausomai nuo

Page 57: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

57

genotipo (nuo 5,6 ± 1,2 iki 137,8 ± 56,8 µg/g šviežios masės). Reikšmingi GA3 koncentracijų

skirtumai nuo kitų genotipų nustatyti tik tarpusavyje nesiskiriančių Populus 17DPL038 ir

51DF1001 genotipų eksplantų, kurie išsiskyrė palyginus itin mažomis šio giberelino

koncentracijomis (3.12. pav. H). Giberelinų vidinių koncentracijų skirtumai neatitinka jokių

analizuotų morfologinių parametrų skirtumų, todėl sąsąjų tarp šių duomenų skirtinguose tirtuose

genotipų eksplantuose nenustatyta.

Analizuojant fitohormonų vidinių kiekių tarpusavio ryšius, Björklund ir bendraautoriai

nustatė, kad Populus atstovuose auksinai ir giberelinai teigiamai veikia vieni kitų vidines

koncentracijas (Björklund et al., 2007). Mūsų tyrime tai galėtume pritaikyti hibridinės drebulės

51DhPL022 genotipo atveju, kai jame nustatyta didžiausia auksino ir giberelino koncentracijos,

lyginant su kitų genotipų duomenimis. Björklund duomenimis, Populus atstovuose nustatyta

didesnė koncentracija auksinų (IAR) nei giberelinų. Mūsų tyrimo rezultatai nesutampa su šiais,

kadangi giberelino kiekiai Populus bei Betula pendula atstovuose nustatyti žymiai didesni nei

auksinų. Mūsų tyrime analizuotuose genotipuose giberelinų koncentracijos ganėtinai svyravo ir

nebuvo patikimos. Be to, literatūros šaltiniuose apie vidinius giberelino kiekius taip pat yra

pasklebta įvairių nuomonių. Pavyzdžiui, nepaisant Björklund rezulatatų, Gou ir bendraautorių

teigimu, giberelinas neigiamai veikia vidinę auksino koncentraciją Populus atstovuose (Gou et

al., 2010). Šią tendenciją galima pritaikyti tirtų Betula pendula genotipų atveju, kai nustatytos

itin mažos auksino koncentracijos lydimos itin didelių giberelino koncentracijų, palyginus su

kitų genotipų duomenimis. Analizuojant vidinius fitohormonų kiekius nereikėtų pamiršti

skirtingų augimo etapų bei lydimos aplinkos įtakos. Todėl analizuoti ir lyginti gautų tyrimų

duomenis su literatūroje minimais rezultatais yra ganėtinai sudėtinga, tuo labiau kad šių

duomenų apie miško medžių, ypač Populus ir Betula in vitro kultūras yra ribotai.

Reikia pastebėti, kad šie nustatymai vykdyti po 6 savaičių eksplantų augimo ir fiksuoja

augimo periodo pabaigos arba (kadangi šiuo laiku persodinamas eksplantas) pradžios eksplantų

būklę. Detalesni skirtingų genotipų eksplantų, ypač itin išsiskiriančio 51DhPL022 genotipo,

morfologiniai skirtumai ir jų sąsajos su šiame skyrelyje analizuotomis vidinėmis fitohormonų

koncentracijomis labiau gali atsispindėti augimo periodo eigoje, kuri analizuota 3.5. skyriuje.

3.3.2. Apibendrinimas

Reikšmingiausi vidinių fitohormonų koncentracijų skirtumai tarp tiriamų genčių genotipų

eksplantų nustatyti auksino IAR atžvilgiu. Nors kito tirto auksino – ISR – rekšmingų rezultatų

skirtingų genčių atžvilgiu ir jų viduje nenustatyta, tačiau apibendrinant IAR ir ISR rezultatus

negalima nepastebėti savo rezultatais itin išsiskirinačio hibridinės drebulės 51DhPL022

genotipo eksplantų. Apibendrinant auksinų rezultatus galima teigti, kad Populus in vitro

Page 58: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

58

kultūrose, palyginus su Betula pendula in vitro kultūra, eksplantų ūgliuose gaminami ženkliai

didesni auksinų, ypač IAR, kiekiai. Kitų fitohormonų rezultatai taip pat atskleidė įdomius

aspektus. Itin įdomu tai, kad nuo bendrų Populus genotipų eksplantų rezultatų šaknis

formuojantis beržo 01BPL115 genotipo eksplantui skyrėsi didesne ABR koncentracija, kai

šaknis neformuojantis beržo 43BMS001 genotipo eksplantai didesne zeatino koncentracija. Itin

didelių, bet statistiškai nepatikimų nustatytų giberelinų koncentracijų rezultatai atskleidė, kad

šio fitohormono atžvilgiu skirtumų tarp tirtų genčių nenustatyta. Didžiausia bendra visų

hormonų koncentracija pasižymėjo hibridinės drebulės 51DhPL022 genotipo eksplantai.

Išskiriant giberelinų rezultatus likusių hormonų atžvilgiu didžiausiomis vidinėmis

koncentracijomis pasižymėjo drebulės 17DPL038 genotipo eksplantai. Apibendrinant visus

rezultatus galima teigti, kad drebulės ir jos hibridų in vitro kultūros skiriasi vidinėmis ūglių

fitohormonų koncentracijomis nuo karpotojo beržo in vitro kultūrų.

3.4. Svarbiausi morfologinio atsako į hormonų kiekio reguliaciją skirtumai

tarp tiriamų P. tremula ir jos hibridų bei B. pendula genotipų

3.4.1. Morfologinio atsako į hormonų kiekio reguliaciją skirtumai

Įvairių Populus ir Betula tyrimų, kaip šių rūšių regenerantų iš protoplastų kūrimui (Wakita

et al., 2005), reikalinga skirtingų genotipų atranka ir padauginimas, vykdoma in vitro sąlygomis

(Bojarczuk et al., 2000; Sasamoto et al., 2002; Ibrahim et al., 2010; Lebedev et al., 2010;

Possen et al., 2011; Shestibratov et al., 2011). Todėl aktualūs šių rūšių skirtingų genotipų in

vitro auginimo ir dauginimo ypatumai ir skirtumai. Išanalizavus šaknų formavimąsi lemiančius

faktorius drebulės genotipo eksplantuose (3.2. skyrius) bei nustačius vidinių fitohormonų

koncentracijas tirtuose Populus ir Betula skirtingų genotipų in vitro kultūrose (3.3. skyrius),

pagal išskirtinesnius šių tyrimų rezultatus buvo tirtas išoriško hormonų ar atitinkamų augimo

reguliatorių taikymo poveikis skirtingiems šių kultūrų genotipams. Skirtingų Populus ir Betula

in vitro kultūrų genotipų šaknijimosi atsako į augalų augimo reguliatorius tyrimo rezultatai

išryškino panašumus ir skirtumus tarp tiriamų medžių rūšių.

Atsižvelgiant į nustatytą giberelino sintezės svarbą drebulės (18DPL037) šaknų

formavimuisi bei vidinių giberelinų koncentracijų rezultatus, tikslingai analizuotas išorinio PBZ

poveikis skirtingų Populus ir Betula genotipų in vitro kultūroms. Išanalizavus rezultatus

nustatyta, kad PBZ poveikis organogenezei skirtingas lyginant ūglio ir šaknų vystymąsi.

Rezultatai parodė, kad PBZ padidina pridėtinių šaknų skaičių visų tirtų genotipų eksplantuose,

lyginant su kontrolinių eksplantų duomenimis. Dėl PBZ poveikio didžiausiu pridėtinių šaknų

skaičiaus skirtumu – 3,4 karto nuo kontrolinių eksplantų pasižymėjo drebulės 17DPL038

Page 59: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

59

genotipo eksplantai (3.13. pav. A). Ūglių skaičiaus atžvilgiu – priešingai: PBZ reikšmingai

sumažino skaičių visose tirtose, išskyrus 51DF1001, genotipų kultūrose. Didžiausias ūglių

skaičiaus sumažėjimas – 2.4 karto, lyginant su kontrolinių eksplantų duomenimis, stebimas

01BPL115 genotipo eksplantuose (3.13. pav. B).

***

***

***

** *

0

5

10

15

Šak

ska

ičiu

s e

ksp

lan

tui

/ R

oo

t n

um

ber

per

exp

lan

tKontrolė / Control PBZ

A

BetulaPopulus

***

* ** **

0

1

2

3

Ūg

lių s

kaič

ius

eks

pla

ntu

i /

Sh

oo

t n

um

ber

per

exp

lan

t

Kontrolė / Control PBZ

B

BetulaPopulus

*** **

*

0

2

4

6

Pag

r. š

akn

ies

ilg

is,

cm

/ L

arg

est

roo

t le

ng

th,

cm

C

BetulaPopulus ***

*

***

0

2

4

Ūg

lio il

gis

, c

m /

Sh

oo

t le

ng

th,

cm

D

Populus Betula

***

***

0

4

8

12

16

18D

PL

03

7

17D

PL

03

8

51D

F1

00

1

51D

hP

L0

22

01B

PL

11

5

Ben

dra

s š

aknų

ilg

is,

cm /

To

tal r

oo

t le

ng

th,

cm

E

Populus Betula *

**

0

4

8

12

18D

PL

03

7

17D

PL

03

8

51D

F1

00

1

51D

hP

L0

22

01B

PL

11

5

ŠŠ

tan

kis,

vn

t / c

m /

L

R d

ensi

ty,

roo

ts p

ercm

F

Populus Betula

3.13. pav. Pridėtinių šaknų (A) ir ūglių (B) skaičius eksplantui, pagrindinės pridėtinės šaknies ilgis (C), ūglio ilgis (D), bendras pridėtinių šaknų ilgis (E), šalutinių šaknų tankis (F) (vidurkis ± standartinė paklaida) skirtingų Populus (18DPL037, 17DPL038 – P. tremula; 51DF1001 – P. tremuloides × P. tremula, 51DhPL022 – P. alba × P. tremuloides) ir Betula pendula (01BPL115) genotipų in vitro kultūrų eksplantuose, augintuose augimo terpėje, papildytoje PBZ (0 ir 1 µmol/l). Statistiškai reikšmingai besiskiriantys pavyzdžiai, auginti skirtingose terpėse, pažymėti * (P < 0,05), ** (P < 0,01), *** (P < 0,001) Fig. 3.13. Adventitious roots (A) and shoots (B) number per explant, main adventitious root length (C), shoot length (D), total adventitious roots length (E), lateral roots density (F) (mean ± SE) of different Populus (18DPL037, 17DPL038 – P. tremula; 51DF1001 – P. tremuloides × P. tremula, 51DhPL022 – P. alba × P. tremuloides ) ir Betula pendula ( 01BPL115) genotypes explants of in vitro culture, as affected by the presence of PBZ (0 and 1 µmol/l) in the nutrient medium. Significant differences between samples cultured on different media are labeled with * (P < 0.05), ** (P < 0.01), *** (P < 0.001)

PBZ poveikis ūglių ir šaknų augimui (3.13. pav. C, D, E) tirtiems skirtingų genotipų

kultūrų eksplantams panašus, kadangi abiem atvejais stipriai varijuoja priklausomai nuo

Page 60: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

60

genotipo. Reikšmingas PBZ poveikis pridėtinių šaknų ilgiui nustatytas tik drebulės 18DPL037 ir

17DPL038 bei hibridinės drebulės 51DF1001 genotipų kultūrose, o hibridinės drebulės

51DhPL022 ir beržo 01BPL115 genotipų eksplantams reikšmingo poveikio nenustatyta (3.13.

pav. C, E). Didžiausios pridėtinės šaknies ilgio atžvilgiu, nors 18DPL037 genotipo eksplantams

PBZ reikšmingai sumažino, o 17DPL038 neturėjo reikšmingo poveikio, tačiau abiejų genotipų

eksplantams beveik perpus padidino bendrą šaknų ilgį. Hibridinės drebulės 51DF1001 genotipo

eksplantams, nors PBZ reikšmingai sumažino pagrindinės pridėtinės šaknies ilgį, tačiau bendro

šaknų ilgio atžvilgiu reikšmingo poveikio nenustatyta (3.13. pav. C, E). Ūglio ilgio atžvilgiu

PBZ poveikis taip pat buvo skirtingas, priklausomai nuo genotipo. Kai vieno iš drebulės

18DPL037 genotipo eksplantams poveikis ūglių augimui buvo reikšmingai teigiamas, kitame

17DPL038 – neigiamas, lyginant su kontrolinių eksplantų duomenimis, tačiau hibridinės

drebulės genotipo eksplantams reikšmingas poveikis nenustatytas. Ūglio ilgio atžvilgiu nuo PBZ

poveikio stipriausias skirtumas – 3,6 karto sumažėjimas, lyginant su kontrolinių eksplantų

duomenimis, nustatytas Betula pendula eksplantų atžvilgiu (3.13. pav. D).

Šalutinių šaknų tankio atžvilgiu PBZ turėjo itin skirtingą poveikį tirtų genotipų

eksplantams. Kai tarp Populus genotipų reikšmingas poveikis nustatytas tik 17DPL038

eksplantams ir tas poveikis teigiamas, tai Betula pendula genotipo eksplantams nustatytas

reikšmingas poveikis itin neigiamas, lyginant su kontrolinių eksplantų duomenimis (3.13. pav.

F). Įdomu tai, kad drebulių atžvilgiu nuo PBZ poveikio abiejų genotipų (18DPL037,

17DPL038) eksplantuose padidėjant pridėtinių šaknų skaičiui ir bendram ilgiui, viename iš jų

(18DPL037) padidėja ūglio ilgis, kitame (17DPL038) net ūglio ilgiui sumažėjus padidėja

šalutinių šaknų tankis (3.13. pav.). Nors drebulės genotipo eksplantai dėl PBZ poveikio tam

tikrais rezultatais išsiskiria tarpusavyje, tačiau hibridinės drebulės genotipų eksplantams PBZ

poveikis panašus. Beržo 01BPL115 genotipo eksplantams, nors PBZ padidino pridėtinių šaknų

skaičių, tačiau itin išsiskyrė stipriai neigiamu poveikiu ne tik šalutinių šaknų tankiui, bet ir ūglio

morfologiniams parametrams.

3.2.4. skyrelyje išnagrinėtas viename drebulės genotipe ir 3.2.5. diskusijoje aptartas

Populus atstovų teigiamas PBZ poveikis pridėtinių šaknų atžvilgiu stebimas ir kituose tirtuose

Populus, be to, ir Betula genotipuose. Gauti skirtingų Populus genotipų rezultatai siejasi su kitų

mokslininkų rezultatais, kur teigiama, kad giberelinas stabdo arba išoriškai taikomas PBZ

skatina pridėtinių šaknų vystymąsi (Gou et al., 2010). Įdomu tai, kad PBZ poveikis itin atskiria

drebulės genotipus nuo hibridinių drebulių, kai pastarųjų, ne taip, kaip drebulių, teigiamas

atsakas buvo tik pridėtinių šaknų atžvilgiu. Tačiau Betula atstovų atžvilgiu gautų rezultatų

palyginimui tyrimų apie paklobutrazolio poveikį pridėtinių šaknų sistemai in vitro kultūrose yra

ribotai. Ūglių atžvilgiu neigiamas Betula atstovų atsakas į PBZ poveikį gali būti siejamas su

Page 61: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

61

Chorbadjian ir bendraautorių gautais rezultatais, kur teigiama, kad PBZ turėjo neigiamą poveikį

Betula atstovo stiebo aukščiui (Chorbadjian et al., 2011). Apibendrinant, paklobutrazolis gali

būti taikomas skirtingų Populus genotipų in vitro kultūrų produktyvumui didinti, tačiau Betula

in vitro kultūroms jo taikymas turėtų būti ribotas.

Atsižvelgiant į auksino transportavimo svarbą drebulės (18DPL037) šaknų formavimuisi

bei vidinius IAR koncentracijų skirtumus tarp Populus ir Betula in vitro kultūrų, toliau tikslingai

analizuotas išorinio IAR taikymo poveikis Populus ir Betula genotipų in vitro kultūroms.

Rezultatai parodė, kad IAR neturėjo reikšmingo poveikio šaknų bei ūglių formavimuisi visų

tirtų genotipų eksplantams (3.14. pav. A, B). Organų augimo, pridėtinių šaknų ir ūglių ilgio

atžvilgiu reikšmingas teigiamas IAR poveikis eksplantmas taip pat, kaip organogenezės atveju,

nenustatytas (3.14. pav. C, D, E). Pagrindinės pridėtinės šaknies bei bendrą šaknų ilgį hibridinės

drebulės 51DF1001 genotipo eksplantuose IAR netgi sumažino, lyginant su kontrolinių

eksplantų duomenimis (3.14. pav. C, E). Įdomu tai, kad dėl IAR poveikio, nepaisant, kad

18DPL037 genotipo eksplantuose pridėtinių šaknų ir ūglių morfologiniams parametrams

reikšmingo poveikio nenustatyta, tačiau šalutinių šaknų tankio atžvilgiu nustatytas reikšmingas

poveikis netgi neigiamas (3.14. pav. F).

Išoriškai taikomo auksino atžvilgiu, iš šių rūšių genotipų morfologiniu atsaku išsiskyrė tik

drebulės (P. tremuloides) ir hibridinės drebulės (P. tremuloides × P. tremula) ūgliai, kuriems

IAR turėjo neigiamą poveikį. Nei viename iš tirtų genotipų nenustatytas teigiamas šio auksino

poveikis šaknų vystymuisi, nors kitų mokslininkų rezultatai parodo teigiamą išoriškai taikomo

IAR poveikį Populus in vitro kultūrų pridėtinių šaknų vystymuisi (Yan et al., 2017). Betula

pendula genotipų atžvilgiu mūsų rezultatai gali sietis su Marks ir bendraautorių rezultatais:

teigiama, kad Betula pendula šaknijimasis priklauso ne tiek nuo auksino kiekio, kiek nuo jo

transportavimo. Pagal šiuos autorius, pašalinus viršūnę, bet net išoriškai taikant IAR arba taikant

auksino transporto blokavimą TIBR, sustabdomas Betula pendula in vitro kultūros šaknų

vystymasis (Marks et al., 1996). Taigi šie skirtingų genotipų tyrimai tik dar labiau pagrindžia

3.2. skyrelyje pateiktus IAR poveikio drebulės kultūrai duomenis bei aptartus 3.4. diskusijoje

kitų autorių su Populus ir auksino transportavimu susijusius rezultatus. Apibendrinant galima

būti teigti, kad Populus ir Betula in vitro kultūrų šaknijimuisi auksino transportavimas yra itin

svarbus faktorius.

Page 62: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

62

***

***

0

2

4

Šak

ska

ičiu

s ek

spla

ntu

i /

Ro

ot

nu

mb

er p

er e

xpla

nt

Kontrolė / Control IAR / IAA ABR / ABA

A

BetulaPopulus

0

1

2

3

Ūg

lių

ska

ičiu

s e

kpsl

an

tui

/ S

ho

ot

nu

mb

er p

er

exp

lan

t

Kontrolė / Control IAR / IAA ABR / ABA

B

BetulaPopulus

***

**

**0

2

4

6

Pag

r. š

akn

ies

ilgis

, cm

/ L

arg

est

roo

t le

ng

th,

cm

C

BetulaPopulus

*** ***

0

1

2

3

Ūg

lio

ilg

is,

cm

/

Sh

oo

t le

ng

th,

cm

D

Populus Betula

* *

*

0

4

8

12

18D

PL

03

7

51D

F1

001

01B

PL

11

5

Ben

dra

s ša

knų

ilg

is,

cm /

To

tal r

oo

t le

ng

th,

cm

E

Populus Betula

** *

0

2

4

6

18D

PL

037

51D

F1

001

01B

PL

115

ŠŠ

ta

nk

is,

vn

t / c

m /

L

R d

ensi

ty,

roo

ts p

ercm

F

Populus Betula

3.14. pav. Pridėtinių šaknų (A) ir ūglių (B) skaičius eksplantui, pagrindinės pridėtinės šaknies ilgis (C), ūglio ilgis (D), bendras pridėtinių šaknų ilgis (E), šalutinių šaknų tankis (F) (vidurkis ± standartinė paklaida) skirtingų Populus (18DPL037– P. tremula; 51DF1001 – P. tremuloides × P. tremula) ir Betula pendula (01BPL115) genotipų in vitro kultūrų eksplantuose, augintuose augimo terpėje, papildytoje IAR (3 µmol/l) arba ABR (3 µmol/l). Statistiškai reikšmingai besiskiriantys pavyzdžiai, auginti skirtingose terpėse, pažymėti * (P < 0,05), ** (P < 0,01), *** (P < 0,001) Fig. 3.14. Adventitious roots (A) and shoots (B) number per explant, main adventitious root length (C), shoot length (D), total adventitious roots length (E), lateral roots density (F) (mean ± SE) of different Populus (18DPL037– P. tremula; 51DF1001 – P. tremuloides × P. tremula) ir Betula pendula (01BPL115) genotypes explants of in vitro culture, as affected by the presence of IAA (3 µmol/l) or ABA (3 µmol/l). in the nutrient medium. Significant differences between samples cultured on different media are labeled with * (P < 0.05), ** (P < 0.01), *** (P < 0.001)

Atsižvelgiant į Populus ir Betula genotipų in vitro kultūrų skirtumus pagal nustatytas

vidines ABR koncentracijas, tikslingai buvo analizuotas egzogeninės ABR poveikis skirtingų

genotipų kultūroms. Rezultatai parodė, kad ABR turėjo reikšmingą neigiamą poveikį pridėtinių

šaknų formavimuisi tirtuose drebulės 18DPL037 ir hibridinės drebulės 51DF1001 genotipų

eksplantuose, o beržo 01BPL115 genotipo eksplantams reikšmingas poveikis nenustatytas (3.14.

pav. A). Ūglių skaičiaus atžvilgiu tirtųjų genotipų eksplantams reikšmingo poveikio nenustatyta

Page 63: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

63

(3.14. pav. B). Ūglių ir šaknų augimui ABR poveikis skirtingas priklausomai nuo genotipo.

ABR ūglių ilgį stipriai sumažina drebulės 18DPL037 ir hibridinės drebulės 51DF1001 genotipų

eksplantuose, nors beržo 01BPL115 genotipo eksplantams reikšmingas poveikis nenustatytas

(3.14. pav. D). ABR taikymo metu pridėtinių šaknų ilgio atžvilgiu, nors drebulės ir beržo

eksplantams ABR padidino pagrindinės šaknies ilgį, tačiau bendro šaknų ilgio atžvilgiu

reikšmingas teigiamas poveikis nustatytas tik beržo eksplantuose. Hibridinės drebulės genotipo

eksplantams ne tik nenustatytas teigiamas ABR poveikis šaknų ilgiui, tačiau netgi veikiant ABR

stebimas bendro šaknų ilgio sumažėjimas, lyginant su kontrolinių eksplantų duomenimis (3.14.

pav. C, E). Šalutinių šaknų tankio atžvilgiu ABR taikymo metu, nors hibridinės drebulės ir

Betula pendula genotipų eksplantuose reikšmingo poveikio nenustatyta, tačiau 18DPL037

drebulės eksplantuose nustatytas reikšmingas ABR poveikis –netgi neigiamas (3.14. pav. F).

Įdomu tai, kad nors 51DF1001 genotipo eksplantuose ABR sumažino pridėtinių šaknų skaičių ir

ilgį bei ūglio ilgį, tačiau šalutinių šaknų tankis liko nepakitęs, lyginant su kontrolinių eksplantų

duomenimis (3.14. pav.).

Absizo rūgšties, priešingai nei auksino, poveikis Betula genotipams buvo reikšmingas.

Galbūt tai galėtume sieti su vidinėmis hormonų koncentracijomis pagal 3.3. skyrelio duomenis,

kur Betula, priešingai nei Populus, genotipuose nustatyta maža IAR ir didelė ABR

koncentracija. Nors literatūros šaltinių apie miško medžių in vitro kultūrų atsaką į išoriškai

taikomą ABR yra ribotai, bet kitų augalų atžvilgiu dažniausiai minimas neigiamas ABR

poveikis šaknų sistemai (McAdam et al., 2016). Nors šio tyrimo metu ABR dažniausiai

pasižymėjo neigiamu poveikiu morfologiniams tirtų Populus ir Betula genotipų parametrams,

tačiau nustatyti ir keli teigiamo poveikio atvejai, kaip tirto beržo 01BPL115 genotipo ūgliams.

Blake ir Atkinson dar prieš kelis dešimtmečius nustatė, kad žema ABR koncentracija gali

stimuliuoti, o aukštesnė – priešingai – slopinti Populus ūglių šaknijimąsi (Blake and Atkinson,

1986). Pagal šių mokslininkų teiginius, galima būtų teigti, kad, atsižvelgiant į šių genčių vidinių

ABR koncentracijų skirtumus, taip pat šioms gentims reikėtų pritaikyti skirtingas ABR

koncentracijų slenkstines ribas. O šio tyrimo išskirtinių genotipų rezultatai gali sietis su Žiaukos

ir bendraautorių tyrimais, kuriuose nustatyta, kad ABR poveikis teigiamai veikė hibridinių

drebulių šaknų vystymąsi (Žiauka et al., 2011). In vitro kultūros atveju yra šaltinių, kuriuose

teigiama, kad ABR lemia streso toleravimą ir aklimatizaciją bei gali veikti kaip agentas stresui

atsparių augalų in vitro kultūroje atrankoje (Rai et al., 2011). Taigi šis beržo 01BPL115

genotipas pagal teigiamą pridėtinių šaknų augimo atsaką ir ABR gali būti siejami su dideliu

atsparumu streso sąlygoms.

Vieno iš tirtųjų Betula genotipų 43BSM001 in vitro kultūra nepasižymėjo šaknų bei itin

išsiskyrė gausiu ūglių formavimusi, todėl jo išoriškai taikomų augimo reguliatorių analizės

Page 64: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

64

rezultatai, apimantys kaliuso ir ūglio duomenis, nepateikti kartu su visų tirtųjų genotipų

rezultatais. Šio 43BSM001 genotipo in vitro kultūros rezultatai parodė, kad kaliuso

koncentracijos atžvilgiu ABR ir PBZ reikšmingas poveikis buvo teigiamas, o IAR taikymo metu

reikšmingo poveikio nenustatyta (3.15. pav. A). Ūglio ilgio ir skaičiaus atžvilgiu visi taikyti

augimo reguliatoriai IAR, ABR ir PBZ turėjo reikšmingą neigiamą poveikį (3.15. pav. B, C).

Stipriausiu poveikiu tirtiems parametrams iš visų augimo reguliatorių pasižymėjo PBZ, netgi

daugiau nei perpus sumažinęs eksplantų ūglių skaičių (3.15. pav.).

**

***

***

0

1

2

3

Ūg

lio

ilg

is, c

m

43BSM001(1)

Kontrolė / Control IAR / IAA ABR / ABA PBZ

B

***

**

0

0,5

1

Kal

iuso

ko

nce

ntr

acija

, g

•mm

-3/

Co

nce

ntr

atio

n o

f ca

llus,

g•m

m-3

43BSM001A

****

***

*

0

1

2

glio

ilg

is,

cm/

Sh

oo

t le

ng

th,

cm

43BSM001B

***

***

***

0

5

10

15

20

Ūg

lių

skaiči

us

eksp

lan

tui

/ S

ho

ot

nu

mb

er p

er e

xpla

nt

43BSM001C

3.15. pav. Kaliuso koncentracija (A), ūglio ilgis (B), ūglių skaičius (C) (vidurkis ± standartinė paklaida) Betula pendula (43BSM001) in vitro kultūros eksplantuose, augintuose augimo terpėje, papildytoje IAR (3 µmol/l), ABR (3 µmol/l), PBZ (1 µmol/l). Statistiškai reikšmingai besiskiriantys pavyzdžiai, auginti skirtingose terpėse, pažymėti * (P < 0,05), *** (P < 0,001) Fig. 3.15. Calus concentration (A), shoot length (B) and number per explant (C) (mean ± SE) of Betula pendula (43BSM001) genotypes explants of in vitro culture, as affected by the presence of IAA (3 µmol/l), ABR (3 µmol/l), PBZ (1 µmol/l) in the nutrient medium. Significant differences between samples cultured on different media are labeled with * (P < 0.05), *** (P < 0.001)

Betula pendula genotipų išskirtinumą šaknų formavimosi atžvilgiu pabrėžia ir šaknų

neformuojantis 43BSM001 genotipas, kai nė vienas naudotas reguliatorius nesukėlė šio

genotipo ūglių šaknų formavimosi. Ne tik šio Betula pendula genotipo, bet ir visų tirtų genotipų

in vitro kultūrų atsako išskirtinumai tam tikram reguliatoriui skirtingų parametrų atžvilgiu

pabrėžia genotipų lyginimo ir atrankos tyrimų svarbą.

3.4.2. Apibendrinimas

Rezultatai parodė, kad išoriško PBZ taikymo atžvilgiu Populus ir Betula genotipų

eksplantams poveikis buvo teigiamas pridėtinių šaknų, o neigiamas – ūglių formavimosi

Page 65: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

65

atžvilgiu. PBZ taikymo metu šių genčių kultūrų rezultatai išsiskyrė pridėtinių šaknų augimo

atsaku, kai, priklausomai nuo genotipo Populus kultūroje, nustatytas reikšmingas poveikis, nors

Betula pendula kultūroje reikšmingo poveikio nenustatyta. Taip pat nuo PBZ poveikio

skirtumus tarp šių genčių kultūrų pabrėžia B. pendula 01BPL115 genotipo kultūros eksplantų

išsiskiriantis itin neigiamas šalutinių šaknų tankio bei ūglių augimo atsakas. IAR išorinio

taikymo atžvilgiu teigiamas poveikis tirtų Populus ir Betula genotipų eksplantų morfologiniams

rodikliams nenustatytas, netgi kai kuriuose atvejuose nustatytas poveikis neigiamas. ABR

poveikis itin išsiskyrė tarp tiriamų genotipų, kai tiriamų morfologinių parametrų atžvilgiu

Populus genotipų eksplantuose jei poveikis buvo reikšmingas, jis dažniausiai nustatytas

neigiamas, o Betula 01BPL115 genotipo kultūros atveju ABR poveikis nustatytas reikšmingai

teigiamas eksplantų pridėtinių šaknų augimui. Šaknų neformuojančio Betula 43BSM001

genotipo eksplantų ūglio augimo atsakas visų augimo reguliatorių taikymo metu nustatytas

neigiamas. Be to, nuo taikytų reguliatorių poveikio šio Betula 43BSM001 genotipo eksplantams

šaknų formavimosi skatinimo nenustatyta, o vietoje šaknų besiformuojančio kaliusio

koncentracijos atveju nuo ABR ir PBZ poveikio nustatytas teigiamas atsakas. Apibendrinant

galima teigti, kad svarbiausi skirtumai tarp tiriamų P. tremula ir jos hibridų bei B. pendula

genotipų nustatyti pagal šaknų sistemos morfologinius atsakus į GA ir ABR veiklos reguliaciją.

Nors GA visuose tirtuose genotipuose yra neigiamas veiksnys vystantis pridėtinėms šaknims,

tačiau B. pendula atžvilgiu jis yra itin svarbus tegiamas faktorius formuojantis šalutinėms

šaknims. Tuo tarpu ABR P.tremula ir P. tremula × P. tremuloides genotipuose, priešingai nei

B. pendula, pridėtinių šaknų formavimosi faktorius yra neigiamas.

3.5. Šaknų ir ūglių in vitro vystymosi rodiklių tarpusavio ryšys skirtingais

endogeninių hormonų kiekiais pasižymėjusiuose medžių genotipuose

3.5.1. Šaknų ir ūglių in vitro vystymosi rodiklių tarpusavio ryšys kontrolinėmis sąlygomis

Medžių augimas priklauso nuo visų jo dalių bei jo funkcionavimo ir gyvybingumo. Dar

ankstesniuose tyrimuose nustatyta, kad medžio lapai ir šakos žūsta, jei didelė dalis šaknų

sistemos yra pažeidžiama bei dalis šaknų nunyksta, jei medis defoliuoja (Perry, 1982). Šie

procesai susiję ne tik su žalojančiais faktoriais, bet ir su stresinėmis aplinkos sąlygomis bei

medžio vystymosi procesu (Reich et al., 1998a). Todėl šiame skyriuje tikslingai analizuota

skirtingų genotipų kultūrų vystymasis bei vystymosi parametrų tarpusavio ryšys pirmame bei

antrame augimo etapuose. Pagal 3.3. skyriaus rezultatus išskirtos 18DPL037 (P. tremula),

51DhPL022 (P. alba × P. tremuloides) ir 01BPL115 (Betula pendula) medžių genotipų in vitro

Page 66: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

66

kultūros, pasižyminčios skirtingais endogeninių hormonų kiekiais. Žemiau pateiktas šių

genotipų eksplantų šaknų ir ūglių in vitro vystymosi rodiklių tarpusavio ryšys.

*** **

*

**

0

1

2

3

17DPL038 51DhPL022 01BPL115

Šak

ska

ičia

us

pri

eau

gis

/

Ro

ot

nu

mb

er a

ug

men

tati

on

1-3 savaitės / 1-3 weeks4-6 savaitės / 4-6 weeks

A

***

***

**

0

5

10

15

20

17DPL038 51DhPL022 01BPL115

Ūg

lio

pri

eau

gis

, m

m /

S

ho

ot

au

gm

en

tati

on

, m

m

1-3 savaitės / 1-3 weeks4-6 savaitės / 4-6 weeks

B

3.16. pav. Pridėtinių šaknų skaičiaus prieaugis (A) ir ūglio prieaugis (B) (vidurkis ± standartinė paklaida) skirtingų Populus (17DPL038 – P. tremula; 51DhPL022 – P. alba × P. tremuloides) ir Betula pendula (01BPL115) genotipų eksplantuose in vitro kultūroje, augintų augimo terpėje be augimo reguliatorių pirmame (1–3 savaitės) ir antrame (4–6 savaitės) augimo etape. Statistiškai reikšmingai besiskiriantys prieaugiai skirtinguose augimo etapuose pažymėti ** (P < 0.01), *** (P < 0.001) Fig. 3.16. Adventitious root number augmentation (A) and shoot augmentation (B) (mean ± SE) of explants of different Populus (17DPL038 – P. tremula; 51DhPL022 – P. alba × P. tremuloides) and Betula pendula (01BPL115) genotypes of in vitro culture, on the nutrient medium without plant growth regulators, during the first (1-3 weeks) and the second (4-6 weeks) growth stages. Significant differences between augmentations during different growth stages are labeled with ** (P < 0.01), *** (P < 0.001)

Visų pirma tikslingai išanalizuoti skirtingų morfologinių tirtų genotipų (18DPL037,

51DhPL022, 01BPL115) eksplantų, augintų terpėje be augimo reguliatorių, parametrų pokyčiai

skirtingais augimo etapais. Pridėtinių šaknų skaičiaus prieaugio rezultatai parodė, kad visų trijų

genotipų eksplantų prieaugis buvo didesnis pirmame augimo etape (nuo 1 iki 3 savaitės) nei

antrame – nuo 4 iki 6 savaitės (3.16. A pav.). Didžiausiu skirtumu tarp šaknų prieaugio

skirtingais augimo laikotarpiais pasižymėjo drebulės 17DPL038 (P < 0,001) genotipo

eksplantai – net 8,9 karto, hibridinės drebulės 51DhPL022 (P < 0,001) – 4,6, bei beržo

01BPL115 (P < 0,01) – 2,2 karto. Ūglio ilgio atžvilgiu (3.16. B pav., prieaugis didesnis

(P < 0,001) pirmame nei antrame augimo etape nustatytas drebulės 17DPL038 ir beržo

01BPL115 genotipų kultūrose. Kai hibridinės drebulės 51DhPL022 genotipo kultūroje ūglių

prieaugis nustatytas didesnis (P < 0,01) antrame nei pirmame augimo etape. Didžiausiu

prieaugio skirtumu tarp skirtingų augimo etapų taip pat, kaip ir šaknų, taip ir ūglių atžvilgiu,

pasižymėjo drebulės 17DPL038 genotipo eksplantai – net 4,5 karto, beržo 01BPL115 – 1,8 bei

hibridinės drebulės 51DhPL022 – 0,5 karto.

Page 67: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

67

**

*

*

***

-0,8-0,6-0,4-0,2

00,20,40,60,8

Ūglio ilgis po 3 sav. / šaknųskaičius po 3 sav. / Shoot lengthafter 3 weeks / root number after

3 weeks

Šaknų skaičius po 3 sav. / ūglioprieaugis per 4-6 sav. / Rootnumber after 3 weeks / shoot

augmentation during 4-6 weeks

Ūglio ilgis po 3 sav. / šaknųskaičiaus prieaugis per 4-6 sav./ Shoot number after 3 weeks /root augmentation during 4-6

weeks

Ko

relia

cijo

s ko

efic

ian

tas,

(r)

/C

orr

ela

tio

n c

oef

fici

ent,

(r)

17DPL038 51DhPL022 01BPL115

A

***** *

-0,8-0,6-0,4-0,2

00,20,40,60,8

Ūglio ilgis po 3 sav. / šaknųskaičius po 3 sav. / Shoot lengthafter 3 weeks / root number after

3 weeks

Šaknų skaičius po 3 sav. / ūglioprieaugis per 4-6 sav. / Rootnumber after 3 weeks / shoot

augmentation during 4-6 weeks

Ūglio ilgis po 3 sav. / šaknųskaičiaus prieaugis per 4-6 sav./ Shoot number after 3 weeks /root augmentation during 4-6

weeks

Ko

relia

cijo

s ko

efic

ian

tas,

(r)

/ C

orr

ela

tio

n c

oef

fici

ent

(r)

17DPL038 51DhPL022 01BPL115

B

3.17. pav. Koreliacijos koeficientai (r) tarp ūglių ir pridėtinių (A) arba šalutinių (B) šaknų duomenų: tarp ūglio ilgio ir šaknų skaičiaus po trijų savaičių (1); tarp šaknų skaičiaus po trijų savaičių ir ūglio prieaugio ketvirtą-šeštą savaitę (2); tarp ūglio ilgio po trijų savaičių ir šaknų skaičiaus prieaugio ketvirtą-šeštą savaitę (3); skirtingų Populus (17DPL038 – P. tremula; 51DhPL022 – P. alba × P. tremuloides) ir Betula pendula (01BPL115) genotipų eksplantų in vitro kultūroje, augintų augimo terpėje be augimo reguliatorių. Statistiškai patikimi koreliacijos koeficientai yra pažymėti su *P < 0,05 ir **P < 0,01 Fig. 3.17. The correlation coefficients (r) between shoots and adventitious (A) or lateral (B) roots data: between shoot length and root number after three weeks (1); between root number after three weeks and shoot augmentation during four – six weeks (2); between shoot length after three weeks and root number augmentation during four – six weeks (3); of explants of different Populus (17DPL038 – P. tremula; 51DhPL022 – P. alba × P. tremuloides) and Betula pendula (01BPL115) genotypes of in vitro culture, on the nutrient medium without plant growth regulators. Statistically significant correlation coefficients are labeled with *P < 0.05 and **P < 0.01

Tiriamų genotipų eksplantų in vitro vystymosi parametrų tarpusavio ryšio rezultatai

atskleidžia, kad koreliacijos ryšys ir jos koeficiento patikimumas skirtingas priklausomai nuo

genotipo. Vidutinis teigiamas priklausomumas su statistiškai patikimu koreliacijos koeficientu

tarp ūglio ilgio ir pridėtinių šaknų skaičiaus po 3 savaičių nustatytas karpotojo beržo (P < 0,05)

atveju, silpnas teigiamas priklausomumas – hibridinės drebulės (P < 0,05), o silpnas neigiamas

priklausomumas – drebulės (P < 0,01) atveju. Vidutinis teigiamas priklausomumas su

statistiškai patikimu (P < 0,01) koreliacijos koeficientu tarp šaknų skaičiaus po 3 savaičių ir

ūglio prieaugio per 4–6 savaitę nustatytas tik hibridinės drebulės genotipo eksplantuose. Silpnas

Page 68: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

68

neigiamas priklausomumas su statistiškai patikimu (P < 0,05) koreliacijos koeficientu tarp ūglio

ilgio po 3 savaičių ir šaknų prieaugio per 4–6 savaitę nustatytas tik drebulės genotipo

eksplantuose (3.17. A pav.).

Teigiamas priklausomumas su statistiškai patikimu (P < 0,001) koreliacijos koeficientu

tarp ūglio ilgio ir šalutinių šaknų skaičiaus po 3 savaičių nustatytas visose tirtose genotipų

kultūrose: atitinkamai stiprus 18DPL037 (P < 0,001), kai tuo tarpu vidutinis 51DhPL022 (P <

0,01), 01BPL115 (P < 0,05) genotipų kultūrų atveju. Priklausomumas su statistiškai patikimu

koreliacijos koeficientu tarp šalutinių šaknų skaičiaus po 3 savaičių ir ūglio prieaugio per 4–6

savaitę bei tarp ūglio ilgio po 3 savaičių ir šalutinių šaknų prieaugio per 4–6 savaitę nenustatytas

nė vienoje tirtų genotipų kultūroje (3.17. B pav.).

Dar prieš kelis dešimtmečius įvairių mokslininkų grupių rezultatuose tarp Populus rūšies

atstovų pabrėžiama ankstyvojo šaknų sistemos vystymosi reikšmė tolesniam ūglio augimui

(Tschaplinski and Blake, 1989; Rhodenbaugh and Pallardy, 1993; Zalesny et al., 2005b). Šiame

tyrime taip pat pasikartoja panaši tendencija, kai tirtų genotipų kultūrose nustatytas šaknų

intensyvus vystymasis augimo pradžioje pabrėžia šaknų svarbą viso medžio vystymosi procese.

Taip pat Branislov su bendraautoriais juodosios tuopos šaknų atžalose nustatė teigiamą

koreliacijos ryšį tarp po dvidešimt augimo dienų šaknų skaičiaus ir po 60 dienų augimo ūglio

ilgio (Branislov et al., 2009). Šiame tyrime ūglių skirtingas augimo intensyvumas, priklausomai

nuo augimo periodo, skirtingų genotipų kultūrose išryškina hibridinės drebulės 51DhPL022 (P.

alba × P. tremuloides) išskirtinumą, sietiną su intensyvesniu ūglių augimu vėlesniame augimo

etape. Šio genotipo rezultatus galima sieti su Žiaukos ir bendraautorių rezultatais, kur taip pat

teigiama, kad hibridinės drebulės ir baltosios tuopos hibrido (P. alba × P. tremuloides) augimas

pirmąjį augimo mėnesį yra siejamas su šaknų augimu, o antrą mėnesį – su intensyvesniu ūglio

augimu (Žiauka et al., 2014). Šį hibridinės drebulės 51DhPL022 išskirtinumą – lėtą ūglio

augimą pradiniame augimo etape – gali lemti šaknų nebuvimas, kadangi šiame darbe nustatyta

pradiniame augimo etape susiformavusių pridėtinių šaknų teigiama įtaka ūglio augimui pirmame

bei tolesniame ūglio augime. Taip pat šį išskirtinumą galbūt gali lemti šio genotipo eksplantuose

3.3. skyriuje nustatyti vidinių fitohormonų koncentracijų išskirtinumai tarp tirtų drebulės

17DPL038 bei karpotojo beržo 01BPL115 eksplantų. Didžiausiais organų prieaugio skirtumais

tarp augimo periodų pasižyminti drebulė (17DPL038 – P. tremula) itin išsiskyrė pradiniame

augimo etape susiformavusio ūglio ilgio neigiama įtaka tolesniam šaknų formavimuisi

kontrolinėmis sąlygomis. Šie kontrolinėmis sąlygomis gauti rezultatai sutampa su mokslininko

Eliasson tyrimo rezultatais, kur teigiama, kad Populus tremula in vitro kultūroje eksplantų

intensyvus šaknų augimas vyksta tik tada, kai sulėtėja ūglio bei jo lapų augimas (Eliasson,

1971).

Page 69: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

69

3.5.2. Šaknų ir ūglių in vitro vystymosi rodiklių tarpusavio ryšys PBZ taikymo metu

Pagal 3.2.4. bei 3.4. skyrių duomenis iš tirtųjų augimo reguliatorių PBZ nustatytas kaip

vienas iš stipriausią teigiamą poveikį turinčių pridėtinių šaknų sistemos vystymuisi tirtose

medžių genotipų in vitro kultūrose. Todėl išanalizavus kontrolinėje terpėje be augimo

reguliatorių augusių eksplantų šaknų ir ūglių prieaugio bei koreliacijos ryšio rezultatus, šie

parametrai tikslingai analizuoti eksplantų, augintų terpėje papildytoje PBZ, atžvilgiu.

**

*

***

0

4

8

12

17DPL038 51DhPL022 01BPL115

Šak

ska

ičia

us

pri

eau

gis

/

Ro

ot

nu

mb

er a

ug

men

tati

on

1-3 savaitės / 1-3 weeks4-6 savaitės / 4-6 weeks

A**

*

***

***

0

5

10

15

17DPL038 51DhPL022 01BPL115

Ūg

lio p

riea

ug

is,

mm

/

Sh

oo

t au

gm

enta

tio

n,

mm

1-3 savaitės / 1-3 weeks4-6 savaitės / 4-6 weeks

B

3.18. pav. Pridėtinių šaknų skaičiaus prieaugis (A) ir ūglio prieaugis (B) (vidurkis ± SE) skirtingų Populus (17DPL038 – P. tremula; 51DhPL022 – P. alba × P. tremuloides) ir Betula pendula (01BPL115) genotipų eksplantuose in vitro kultūroje, augintų augimo terpėje, papildytoje PBZ (1 µmol/l), pirmame (1–3 savaitės) ir antrame (4–6 savaitės) augimo etape. Statistiškai reikšmingai besiskiriantys prieaugiai skirtinguose augimo etapuose pažymėti *** (P < 0,001) Fig. 3.18. Adventitious root number augmentation (A) and shoot augmentation (B) (mean ± SE) of explants of different Populus (17DPL038 – P. tremula; 51DhPL022 – P. alba × P. tremuloides) and Betula pendula (01BPL115) genotypes of in vitro culture, on the nutrient medium with PBZ (1 µmol/l), during the first (1-3 weeks) and the second (4-6 weeks) growth stages. Significant differences between augmentations during different growth stages are labeled with *** (P < 0.001)

Pridėtinių šaknų skaičiaus rezultatai (3.18. A pav.) parodė, kad Populus 18DPL037,

51DhPL022 genotipų atžvilgiu eksplantų prieaugis buvo didesnis (P < 0,001) kaip ir

kontrolinėmis sąlygomis nuo 1 iki 3 savaitės, nei nuo 4 iki 6 savaitės laikotarpiu. Betula pendula

01BPL115 genotipo atžvilgiu PBZ intensyvina eksplantų pridėtinių šaknų vystymąsi, ypač

antrame augimo etape, nes priešingai, nei kontrolinėmis sąlygomis, prieaugio skirtumo tarp

augimo etapų nenustatyta. Ūglio ilgio atžvilgiu (3.18. B pav.) nuo PBZ poveikio visų tirtų

genotipų eksplantuose stebimas didesnis (P < 0,001) prieaugis pirmame augimo etape. Šie

rezultatai parodo, kad 51DhPL022 genotipo atžvilgiu PBZ intensyvina ūglio augimą pirmame

augimo etape, nes kontrolinėmis sąlygomis šio genotipo eksplantų intensyvesnis augimas

stebimas tik antrame augimo etape.

Page 70: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

70

Eksplantų, augusių terpėje, papildytoje PBZ (1 µmol/l), in vitro vystymosi parametrų

tarpusavio ryšio rezultatai atskleidžia, kad koreliacijos ryšys ir jos koeficiento patikimumas

skirtingas priklausomai nuo genotipo. Veikiant PBZ vidutinis teigiamas priklausomumas su

statistiškai patikimu koreliacijos koeficientu tarp ūglio ilgio ir pridėtinių šaknų skaičiaus po 3

savaičių nustatytas hibridinės drebulės (P < 0,05) ir karpotojo beržo (P < 0,05) eksplantų atveju. Nė

vieno tirto genotipo eksplantuose veikiant PBZ nenustatytas statistiškai patikimas koreliacijos

koeficientas tarp šaknų skaičiaus po 3 savaičių ir ūglio prieaugio per 4–6 savaitę. Tačiau veikiant

PBZ, priešingai nei kontrolinėmis sąlygomis (3.17. A pav.), vidutinis teigimas priklausomumas su

statistiškai patikimu (P < 0,05) koreliacijos koeficientu tarp ūglio ilgio po 3 savaičių ir šaknų

prieaugio per 4–6 savaitę nustatytas drebulės genotipo eksplantuose (3.19. A pav.).

Veikiant PBZ vidutinis teigiamas priklausomumas šalutinių šaknų skaičiaus ir ūglio ilgio

atžvilgiu nustatytas tik drebulės 17DPL038 genotipo eksplantuose su statistiškai patikimu (P < 0,05)

koreliacijos koeficientu tarp ūglio ilgio ir šalutinių šaknų skaičiaus po 3 savaičių. Kituose tirtuose

koreliacijos ryšiuose šalutinių šaknų skaičiaus ir ūglio ilgio atžvilgiu statistiškai patikimo

koreliacijos koeficiento nenustatyta nė vieno tirto genotipo eksplantuose (3.19. B pav.).

Ūglio ilgio įtaką šio drebulės genotipo atžvilgiu dar labiau pabrėžia PBZ tyrimo duomenys,

kai veikiant PBZ susilpnėjus šios drebulės genotipo kultūroje ūglių augimui ne tik ženkliai

padidėjo pridėtinių šaknų vystymasis, bet ir susidarė pradiniame augimo etape susiformavusio

ūglio ilgio teigiama įtaka tolesniam šaknų vystymuisi. Betula pendula genotipo eksplantų

nustatyti šaknų formavimosi ir ūglio augimo ryšiai tik pirmame augimo periode pabrėžia jo

išskirtinumą tarp kartu tirtų Populus genotipų. Veikiant PBZ suintensyvėjus šaknų formavimuisi

ypač išryškėja šio karpotojo beržo genotipo išskirtinumas šaknų formavimosi intensyvumo

vienodumu per visą augimo periodą. Gou ir bendraautorių nustatyta, kad, esant giberelino

trūkumui, augale padidėja IAR kiekis (Gou et al., 2010). Taigi šis beržo eksplantų jautrumas

PBZ poveikiui šaknų formavimosi atžvilgiu gali būti paaiškinamas 3.3. skyriuje nustatyta

išskirtinai maža ūgliuose esančia IAR koncentracija, palyginus su šio auksino koncentracija

drebulės ir hibridinės drebulės ūgliuose. Taip pat šaknis formuojančio beržo genotipo ūgliuose

nustatyta itin didelė ABR koncentracija, palyginus ne tik su anksčiau minėtais Populus

genotipais, bet ir su lygiagrečiai tirtu šaknų neformuojančiu beržo genotipu. Taigi beržo

01BPL115 genotipo atveju vidinė ūglių ABR koncentracija taip pat gali lemti atsako į pridėtus

augimo reguliatorius ypatumus, kadangi yra tyrimų, kurie teigia, jog PBZ veikimas stabdo ABR

sintezę (Norman et al., 1986) bei stabdo ABR degradaciją.

Šie teiginiai išlieka tik spėliojimais, kadangi in vitro kultūrų eksplantų vystymosi

parametrus sieti su vidinėmis fitohormonų koncentracijomis yra labai sudėtinga. Tuo labiau kai

žinoma, jog fitohormonų veikla vyksta per tarpusavio signalinius kelius ir detalesniems

Page 71: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

71

interpretavinams reikalingi išsamesni, ypač po skirtingų augimo etapų laiko atžvilgiu nustatyti

fitohormonų koncentracijų ir eksplantų morfologinių parametrų matavimai. Nepaisant to,

atsižvelgiant į šio skyriaus darbo tikslą galima teigti, kad Populus ir Betula in vitro kultūros

pasižymi skirtingais vystymosi parametrais skirtinguose augimo perioduose bei šie skirtumai dar

labiau išryškėja veikiant augimo reguliatoriams. Visa tai pabrėžia augimo periodų svarbą

skirtingų rūšių medžių vystymuisi. Skirtingas tirtų genotipų kultūrų vystymasis ir augimas bei

eksplantų organų parametrų tarpusavio ryšys dar labiau išryškina šių genotipų išskirtinumus ir

skirtingų genotipų lyginimo tyrimų svarbą.

** *

-0,8-0,6-0,4-0,2

00,20,40,60,8

Ūglio ilgis po 3 sav. / šaknųskaičius po 3 sav. / Shoot lengthafter 3 weeks / root number after

3 weeks

Šaknų skaičius po 3 sav. / ūglioprieaugis per 4-6 sav. / Rootnumber after 3 weeks / shoot

augmentation during 4-6 weeks

Ūglio ilgis po 3 sav. / šaknųskaičiaus prieaugis per 4-6 sav./ Shoot number after 3 weeks /root augmentation during 4-6

weeks

Ko

relia

cijo

s ko

efic

ian

tas,

(r)

/ C

orr

elat

ion

co

effi

cien

t, (

r)

17DPL038 51DhPL022 01BPL115

A

*

-0,8-0,6-0,4-0,2

00,20,40,60,8

Ūglio ilgis po 3 sav. / šaknųskaičius po 3 sav. / Shoot lengthafter 3 weeks / root number after

3 weeks

Šaknų skaičius po 3 sav. / ūglioprieaugis per 4-6 sav. / Rootnumber after 3 weeks / shoot

augmentation during 4-6 weeks

Ūglio ilgis po 3 sav. / šaknųskaičiaus prieaugis per 4-6 sav./ Shoot number after 3 weeks /root augmentation during 4-6

weeks

Ko

relia

cijo

s ko

efic

ian

tas

(r)

Co

rrel

atio

n c

oef

fici

ent

(r)

17DPL038 51DhPL022 01BPL115

B

3.19. pav. Koreliacijos koeficientai (r) tarp ūglių ir pridėtinių (A) arba šalutinių (B) šaknų duomenų: tarp ūglio ilgio ir šaknų skaičiaus po trijų savaičių (1); tarp šaknų skaičiaus po trijų savaičių ir ūglio prieaugio ketvirtą-šeštą savaitę (2); tarp ūglio ilgio po trijų savaičių ir šaknų skaičiaus prieaugio ketvirtą-šeštą savaitę (3); skirtingų Populus (17DPL038 – P. tremula; 51DhPL022 – P. alba × P. tremuloides) ir Betula pendula (01BPL115) genotipų eksplantų in vitro kultūroje, augintų augimo terpėje, papildytoje 1 µmol/l PBZ. Statistiškai patikimi koreliacijois koeficientai yra pažymėti *P < 0,05 Fig. 3.19. The correlation coefficients (r) between shoots and adventitious (A) or lateral (B) roots data: between shoot length and root number after three weeks (1); between root number after three weeks and shoot augmentation during four – six weeks (2); between shoot length after three weeks and root number augmentation during four – six weeks (3); of explants of different Populus (17DPL038 – P. tremula; 51DhPL022 – P. alba × P. tremuloides) and Betula pendula (01BPL115) genotypes of in vitro culture, on the nutrient medium with 1 µmol/l PBZ. Statistically significant correlation coefficients are labeled with *P < 0.05

Page 72: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

72

3.5.3. Apibendrinimas

Intensyvesnis tirtų eksplantų šaknų vystymasis ir ūglio augimas pirmame augimo etape

vyksta drebulės ir beržo genotipų in vitro kultūrose, o hibridinės drebulės kultūroje pirmame

augimo etape intensyviau formuojasi tik šaknys, o ūglis intensyviau auga antrame augimo

etape. Stipriausiu morfologinių parametrų prieaugio skirtumu tarp skirtingų augimo etapų

pasižymėjo drebulės genotipo eksplantai, kai šaknų prieaugis skyrėsi net 8,9 k. Pirmame

augimo etape pridėtinių šaknų ir ūglio ilgio atžvilgiu nustatytas teigiamas tarpusavio ryšys

hibridinės drebulės ir beržo kultūrose, o neigiamas – drebulės kultūroje. Pradiniame augimo

etape šalutinių šaknų ir ūglio ilgio atžvilgiu nustatytas teigiamas tarpusavio ryšys visų tirtų

genotipų eksplantuose. Pradiniame augimo etape susiformavusių šaknų ryšys su tolesniu

ūglio augimu bei susiformavusio ūglio ryšys su tolesniu šaknų formavimusi nustatytas tik

pridėtinių šaknų atžvilgiu. Hibridinės drebulės genotipo kultūroje nustatytas teigiamas

pirmame augimo etape susiformavusių pridėtinių šaknų ryšys su tolesniame etape vykusiu

ūglio augimu. Drebulės kultūroje nustatytas neigiamas pirmame augimo etape

susiformavusio ūglio ilgio ryšys su tolesniame etape vykusiu šaknų formavimusi. Beržo

kultūroje pirmo etapo augimo parametrų ryšys su eksplanto vystymosi parametrais kitame

augimo etape nenustatytas. Skirtingų augimo etapų prieaugio atžvilgiu PBZ poveikis

pridėtinių šaknų formavimuisi reikšmingiausias nustatytas beržo atžvilgiu, kai PBZ

suintensyvinus šaknų vystymąsi antrame augimo etape šaknų formavimosi intensyvumas

išlieka pastovus visame augimo periode. Ūglio atžvilgiu PBZ poveikis reikšmingiausias

nustatytas hibridinės drebulės genotipo kultūroje, kai PBZ suintensyvinus ūglio augimą

pirmame bei sulėtinus antrame etapuose panaikinamas šio genotipo išskirtinumas vėlesniu

ūglio intensyviu augimu. Koreliacijos ryšio pokyčiai dėl PBZ poveikio pridėtinių šaknų

atžvilgiu nustatyti drebulės 17DPL038 bei hibridinės drebulės 51DhPL022 atveju. Drebulės

17DPL038 atveju dėl PBZ poveikio panaikinamas kontrolinėmis sąlygomis esamas

neigiamas ūglio ryšys su pridėtinių šaknų formavimusi abiejuose augimo etapuose, netgi

sudaromas teigiamas ryšys ūglio ilgio po pirmo augimo etapo kitame etape vykstančiam

pridėtinių šaknų formavimuisi. Hibridinės drebulės 51DhPL022 genotipo atžvilgiu dėl PBZ

poveikio panaikinamas teigiamas pirmame etape susidariusių pridėtinių šaknų skaičiaus

ryšys su vėlesniame etape vykusiu ūglio prieaugiu. Koreliacijos ryšio pokyčiai dėl PBZ

poveikio šalutinių šaknų atžvilgiu nustatyti hibridinės drebulės 51DhPL022 bei karpotojo

beržo (01BPL115) genotipų atveju. Šių genotipų atveju dėl PBZ poveikio panaikinamas

kontrolinėmis sąlygomis esamas teigiamas pirmame augimo etape susidariusių šalutinių

šaknų ir ūglio ilgio ryšys. Apibendrinant galima teigti, kad skirtingų etapų morfologinių

parametrų rezultatai išryškina tirtų genotipų savitumus. P. tremula genotipo in vitro

Page 73: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

73

kultūroje dominuoja ūglio augimas, konkuruojantis su šaknų formavimusi visame augimo

periode. Tuo tarpu P. alba × P. tremuloides genotipo in vitro kultūroje dominuoja šaknų

formavimasis, lemiantis tolesnį ūglio augimą, o B. pendula genotipo kultūroje visame

augimo periode tolygiai be konkurencijos dominuoja ir šaknų, ir ūglių augimas.

Page 74: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

74

IŠVADOS

Tyrimų hipotezės patvirtinimas

Hipotezė Patvirtinimas Tarp Populus ir Betula

genčių yra esminiai hormonų morfogenetinio poveikio skirtumai, kurie lemia specifinius pridėtinių šaknų formavimosi ypatumus šių medžių in vitro kultūrose.

Hipotezė patvirtinta. Tarp Populus ir Betula genčių yra esminiai hormonų morfogenetinio poveikio skirtumai, kurie lemia specifinius pridėtinių šaknų formavimosi ypatumus šių medžių in vitro kultūrose. Vidinių fitohormonų koncentracijomis P. tremula ir jos hibridų genotipų kultūros itin skyrėsi nuo B. pendula genotipų kultūrų 3-indolilacto rūgšties atžvilgiu. Svarbiausi skirtumai tarp tiriamų P. tremula ir jos hibridų bei B. pendula genotipų nustatyti pagal šaknų sistemos morfologinius atsakus į giberelino ir absizo rūgšties kiekių reguliaciją. Skirtingų augimo etapų morfologinių parametrų atžvilgiu nuo drebulės ir beržo kultūrų išsiskyrė hibridinio medžio P. alba L. × P. tremula kultūra pradiniame augimo etape vykstančiu intensyvesniu šaknų formavimusi, nei ūglių augimu, bei pradiniame augimo etape susiformavusių šaknų teigiama įtaka tolesniam ūglio vystymuisi.

Pagrindinės darbo išvados

1. Nustatyta, kad Betula pendula Roth įvedimo į in vitro kultūrą metu ilgesnis nei viena

savaitė laikotarpis tarp šakų surinkimo iki sodinimo etapo siejamas su eksplantų

gyvybingumo praradimu. Gebėjimu formuoti šaknis vėlesnėse kultūros stadijose

pasižymėjo tie beržo genotipai, kurie pirmoje subkultūroje išlaikė žalią ūglio viršūnę ant

terpės be hormonų bei išliko gyvybingi ant terpės su citokininu benzilaminopurinu.

2. Populus tremula L. pridėtinių šaknų formavimąsi galima specifiškai inhibuoti papildant

terpę auksino pernašos inhibitoriumi 2,3,5-trijodobenzoine rūgštimi, o paskatinti –

naudojant giberelino sintezės inhibitorių paklobutrazolį.

3. P. tremula ir P. tremuloides × P. tremula ūgliuose auksino indolil-3-acto rūgšties

koncentracija yra daug didesnė negu B. pendula ūgliuose. Hibridas P. alba × P. tremula iš

visų kitų tirtų genotipų išsiskyrė didelėmis indolil-3-sviesto rūgšties, citokinino zeatino

bei giberelino A7 koncentracijomis. Tuo tarpu šaknis formuojantis beržo genotipas visus

kitus tirtus genotipus, įskaitant šaknų neformuojantį beržą, pralenkė abscizo rūgšties

koncentracijos dydžiu.

4. Tarp tirtų drebulių (P. tremula bei jos hibridų) ir beržo B. pendula genotipų buvo nustatyti

esminiai skirtumai pagal tai, kaip šių medžių šaknų sistemos vystymąsi in vitro paveikia

abscizo rūgštis ir giberelino sintezės inhibitorius paklobutrazolis: abscizo rūgštis inhibavo

Page 75: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

75

pridėtinių šaknų formavimąsi drebulių, bet ne beržo kultūrose, o paklobutrazolis inhibavo

šalutinių šaknų formavimąsi beržo, bet ne drebulių kultūrose.

5. Nustatyta, kad tirtų P. tremula ir B. pendula genotipų eksplantų vystymuisi in vitro buvo

būdingas spartus ūglių augimas ant šviežios maitinamosios terpės pradiniame auginimo

etape, tačiau hibridinio medžio P. alba L. × P. tremula kultūroje pirmiausia vyko ne ūglių

augimas, bet šaknų sistemos vystymasis. Pastarajame genotipe nustatyta, kad pradiniame

augimo etape susiformavusios šaknys turėjo teigiamą įtaką tolesniam ūglio vystymuisi.

Page 76: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

76

LITERATŪROS SĄRAŠAS

1. Abu-Abied, M., Belausov, E., Hagay, S., Peremyslov, V., Dolja, V. and Sadot, E. 2018. Myosin XI-K is involved in root organogenesis, polar auxin transport, and cell division. J Exp Bot, vol. 69, nr. 12, 2869–2881.

2. Addicott, F. T., Lyon, J. L., Ohkuma, K., Thiessen, W. E., Carns, H.R., Smith, O. E., Cornforth, J. W., Milborrow, B. V., Ryback, G. and Wareing, P. F. 1968. Abscisic acid: a new name for abscisin II (dormin). Science, vol. 159, 1493.

3. Ahuja, M. R. In vitro propagation of poplar and aspen. Cell and tissue culture in forestry. Springer, Dordrecht, 1987. 207–223.

4. Ait-Ali, T., Frances, S., Weller, J. L., Reid, J. B., Kendrick, R. E. and Kamiya, Y. 1999. Regulation of gibberellin 20- �oxidase and gibberellin 3 -hydroxylase transcript accumulation during de-etiolation of pea seedlings. Plant Physiol, vol. 121, 783–791.

5. Allingham, R. 2005. The effect of the growth retardant paclobutrazol on the in vitro growth and development of Betula and Populus species. Daktaro disertacija. Centrinio Lankašyro universitetas.

6. Aloni, R., Aloni, E., Langhans, M. and Ullrich, C. I. 2006. Role of Cytokinin and Auxin in Shaping Root Architecture: Regulating Vascular Differentiation, Lateral Root Initiation, Root Apical Dominance and Root Gravitropism. Annals of Botany, vol. 97, 883–893.

7. Aloni, R., Langhans, M., Aloni, E., Dreieicher, E. and Ullrich, C. I. 2005. Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. Journal of Experimental Botany, vol. 56, 1535–1544.

8. Baba, K., Karlberg, A., Schmidt, J., Schrader, J., Hvidsten, T. R., Bako, L. and Bhalerao, R. P. 2011. Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proc Natl Acad Sci USA, vol. 108, nr. 8, 3418–23.

9. Baliuckienė, A. and Blaiuckas, V. 2006. Genetic Variability of Silver Birch (Betula pendula L.) Wood Hardness in Progeny Testing at Juvenile Age. Baltic Forestry, vol. 12, nr. 2, 134140.

10. Bendokas, V., Gelvonauskiene, D., Gelvonauskis, B., Siksnianas, T. and Stanys, V. 2017. Predicting apple tree (Malus × domestica Borkh.) canopy architecture: phytohormone balance in juvenile hybrids. Zemdirbyste, vol. 101, 327‒332

11. Bendokas, V. and Stanys, V. 2009. Skirtingos vainiko formos obelų hormonų kaita. Žemdirbystė-Agriculture, vol. 96, nr. 3, 76-82.

12. Bishopp, A., Help, H., El-Showk, S., Weijers, D., Scheres, B., Friml, J., Benková, E., Mähönen, A. P. and Helariutta, Y. 2011. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Current Biology, vol. 21, nr. 11, 917-926.

13. Björklund, S., Antti, H., Uddestrand, I., Moritz, T. and Sundberg, B. 2007. Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. The Plant Journal, vol. 52, 499–511.

14. Blake, T. J. and Atkinson, S. M. 1986. The physiological role of abscisic acid in the rooting of poplar and aspen stemp sprouts. Physiol Plant, vol. 67, 638–643.

15. Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K. and Scheres, B. 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, vol. 433, 39–44.

16. Bojarczuk, K. 2000. Effect of aluminium on in vitro rooting of birch (Betula pendula Roth) and poplar (Populus tremula L. × P. alba L.) microcuttings. Acta Societatis Botanicorum Poloniae, vol. 69, nr. 4, 251–255.

Page 77: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

77

17. Bolle, C. 2004. The role of GRAS proteins in plant signal transduction and development. Planta, vol. 218, 683–692.

18. Braatne, J. H., Hinckley, T. M. and Stettler, R. F. 1992. Influence of soil water on the physiological and morphological components of plant water balance in Populus trichocarpa, Populus deltoides and their F1 hybrids. Tree Physiol, vol. 11, 325—339.

19. Branislav, K., Savo, R. and Dragana, M. 2009. Early shoot and root growth dynamics as indicators for the survival of black poplar cuttings. New Forests, vol. 38, 177–185.

20. Busov, V., Meilan, R., Pearce, D. W., Rood, S. B., Ma, C., Tschaplinski, T. J. and Strauss, S. H. 2006. Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta, vol. 224, 288–299.

21. Bustillo-Avendaño, E., Ibáñez, S., Sanz, O., Barros, J. A. S., Gude, I., Perianez-Rodriguez, J., Micol, J. L., Del Pozo, J. C., Moreno-Risueno, M. A. and Pérez-Pérez, J. M.. 2018. Regulation of Hormonal Control, Cell Reprogramming, and Patterning during De Novo Root Organogenesis. Plant Physiology, vol. 176, nr. 2, 1709–1727.

22. Casimiro, I., Beeckman, T., Graham, N., Bhalerao, R., Zhang, H., Casero, P., Sandberg, G. and Bennett, M. J. 2003. Dissecting Arabidopsis lateral root development. Trends Plant Sci, vol. 8, 165–171.

23. Chalupa, V. 1981. In vitro propagation of birch (Eer& verrucosu Ehrh.). Biol. Plant, vol. 23, 472-474.

24. Chaney, W.R. (2003). Tree growth retardants: Arborists discovering new uses for an old tool. Tree Care Ind, vol. 14, 54–59.

25. Chen, C.W., Yang, Y.W., Lur, H.S., Tsai, Y.G. and Chang, M.C. 2006. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physio, vol. l47, 1–13.

26. Chen, W., Gai, Y., Liu, S., Wang, R. and Jiang, X. 2010. Quantitative Analysis of Cytokinins in Plants by High Performance Liquid Chromatography: Electronspray Ionization Ion Trap Mass Spectrometry. Journal of Integrative Plant Biology, vol. 52, 925–932.

27. Chiang, H. H., Hwang, I. and Goodman, H. M. 1995. Isolation of the Arabidopsis GA4 locus. The Plant Cell, vol. 7, 195–201.

28. Chorbadjian, R. A., Bonello, P. and Herms, D. A. 2011. Effect of the growth regulator paclobutrazol and fertilization on defensive chemistry and herbivore resistance of Austrian pine (Pinus nigra) and paper birch (Betula papyrifera). Arboriculture and Urban Forestry, vol. 37, nr. 6, 278–287.

29. Cochard, H., Ridolfi, M. and Dreyer, E. 1996. Water stress in an ABA-unresponsive hybrid poplar (Populus koveana × tvichocavpa cv Peace): response. New Phytol, vol. 134, 455–461.

30. Coleman, G. D. and Ernst, S. G. 1989. In vitro shoot regeneration of Populus deltoides: effect of cytokinin and genotype. Plant Cell Rep, vol. 8(8), 459–62.

31. Cornforth, J. W., Milborrow, B. V. and Ryback, G. 1965. Synthesis of (+/-)-Abscisin II. Nature 206, 715.

32. Correˆa, L. R. and Fett-Neto, A. G. 2004. Effects of temperature on adven-titious root development in microcuttings of Eucalyptus saligna Smith and Eucalyptus globulus Labill. J Therm Biol, vol. 29, 315–324.

33. Creelman, R. A. 1989. Abscisic acid physiology and biosynthesis in higher plants. Physiol Plant, vol. 75, 131–136.

34. Creelman, R. A., Mason, H. S., Bensen, R. J., Boyer, J. S. and Mullet, J. E. (1990). Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings. Analysis of growth, sugar accumulation, and gene expression. Plant Physiol, vol. 92, 205–214.

Page 78: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

78

35. Dai, M., Zhao, Y., Ma, Q., Hu, Y., Hedden, P., Zhang, Q. and Zhou, D. X. 2007. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiology, vol. 144, 121–133.

36. Darwin, C. and Darwin, F. 1880. The Power of Movement in Plants. John Murray, London.

37. Da-Xi, Z., Ke, Y., Zhi-Hong, X. and Hong-Wei, X. 2003. Effect of Polar Auxin Transport on Rice Root Development. Acta Botanica Sinica, vol. 45, nr. 12, 1421–1427.

38. De Almeida M. R., Aumond M., Da Costa C. T., Schwambach J., Ruedell C. M., Correa, L. R. and Fett-Neto, A. G. 2017. Environmental control of adventitious rooting in Eucalyptus and Populus cuttings. Trees, vol. 31, 1377–1390.

39. De Klerk, G. J., Ter Brugge, J. and Marinova, S. 1997. Effectiveness of indoleacetic acid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork9’. Plant Cell Tissue Organ Cult, vol. 49, 39–44.

40. De Smet, I., Signora, L., Beeckman, T., Inze, D., Foyer, C. H. and Zhang, H. 2003. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J, vol. 33, 543–555.

41. Dello Ioio, R., Linhares, F. S., Scacchi, E., Casamitjana-Martinez, E., Heidstra, R., Costantino, P. and Sabatini, S. 2007. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol, vol. 17, 678–682.

42. Dickmann, D. I. 2001. An overview of the genus Populus. In Dickmann, D. I., Isebrands, J. G., Eckenwalder, J. E. & Richardson, J. (eds.) Poplar culture in North America. NRC Research Press, National Research Council of Canada, Ottawa, ON K1A0R6, Canada. pp 1–42.

43. Dill, A., Thomas, S. G., Hu, J., Steber, C.M. and Sun, T-p. (2004). The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. The Plant Cell, vol. 16, 1392–1405.

44. Ditmar, O. 1991. In vitro regeneration of Curly birch, Betula pendula var. carelica. Thaiszia, Košice, vol. 1, 119–124.

45. Doerner, P. 2008. Plant roots: recycled auxin energizes patterning and growth. Curr Biol, vol. 18, R72–R74.

46. Domanski, R. and Kozlowski, T. T. 1968. Variations in kinetin-like activity in buds of Betula and Populus during release from dormancy. Canadian Journal of Botany, vol. 46, 397–403.

47. Dun, E. A., Germain, A. S., Rameau, C. and Beveridge, C. A. 2012. Antagonistic Action of Strigolactone and Cytokinin in Bud Outgrowth Control1[W]. Plant Physiology January, vol. 158, nr. 1, 487–498.

48. Dunlap, J. M. and Stettler, R. F. 2001. Variation in Leaf Epidermal and Stomatal Traits of Populus trichocarpa from Two Transects across the Washington Cascades. Canadian Journal of Botany, vol. 79, 528–536.

49. Eliason, L. 1971. Adverse Effect of Shoot Growth on Root Growth in Rooted Cuttings of Aspen. Physiol Plan, vol. 25(2), 268–272

50. Eliasson, L. 1969. Growth Regulators in Populus tremula I. Distribution of Auxin and Growth Inhibitors. Physiologia plantarum, vol. 22, nr. 6, 1288–1301.

51. Eliasson, L. 1971. Growth Regulators in Populus tremula IV. Apical Dominance and Suckering in Young Plants. Physiologia Plantarum, vol. 25, nr. 2, 263–267.

52. El-Showk, S., Ruonala, R. and Helariutta, Y. 2013. Crossing paths: cytokinin signalling and crosstalk. Development, vol. 140, 1373–1383.

53. Eriksson, M. E., Israelsson, M., Olsson, O. and Moritz, T. 2000. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass productionandxylemfiber length. Nat Biotechnol, vol. 18, 784–788.

54. Ferm, A. and Kauppi, A. 1990. Coppicing as a means for increasing hardwood biomass production. Biomass, vol. 22, 10–121.

Page 79: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

79

55. Fischer, A., Lindner, M., Abs, C. and Lasch, P. 2002. Vegetation dynamics in central European forest ecosystems (near-naturalas well as managed) after storm events. Folia Geobot, vol. 37, 17–32.

56. Furlow, J. 1990. The genera of Betulaceae in the southeastern United States. Journal of the Arnold Arboretum, vol. 71, 1-67.

57. Gallavotti, A., Barazesh, S., Malcomber, S., Hall, D., Jackson, D., Schmidt, R. J. and McSteen, P. 2008. Sparse inflorescence1 encodes a monocot-specific YUCCAlike gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci USA, vol. 105, 15196–15201.

58. Galoch, E., Zielińska, M. and Burkacka-Łaukajtys, E. 1998. The effect of decapitation on the levels of IAA and ABA in the lateral buds of Betula pendula Roth. Acta Physiol Plant, vol. 20, 399–403.

59. Goldsmith, M. H. M. 1977. The polar transport of auxin1. Ann. Rev. Plant Physiol, vol. 28, 439–78.

60. Gou, J., Strauss, S. H., Tsai, C. J., Fang, K., Chen, Y., Jiang, X. and Busova, V. B. 2010. Gibberellins Regulate Lateral Root Formation in Populus through Interactions with Auxin and Other Hormones. The Plant Cell, vol. 22, 623–639.

61. Green, S. and MacAskill, G. A. 2007. Pathogenicity of Marssonina betulae and other fungi on birch. Plant Pathol, vol. 56, 242–250.

62. Grieneisen, V. A., Xu, J., Maree, A. F. M., Hogeweg, P. and Scheres, B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth // Nature. – 2007, 449. – p. 1008–1013.

63. Guo, D., Liang, J. and Li, L. 2009. Abscisic acid (ABA) inhibition of lateral root formation involves endogenous ABA biosynthesis in Arachis hypogaea L. Plant Growth Regulation, vol. 58, nr. 2, 173–179.

64. Haissig, B. E. 1982. Carbohydrate and amino acid concentrationsduring adventitious root primordium development in Pinus banksiana Lamb. cuttings. For Sci, vol. 28, 813–821.

65. Hajati, R. J., Payamnoor, V., Bezdi, K. G. and Chashmi, N. A. 2016. Optimization of Callus Induction and Cell Suspension Culture of Betula pendula Roth for Improved Production of Betulin, Betulinic Acid, and Antioxidant Activity. In Vitro Cell Dev Biol.-Plant, vol. 52, 400–407.

66. Han, S-Y., Kitahata, N., Sekimata, K., Saito, T., Kobayashi, M., Nakashima, K., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshida, S. and Asami, T. 2004. A Novel Inhibitor of 9-cis-Epoxycarotenoid Dioxygenase in Abscisic Acid Biosynthesis in Higher Plants. Plant Physiology, vol. 135, 1574–1582.

67. Hedden, P. and Phillips, A. L. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends Plant Sci, vol. 5, 523–530.

68. Himanen, K., Boucheron, E., Vanneste, S., de Almeida, Engler, J., Inzé, D. and

Beeckman, T. 2002. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell, vol. 14, 2339–2351.

69. Hirai, N., Yoshida, R., Todoroki, Y. and Ohigashi, H. 2000. Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi. Biosci Biotechnol Biochem, vol. 64, 1448–1458.

70. Hynynen, J., Niemistö, P., Viherä-Aarnio, A., Brunner, A., Hein, S. and Velling, P. 2010. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry, vol. 83 (1), 103–119.

71. Hoenicka, H. and Fladung, M. 2006. Biosafety in Populus spp. and other forest trees: from non-native species to taxa derived from traditional breeding and genetic engineering. Trees, vol. 20, nr. 2, 131–144.

72. Huetteman, C. A. and Preece, J. E. 1993. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss Org, vol. 33, nr. 2, 105–119.

Page 80: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

80

73. Huhtinen, O. and Yahyaoglu, Z. B. 1974. Das friihe Blilhen von aus Kalluskulturen herangezogenen Plfanzchen bei der Birke (Betula pendula Roth). Silvae Genet, vol. 23, 32–34.

74. Hutchison, C. E., Li, J., Argueso, C., Gonzaleza, M., Leea, E., Lewisa, M. W., Maxwella, B. B., Perduea, T. D., Schallerb, G. E., Alonsod, J. M., Eckerd, J. R. and Kiebera, J. J. 2006. The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell, vol. 18, 3073–3087.

75. Hwang, I. and Sakakibara, H. 2006. Cytokinin biosynthesis and perception. Physiologia Plantarum, vol. 126, nr. 4, 528–538.

76. Ibrahim, M. A., Mäenpää, M., Hassinen, V., Kontunen-Soppela, S., Malec, L., Rousi, M., Pietikäinen, L., Tervahauta, A., Kärenlampi, S., Jarmo, K., Holopainen, J. K. and Oksanen, E. J. 2010. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. Journal of experimental botany, vol. 61, nr. 6, 1583-1595.

77. Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K. and Kakimoto, T. 2001. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, vol. 409, 1060–1063.

78. Yadav, R., Arora, P., Kumar, S. and Chaudhury, A. 2010. Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology, vol. 19, nr. 8, 1574–1588.

79. Yamada, H;, Suzuki, T;, Terada, K;, Takei, K., Ishikawa, K., Miwa, K., Yamashino, T. and Mizuno, T. 2001. The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant and Cell Physiology, vol. 42, 1017–1023.

80. Yamamoto, Y., Kamiya, N., Morinaka, Y., Matsuoka, M. and Sazuka, T. 2007. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol, vol. 143, 1362–1371.

81. Yan, S. P., Yang, R. H., Wang, F., Sun, L. N. and Song, X. S. 2017. Effect of Auxins and Associated Metabolic Changes on Cuttings of Hybrid Aspen. Forest, vol. 8, nr. 4, 117.

82. Yasunori, K. and Yozo. O. 1980. Cytokinin production by Asparagus shoot apex cultured in vitro. Physiol Plant., vol. 49, 193–197.

83. Yin, C., Duan, B., Wang, X. and Li, C. 2004. Morphological and physiological responses of two contrasting poplar species to drought stress and exogenous abscisic acid application. Plant Science, vol. 167(5), 1091–1097.

84. Yordanov, Y. S., Ma, C., Yordanova, E., Meilan, R., Strauss, S. H. and Busov, V. B. 2017. BIG LEAF is a regulator of organ size and adventitious root formation in poplar. PLoS ONE, vol. 12, nr. 7, e0180527.

85. Yu, Q. 2001. Selection and propagation of hybrid aspen clones for growth and fibre quality. Academic dissertation. University of Helsinki, departament of applied biology.

86. Jiang, F. and Hartung, W. 2007. Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. Journal of Experimental Botany, vol. 59, nr. 1, 37–43.

87. Jinlong, M., Guobin, J., Bo, J., Hua, J. and Shanjing, Y. 2013. Determination of four kinds of endogenous hormones in Poplar dialyzate by HPLC with microdialysis. Acta Chromatographica, vol. 25, nr. 4, 627–637.

88. Johnson, D., Eckart, P., Alsamadisi, N., Noble, H., Martin, C. and Spicer, R. 2018. Polar auxin transport is implicated in vessel differentiation and spatial patterning during secondary growth in Populus. Am J Bot, vol. 105, nr. 2, 186–196.

89. Jones, H., Leigh, R. A., Tomos, A .D. and Jones R. G. 1987. The effect of abscisic acid on cell turgor pressures, solute content and growth of wheat roots. Planta, vol. 170, 190–197.

Page 81: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

81

90. Jones, O. P, Welander, M., Waller, B. J. and Ridout, M. 1966. Micropropagation of adult birch trees: production and field performance. Tree Physiology, vol. 16, 521—525.

91. Jones, R. J. and Phillips, I. D. J. 1996. Organs of Gibberellin Synthesis in Light-Grown Sunflower Plants. Plant Physiology, vol. 41, nr. 8, 1381-1386.

92. Karabaghli-Degron, C., Sotta, B., Bonnet, M., Gay, G. and Le Tacon, F. 1998. The auxin transport inhibitor 2,3,5- triiodobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-root cortex of Norway spruce (Picea abies) seedlings by the ectomycorrhizal fungus Laccaria bicolor. New Phytol, vol. 140, 723–733.

93. Karacic, A. and Weih, M. 2006. Variation in growth and resource utilisation among eight poplar clones grown under different irrigation and fertilisation regimes in Sweden. Biomass and Bioenergy, vol. 30, 115–124.

94. Karnosky, D. F., Gagnon, Z. E., Dickson, R. E., Coleman, M.D., Lee, E. H. and Isebrands, J. G. 1996. Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings. Can J For Res, vol. 26, 23–37.

95. Kauppi, A., Kiviniitty, M. and Ferm, A. 1988. Growth habits and crown architecture of Betula pubescens Ehrh. of seed and sprout origin. Can J For Res, vol. 18, 1603 – 1623.

96. Kleine-Vehn, J., Dhonukshe, P., Swarup, R., Bennett, M. and Friml, J. 2006. Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 sses a novel pathway distinct from PIN1. Plant Cell, vol. 18, 3171–3181.

97. Koivusaari, P., Pohjanen, J., Wäli, P. R., Ahonen, S. H., Saravesi, K., Markkola, A. M., Kaisa Haapala, K., Suokas, M., Koskimäki, J. J., Tejesvi, M. V. and Pirttilä, A. M. 2018. Different endophyte communities colonize buds of sprouts compared with mature trees of mountain birch recovered from moth herbivory. Tree physiology. [Epub ahead of print] https://doi.org/10.1093/treephys/tpy012.

98. Koltai, H. 2011. Strigolactones are regulators of root development. New Phytologist, vol. 190, 545–549.

99. Kontseva, I. I. 2009. Long-term storage of birch micro-plants in tissue culture. Lesovedenie, vol. 5, 50–56.

100. Kouki, J., Arnold, K. and Martikainen, P. 2004. Long-term persistence of aspen – a key host for many threatened species – is endangered in old-growth conservation areas in Finland. Journal for Nature Conservation, vol. 12, 41–52.

101. Kraft, M., Kuglitsch, R., Kwiatkowski, J., Frank M. and Grossmann, K. 2007. Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): Interaction with ethylene. J Exp Bot, vol. 58, nr. 6, 1497–1503.

102. Laureysens, I., De Temmerman, L., Hastir, T., Van Gysel, M. and Ceulemans, R. 2005. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential. Environmental Pollution, vol. 133, 541–551.

103. Lebedev, V. G., Korobova, A. V., Shendel, G. V., Kudoyarova, G. R. and Shestibratov, K. A. 2018. Effect of Glutamine Synthetase Gene Overexpression in Birch (Betula pubescens) Plants on Auxin Content and Rooting in vitro. Doklady Biochemistry and Biophysics, vol. 480, nr. 1, 143– 145.

104. Lebedev, V. G., Schestibratov, K. A., Shadrina, T. E., Bulatova, I. V., Abramochkin, D. G. and Miroshnikov, A. I. 2010. Cotransformation of aspen and birch with three T-DNA regions from two different replicons in one Agrobacterium tumefaciens strain. Russian journal of genetics, vol. 46, nr. 11, 1282-1289.

105. Legué, V., Rigal, A. and Bhalerao, R. P. 2014. Adventitious root formation in tree species: involvement of transcription factors. Physiologia Plantarum, vol. 151, nr. 2, 192–198.

Page 82: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

82

106. Leyser, O. 2010. The Power of Auxin in Plans. Plant Physiology, vol. 154, nr. 2, 501–505.

107. Li, C., Junttila, O., Heino, P. and Palva, E. T. 2003. Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Tree Physiol, vol. 23, 481–487.

108. Li, C., Puhakainen, T., Welling, A., Viherä‐Aarnio, A., Ernstsen, A., Junttila, O., Heino, P. and Palva, E. T. 2002. Cold acclimation in silver birch (Betula pendula). Development of freezing tolerance in different tissues and climatic ecotypes. Physiologia Plantarum, vol. 116, nr. 4, 478–488.

109. Li, S. W., Xue, L., Xu, S., Feng, H. and An L. 2009. Mediators, genes andsignaling in adventitious rooting. Bot Rev, vol. 75, 230–247.

110. Ljung, K., Bhalerao, R. P. and Sandberg, G. 2001. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. PlantJ, vol. 28, 465–474.

111. Ljung, K., Hull, A. K., Celenza, J., Yamada, M., Estelle, M., Normanly, J. and Sandberga, G. 2005. Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots. Plant Cell, vol. 17, nr. 4, 1090–1104.

112. Lohar, D. P., Schaff, J. E., Laskey, J. G., Kieber, J. J., Bilyeu, K. D. and Bird, D. M. 2004. Cytokinins play opposite roles in lateral root formation, and nematote and rhizobial symbioses. The Plant Journal, vol. 38, 203–214.

113. Lorite, J., Peñas, J., Benito, B., Cañadas, E. and Valle, F. 2010. Conservation status of the first known population of Polygala balansae in Europe. Annales Botanici Fennici, vol. 47, nr. 1, 45 – 50.

114. Ludwig-Müller, J. 2000. Indole-3-butyric acid in plant growth and development. Plant Growth Regul, vol. 32, 219–230.

115. Luo, X., Chen, Z., Gao, J. and Gong, Z. 2014. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. The Plant Journal, vol. 79, 44–55.

116. Luo, Z.B., Janz, D., Jiang, X., Göbel, C., Wildhagen, H., Tan, Y., Rennenberg, H., Feussner, I. and Polle, A. 2009 Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol, vol. 151, nr. 4, 1902–1917

117. Malamy, J. E. and Benfey, P. N. 1997. Organization and cell differentiation in LRs of Arabidopsis thaliana. Development, vol. 124, 33–44.

118. Marhavy, P., Vanstraelen, M., De Rybel, B., Zhaojun, D., Bennett, M. J., Beeckman, T. and Benkova, E. 2013. Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO J, vol. 32, 149–158.

119. Marhavý, P., Bielach, A., Abas, L., Abuzeineh, A., Duclercq, J., Tanaka, H., Pařezová, M., Petrášek, J., Friml, J., Kleine-Vehn, J. and Benková, E. 2011. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Developmental Cell, vol. 21, 796–804.

120. Marks, T. R. 1996. The role of the shoot apex in controlling rhizogenesis in vitro. Plant Growth Regulation, vol. 20, 57–60.

121. Mason, M. G., Mathews, D. E., Argyros, D. A., Maxwell, B. B., Kieber, J. J., Alonso, J. M., Ecker, J. R. and Schaller, G.E. 2005. Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. The Plant Cell, vol. 17, 3007–3018.

122. Mauriat, M., Petterle, A., Bellini, C. and Moritz, T. 2014. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. The Plant Journal, vol. 78, 372–384.

123. McAdam, S. A., Brodribb, T. J. and Ross, J. J. 2016. Shoot‐derived abscisic acid promotes root growth. Plant, cell & environment, vol. 39, nr. 3, 652–659.

124. McCown, B. H. 1985. From gene manipulation to forest establishment: shoot cultures of woody plants can be a central tool. TAPPI J, vol. 68, 116–119.

Page 83: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

83

125. McCown, B. H. and Lloyd, G. 1981. Woody Plant Medium (WPM)—A Mineral Nutrient Formulation for Microculture of Woody Plant Species. HortScience, vol. 16, 453–453.

126. Mohammed, G. H. and Vidaver, W. E. 1990. The influence of acclimatizationtreatment and plantlet morphology on early greenhouse perfor-mance of tissue-cultured Douglas fir [Pseudotsuga menziesii (Mirb) Franco]. Plant Cell Tissue Organ Cult, vol. 21, 111–117.

127. Moore, G. M. 1998. Tree Growth regulators: issues of control, matters of management. Journal of Arboriculture, vol. 24, nr. 1, 10–18.

128. Moreira, S., Bishopp, A., Carvalho, H. and Campilho, A. 2013. AHP6 Inhibits Cytokinin Signaling to Regulate the Orientation of Pericycle Cell Division during Lateral Root Initiation. PLoS ONE, vol. 8, nr. 2, e56370.

129. Mulkey, T. J., Evans, M. L. and Kuzmanoff, K. M. 1983. The kinetics of abscisic acid action on root growth and gravitropism. Planta, vol. 157, 150–157.

130. Müller, A., Duchting, P. and Weiler, E. W. 2002. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta, vol. 216, 44–56.

131. Mwange, K. N., Hou, H. W., Wang, Y. Q., He, X.Q. and Cui, K. M. 2005. Opposite patterns in the annual distribution and time-course of endogenous abscisic acid and indole-3-acetic acid in relation to the periodicity of cambial activity in Eucommia ulmoides Oliv. J Exp Bot, vol. 56(413), 1017–28.

132. Nieminen, K., Immanen, J., Laxell, M., Kauppinen, L., Tarkowski, P., Dolezal, K., Tähtiharju, S., Elo, A., Decourteix, M., Ljung, K., Bhalerao, L., Keinonen, K., Albert, V.A. and Helariutta, Y. 2008. Cytokinin signaling regulates cambial development in poplar. PNAS, vol. 105, nr. 50, 20032–20037.

133. Norman, S.M., Bennett, R. D., Poling, S. M., Maier, V. P. and Nelson, M. D. 1986. Paclobutrazol Inhibits Abscisic Acid Biosynthesis in Cercospora rosicola. Plant Physiology, vol. 80, nr. 1, 122–125.

134. Ohkuma, K., Lyon, J. L., Addicott, F. T. and Smith, O. E. 1963. Abscisin II, an abscission-accelerating substance from young cotton fruit. Science, vol. 142, 1592–1593.

135. Orman-Ligeza, B., Parizot, B., Gantet, P. P., Beeckman, T., Bennett, M. J. and Draye, X.

2013. Post-embryonic root organogenesis in cereals: branching out from model plants. Trends in Plant Science, vol. 18, nr. 8, 459–467.

136. Paquette, A. J. and Benfey, P. N. 2001. Axis formation and polarity in plants. Curr Opin Genet Dev, vol. 11, 405–409.

137. Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R.J., Murphy, G.P. and Harberd, N.P. 1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes and Development, vol. 11, 3194–3205.

138. Peret, B., DeRybel, B., Casimiro, I., Benkova, E., Swarup, R., Laplaze, L., Beeckman, T. and Bennett, M. J. 2009. Arabidopsis lateral root development: an emerging story. Trends Plant Sci, vol. 14, 399–408.

139. Perry, T. O. Tree Roots: Facts and Fallacies - Journal of Arboriculture, vol. 8, 197–211, 1982.

140. Petrasek, J. and Friml, J. 2009. Auxin transpor torutes in plant development. Development, vol. 136, 2675–2688.

141. Phillips, A. L., Ward, D. A., Uknes, S., Appleford, N .E., Lange, T., Huttly, A. K., Gaskin, P., Graebe, J. E. and Hedden, P. 1995. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiology, vol. 108, 1049–1057.

142. Pierik, R. L. M. 1997. In vitro culture of higher plants. Kluwer academic publishers. 353 p.

Page 84: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

84

143. Pihlajaniemi, H., Siuruainen, M., Rautio, R., Laine, K., Peteri, S.-L. and Huttunen, S. 2007. Successful growth of micropropagated ornamental tree forms in northern Finland. Dendrobiology, vol. 57, 61–71.

144. Pilet, P. E. and Chanson, A. 1981. Effect of abscisic acid on maize root growth. A critical examination. Plant Sci Lett, vol. 21, 99–106.

145. Pilet, P. E. and Saugy, M. 1987. Effect on root growth of endogenous and applied IAA and ABA. A critical reexamination. Plant Physiol, vol. 83, 33–38.

146. Pleszczyńska, M., Lemieszek, M. K., Siwulski, M., Wiater, A., Rzeski, W. and Szczodrak, J. 2017. Fomitopsis betulina (formerly Piptoporus betulinus): the Iceman’s polypore fungus with modern biotechnological potential. World Journal of Microbiology & Biotechnology, vol. 33, nr. 5, 83.

147. Pliura, A. 2000. Challenges of gene conservation and breeding of broad-leaved tree species in Lithuania. Baltic foresatry, vol. 6, nr. 2, 90–98.

148. Possen, B. J., Oksanen, E., Rousi, M., Ruhanen, H., Ahonen, V., Tervahauta, A., Heinonen, J., Heiskanen, J., Kärenlampi, S. and Vapaavuori, E. 2011. Adaptability of birch (Betula pendula Roth) and aspen (Populus tremula L.) genotypes to different soil moisture conditions. Forest Ecology and Management, vol. 262, nr. 8, 1387–1399.

149. Rademacher, W. 2000. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol. , vol. 51, 501–531.

150. Rae, A. M., Street, N. R. and Rodríguez-Acosta, M.. Populus trees. Genome Mapping and Molecular Breeding in Plants. Forest Tree, vol. 7, 1–28.

151. Rai, M. K., Shekhawat, N. S., Gupta, A. K., Phulwaria, M., Ram, K. and Jaiswal, U. 2011. The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell, Tissue and Organ Culture (PCTOC), vol. 106, nr. 2, 179–190.

152. Ramírez-Carvajal, G. A., Morse, A. M., Dervinis, C. and Davis, J. M. 2009. The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus. Plant Physiol, vol. 150, nr. 2, 759–71.

153. Rathwell, R., Popova, E., Shukla, M. R. and Saxena, P. K. 2016. Development of cryopreservation methods for cherry birch (Betula lenta L.), an endangered tree species in Canada. Canadian Journal of Forest Research, vol. 46, nr. 11, 1284–1292.

154. Reich, P. B., Tjoelker, M. G., Walters, M. B., Vanderklein, D. W. and Buschena, C. 1998a. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. – Functional Ecology, vol. 12, 327–338.

155. Rhodenbaugh, E .J. and Pallardy, S. G. 1993. Water stress, photosynthesis and early growth patterns of cuttings of three Populus clones. Tree Physiol, vol. 13, 213–226.

156. Richards, D. E., King, K. E., Ait-ali, T. and Harberd, N. P. 2001. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annual Review of Plant Physiology and Plant Molecular Biology, vol. 52, 67–88.

157. Ridge, I. Plant Physiology. 1991. London: Hodder and Stoughon/Open University, 372 p.

158. Rieu, I., Eriksson, S., Powers, S. J., Gong, F., Griffiths, J., Woolley, L., Benlloch, R., Nilsson, O., Thomas, S. T., Hedden, P. and Phillips, A. L. 2008. Genetic Analysis Reveals That C19-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis. The Plant Cell, vol. 20, nr. 9, 2420–2436.

159. Rinne, P., Tuominen, H., and Sundberg, B. 1993. Growth patterns and endogenous indole‐3‐acetic acid concentrations in current‐year coppice shoots and seedlings of two Betula species. Physiologia Plantarum, vol. 88, nr. 3, 403–412.

160. Rinne, P., Welling, A. and Kaikuranta, P. 1998. Onset of freezing tolerance in birch (Betula pubescens Ehrh.) involves LEA proteins and osmoregulation and is impaired in an ABA‐deficient genotype. Plant Cell Environ, vol. 21, 601–611.

Page 85: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

85

161. Riov, J. (1993). Endogenous and exogenous auxin conjugates in rooting of cuttings. Acta Hortic, vol. 329, 284–288.

162. Ryynänen, L. and Aronen, T. 2005. Genome fidelity during short- and long-term tissue culture and differentially cryostored meristems of silver birch (Betula pendula). Plant Cell, Tissue and Organ Culture, vol. 83, 21–32.

163. Ryynanen, L. and Ryynanen, M. 1986. Propagation of adult curly-birch succeeds with tissue culture. Silva Fennica, vol. 20, 139–147.

164. Rytter, L., Johansson, K., Karlsson, B. and Stener, L. G. 2013. Tree Species, Genetics and Regeneration for Bioenergy Feedstock in Northern Europe. Forest BioEnergy Production 7-37.

165. Rytter, L., Karlsson, A., Karlsson, M. and Stener, L .G. 2008. Silviculture of birch, alder and aspen. Skogsstyrelsens förlag, Skogsskötselserien, Jönköping, 122 p.

166. Rohde, A., Prinsen, E., De Rycke, R., Engler, G., Van Montagu, M. and Boerjan, W. 2002. PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell, vol. 14, 1885–1901.

167. Rose, D. A. 1983. The discription of the growth of root systems. Plant Soil, vol. 75, 405-415.

168. Russell, J. A. and McCown, B. H. 1988. Recovery of plants from leaf protopalsts of hybrid-poplar and aspen clones. Plant Cell Rep, vol. 7, 59–62.

169. Sakakibara, H. 2006. Cytokinins: Activity, Biosynthesis, and Translocation. Annu. Rev. Plant Biol, vol. 57, 431–49.

170. Sakalauskaitė, J., Šikšnianienė, J. B., Kviklys, D., Urbonavičiūtė, A., Samuolienė, G., Šabajevienė, G., Lanauskas, J. and Duchovskis, P. 2007 b. Sausros sukelto streso poveikis obelų poskiepių fitohormonų sistemos kitimui. Sodininkystė ir daržininkystė, vol. 26, nr. 1, 35–44.

171. Salisbury, F. B. and Ross, C. 1992. (4th ed.) Plant Physiology. Wadsworth, Belmont, CA.

172. Santner, A. and Estelle, M. 2009. Recent advances and emerging trends in plant hormone signalling. Nature, vol. 459, 1071–1078.

173. Santner, A., Calderon-Villalobos, L. I. and Estelle, M. 2009. Plant hormones are versatile chemical regulators of plant growth. Ant Chem Biol, vol. 5, 301–307.

174. Sasamoto, H., Ogita, S., Wakita, Y. and Fukui, M. 2002. Endogenous levels of abscisic acid and gibberellins in leaf protoplasts competent for plant regeneration in Betula platyphylla and Populus alba. Plant Growth Regulation, vol. 38, 195–201.

175. Sellmer, J. C., Mccown, B. H. and Haissig, B. E. 1989. Shoot culture dynamics of six Popudus clones. Tree Physiology, vol. 5, 219–227.

176. Shestibratov, K., Lebedev, V., Podrezov, A. and Salmova, M. 2011. Transgenic aspen and birch trees for Russian plantation forests. In BMC proceedings. BioMed Central, vol. 5, nr. 7, 124.

177. Shi, W. G., Li, H., Liu, T. X., Polle, A., Peng, C. H. and Luo, Z. B. 2015. Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc. Plant Cell Environ, vol. 38, nr. 1, 207–223.

178. Signora, L., De Smet, I., Foyer, C. H. and Zhang, H. 2001. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J, vol. 28, 655–662.

179. Simola, L. K. 1985. Propagation of plantlets from leaf callus of Betzda pendulu f. purpurea. Scientia Hortic, vol. 26, 77–85.

180. Smet, I. De., Signora, L, Beeckman, T., Inze´, D., Foyer, C.H. and Zhang, H. 2003. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. The Plant Journal, vol. 33, 543–555.

181. Smith, M. A. L. and McCown, B. H. 1982/83. A comparison of sources tissue for protoplast isolation from three woody plant species. Plant Sci Lett, vol. 28, 149–156.

Page 86: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

86

182. Srivastava, P.S. and Steinhauer, A. 1981a. Isozymes in differentiating shoot bud cultures of Betula pendula Roth. Z. Pflanzenphysiol, vol. 103, 341–346.

183. Srivastava, P. S. snd Steinhauer, A. 1981b. Regeneration of birch plants from catkin tissue cultures. Plant Sci Lett, vol. 22, 379–386.

184. Strnad, M., Peters, W., Beck, E. and Kaminek, M. 1992. Immunodetection and Identification of N6-(o-Hydroxybenzylamino) Purine as a Naturally Occurring Cytokinin in Populus x canadensis Moench cv Robusta Leaves1. Plant Physiol, vol. 99, 47-80.

185. Stuepp, C.A., Wendling, I., Trueman, S. J., Koehler, H. S. and Zuffellato-Ribas, K. C. 2017. The Use of Auxin Quantification for Understanding Clonal Tree Propagation. Forests, vol. 8, nr. 1, 27.

186. Sun, T.P. and Gubler, F. 2004. Molecular mechanism of gibberellin signaling in plants. Annual Review of Plant Biology, vol. 55, 197–223.

187. Suzuki, A., Akune, M., Kogiso, M., Imagama, Y., Osuki, K-i, Uchiumi, T., Higashi, S., Han, S-Y., Yoshida, S., Asami, T. and Abe, M. 2004. Control of Nodule Number by the Phytohormone Abscisic Acid in the Roots of Two Leguminous Species. Plant Cell Physiol, vol. 45, nr. 7, 914–922.

188. Swarup, K., Benková, E., Swarup, R., Casimiro, I., Péret, B., Yang, Y., Parry, G., Nielsen, E., De Smet, I., Vanneste, S., Levesque, M. P., Carrier, D., James, N., Calvo, V., Ljung, K., Kramer, E., Roberts, R., Graham, N., Marillonnet, S., Patel, K., Jones, J. D. G., Taylor, C. G., Schachtman, D. P., May, S., Sandberg, G., Benfey, P., Friml, J., Kerr, I., Beeckman, T., Laplaze, L. and Bennett, M. J. 2008. The auxin influx carrier LAX3 promotes lateral root emergence. Ant Cell Biol, vol. 10, 946–954.

189. Taylor, H. F. and Smith, T. A. 1967. Production of plant growth inhibitors from xanthophylls: a possible source of dormin. Nature, vol. 215, 1513–1514.

190. Taylor, I. B., Burbidge, A. and Thompson, A. J. 2000. Control of abscisic acid synthesis. J Exp Bot, vol. 51, 1563–1574.

191. Tanaka, M., Mori, H., Takei, K., Kojima, M. and Sakakibara, H. 2006. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. The plant Journal, vol. 45, 1028–1036.

192. Tanimoto, E. 2005. Regulation of root growth by plant hormones: Roles for auxin and gibberellin. Critic Rev in Plant Sci, vol. 24, 249–265.

193. Thakur, A. K. and Srivastava, D. K. 2006. High-efficiency plant regeneration from leaf explants of male himalayan poplar (Populus ciliata wall.). In Vitro Cellular & Developmental Biology – Plant, vol. 42, nr. 2, 144–147.

194. Torrey, J. G. 1986. Endogenous and exogenous influences on the regulation of lateral root formation. In: Jackson MB, ed. New root formation in plants and cuttings. Dordrecht: Martinus Nijhoff. 31–66.

195. Truu, M., Ostonen, I., Preem, J. K., Lõhmus, K., Nõlvak, H., Ligi, T., Rosenvald, K., Parts, K., Kupper, P. and Truu, J. 2017. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand. Front Microbiol, vol. 3, nr. 8, 557.

196. Tschaplinski, T. J. and Blake, T. J. 1989. Correlation between early root production, carbohydrate metabolism and subsequent biomass production in hybrid poplar. Can J Bot, vol. 67, 2168–2174.

197. Tullusa, A., Rytterb, L., Tullusa, T., Weihc, M. and Tullusa, H. 2012. Short-rotation forestry with hybrid aspen (Populus tremula L.×P. tremuloides Michx.) in Northern Europe. Scandinavian Journal of Forest Research, vol. 27, nr. 1, 10–29.

198. Tuominen, H., Sitbon, F., Jacobsson, C., Sandberg, G., Olsson, O. and Sundberg, B. 1995. Altered Growth and Wood Characteristics in Transgenic Hybrid Aspen Expressing Agrobacterium tumefaciens T-DNA Indoleacetic Acid-Biosynthetic Genes. Plant Physiology, vol. 109, nr. 4, 1179–1189.

Page 87: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

87

199. Tuominen, H., Puech, L., Fink, S. and Sundberg, B. 1997. A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen. Plant Physiology, vol. 115, nr. 2, 577–585.

200. Vaičukynė, M., Žiauka, J. and Kuusienė, S. 2017. Factors that determine shoot viability and root development during in vitro adaptation and propagation of silver birch (Betula pendula Roth). Biologija, vol. 63, nr. 3, 246–255.

201. Varbanova, M., Yamaguchi, S., Yang, Y., McKelveya, K., Hanadab, A., Borochovc, R., Yud, F., Jikumarub, Y., Rosse, J., Cortesf, D., Je Maa, C., Noele, J. P., Manderg, L., Shulaevf, V., Kamiyab, Y., Rodermeld, S., Weissc, D. and Picherskya, E. 2007. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. The Plant Cell, vol. 19, 32–45.

202. Veit, B. 2004. Determination of cell fate in apical meristems. Curr Opi. Plant Biol, vol. 7, 57–64.

203. Verkest, A., Weinl, C., Inzé, D., De Veylder, L. and Schnittger A. 2005. Switching the cell cycle. Kip-related proteins in plant cell cycle control. Plant Physiol, vol. 139, 1099–1106.

204. Wakita, Y., Yokota, S., Yoshizawa, N., Katsuki, T., Nishiyama, Y., Yokoyama, T., Fukui, M. and Sasamoto, H. 2005. Interfamilial cell fusion among leaf protoplasts of Populus alba, Betula platyphylla and Alnus firma: assessment of electric treatment and in vitro culture conditions. Plant cell, tissue and organ culture, vol. 83, nr. 3, 319–326.

205. Walle, I. V., Van Camp, N., Van de Casteele, L., Verheyen, K. and Lemeur, R. 2007. Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential. Biomass and Bioenergy, vol.31, nr. 5, 276-283.

206. Wang, H., Qi, Q., Schorr, P., Cutler, A. J., Crosby, W. L. and Fowke, L.C. 1998. ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3. and its expression is induced by abscisic acid. Plant J, vol. 15, 501–510.

207. Watson, G. 2004. Effect of transplanting and paclobutrazol on root growth of ’Green Column’ black maple and ’Summit’ green ash. J Environ Hortic, vol. 22, 209–212.

208. Watts, S., Rodriguez, J. L., Evans, S. and Davies, W.J. 1981. Root and shoot growth of plants treated with abscisic acid. Ann Bot, vol. 47, 595–602.

209. Welch, B.L. 1947. The generalization of "student's" problem when several different population variances are involved. Biometrika, vol. 34, 28–35.

210. Welling, A., Kaikuranta, P. and Rinne, P. 1997. Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins. Physiol Plant, vol. 100, 119–125.

211. Went, F.W. 1926. On growth-accelerating substances in the coleoptile of Avena sativa. Proc Kon Ned Akad Wet, vol. 30, 10–19.

212. Werner, T., Köllmer, I., Bartrina, I., Holst, K. and Schmülling, T. 2006. New insights into the biology of cytokinin degradation. Plant Biology, vol. 8, 371–381.

213. Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H.V. and Schmu¨ lling, T. 2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, vol. 15, 2532–2550.

214. Wiesman, Z. and Lavee, S. 1995. Enhancement of IBA stimulatory effecton rooting of olive cultivar stem cutting. Sci Hortic, vol. 65, 189–198.

215. Wiesman, Z., Riov, J. and Epstein, E. 1989. Paclobutrazol and urea-phosphate increase rooting and survival of peach „Maravilha“ softwood cuttings. HortScience, vol. 24, 908–909.

216. Wynne, J. and McDonald, M. S. 2002. Adventitious root formation in woody plant tissue: The influence of light and indole-3-butyric acid (IBA) on adventitious root

Page 88: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

88

induction in Betula Pendula. In Vitro Cellular & Developmental Biology – Plant, vol. 38, nr. 2, 210–212.

217. Zalesny, R. S., Riemenshneider, D. E. and Hall, R. B. 2005b. Early rooting of dormant hardwood cuttings of Populus: analysis of quantitative genetics and genotype 9 environment interactions. Can J Res, vol. 35, 918–929.

218. Zawaski, C., Kadmiel, M., Ma, C., Gai, Y., Jiang, X., Strauss, S. H. and Busov, V. B. 2011. SHORT INTERNODES-like genes regulate shoot growth and xylem proliferation in Populus. New Phytologist, vol. 191, 678–691.

219. Zeevaart, J. A. D. and Creelman, R. A. 1988. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant MOI Biol, vol. 39, 439–473.

220. Zhao, Y., Christensen, S. K., Fankhauser, C., Cashman, J. R., Cohen, J. D., Weigel, D. and Chory, J. 2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, vol. 291, 306–309.

221. Zhao, Y. 2010. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol, vol. 61, 49–64.

222. Zhao, Q. and Guo, H. W. 2011. Paradigms and paradox in the ethylene signaling pathway and interaction network. Mol Plant, vol. 4, 626–634.

223. Zhu, Y., Nomura, T., Xu, Y, Zhang, Y, Peng, Y., Mao, B., Hanada, A., Zhou, H., Wang, R., Peijin, Li P., Zhu, X., Mander, L. N., Kamiya, Y., Yamaguchi S. and Hea, Z. 2006. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. The Plant Cell, vol. 18, 442–456.

224. Žiauka, J. 2012. Etileno, giberelino ir abscizo rūgšties reikšmė drebulės (Populus tremula L.) ir jos hibridų morfogenezės valdymui modeliuojamomis aplinkos sąlygomis. Daktaro disertacija.Vytauto Didžiojo universitetas.

225. Žiauka, J. and Kuusiene, S. 2010. Different inhibitors of the gibberellin biosynthesis pathway elicit various responses during in vitro culture of aspen (Populus tremula L.). Plant Cell Tissue and Organ Culture, vol. 102, nr. 2, 221–228.

226. Žiauka, J. and Kuusiene, S. 2014. Multiplication and growth of hybrid poplar (Populus alba x P. tremula) shoots on a hormone-free medium. Acta Biologica Hungarica, vol. 65, 346–354.

227. Žiauka, J., Kuusienė, S. and Šilininkas, M. 2013. Fast growing aspens in the development of a plant micropropagation system based on plant-produced ethylene action. Biomass and Bioenergy, vol. 53, 20–28.

228. Žiauka, J., Kuusienė, S., Grunskis, V., Lenortavičiūtė, S. and Šilininkas, M. 2011. Kai kurių augimo reguliatorių poveikis ex vitro adaptuojamų hibridinės drebulės (Populus tremuloides Michx. × P. tremula L.) mikroūglių vystymuisi. Miškininkystė, nr. 70, 7–13.

229. Žižka, Z., Vetrovsky, T. and Gabriel, J. 2010. Enhancement of autofluorescence of the brown-rot fungus Piptoporus betulinus by metal ions. Folia Microbiol, vol. 55, 625–628.

230. http://www.amvmt.lt/index.php/infekcines-ligos/kamienu-saku-ligos/drebuline-kempine (žiūrėta 2018-06-11).

231. http://www.amvmt.lt/index.php/infekcines-ligos/kamienu-saku-ligos/berzinis-pintenis (žiūrėta 2018-06-11).

Page 89: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

89

SUMMARY OF DISSERTATION „HORMONAL REGULATION OF

ROOT DEVELOPMENT IN IN VITRO CULTURES OF POPULUS

TREMULA L. AND ITS HYBRIDS AND BETULA PENDULA ROTH“

INTRODUCTION

In forestry science, it is important to achieve an understanding of the architecture and

formation of roots of forest trees, as well as other plants. The roots play an essential role in plant

anchorage, the efficient use of water and nutrients, and the establishment of plants and

microorganisms. These processes, in turn, result in good productivity, adaptability and other

characteristics of forest trees. To improve plantation forestry efficiency, scientists use various

tools to look for new opportunities to improve the properties of trees. Such opportunities are

often realized using tree biotechnology, with tissue culture being inseparable from this

technology. The reproduction of trees by micro-vegetative methods (tissue culture) allows the

production of genetically identical plants, reduces the length of the selection period, achieves a

high multiplication factor, propagates those species of trees unable to reproduce vegetatively in

nature, etc.

In the process of microvegetative propagation of forest trees by tissue culture, rooting is

one of the essential processes that largely determine the success of the whole process. A variety

of biochemical signals and a regulating network of genes guide the formation of the plant roots

and the other plant organs (Orman-Ligeza et al., 2013). In the plant world, phytohormones are

some of the major regulatory signalling molecules that are critical to all processes of plant

development, including root formation. In the plant, the activity of phytohormones is likely to

occur at the site of their biosynthesis, but these compounds can also be transported between

tissues of the plant. Signalling pathways of phytohormones usually cause certain responses at

the gene expression level. The overall strategy of the interactions of phytohormones is to control

the most important specific components of other hormonal signal maps. In this way,

phytohormones can influence the synthesis (levels of the hormone), sensitivity (hormone

response) and transport (hormonal distribution) of other phytohormones (Santner et al., 2009;

Santner and Estelle (2009)).

The basis for the research of the formation of forest trees also involves the functioning of

the system of phytohormones and the expression of the related genes. Changing (due to natural

processes or targeted human activities) the number of molecules that influence the synthesis and

activation of a hormone and the amount of the hormone leads to corresponding changes in the

Page 90: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

90

formation of the roots. In different types of plants, the quantities of molecules involved in such

mechanisms may vary and lead to different developmental possibilities in the root system.

Therefore, when such studies seek to gather new and more comprehensive knowledge of root

control mechanisms, the inclusion of different types of trees is important.

The current research was conducted to study the hormonal regulation of root development

in Populus (poplar) and Betula (birch) species. The in vitro culture of these tree species is

known to show radical differences in rooting: most microvegetatively propagated

representatives of Populus species, including the aspen P. tremula, easily form adventitious

roots, and birches, when propagated by this same method, show difficulty in forming roots.

However, no data exist to describe these differences in in vitro rooting abilities as being clearly

associated with relevant differences in hormonal system activity or other biochemical factors in

these tree species.

The knowledge obtained from this research can be used in practice to solve the actual

problems of propagation and cultivation of aspen and birch. This knowledge is especially

important for the latter, as the effective application of microvegetative propagation to establish

short rotation plantations of birch will require investigation into enhancing the root system

development in these trees, thus improving their adaptability ex vitro. Successful

microvegetative propagation systems can be effectively applied for the establishment of

valuable plantations of forest trees.

Research hypothesis

Among the genera Populus and Betula, significant differences exist in the morphogenetic

effect of those hormones that determine specific peculiarities in the formation of adventitious

roots in in vitro cultures of these trees.

Aim of the research

The aim of this research was to determine the biochemical factors that lead to differences

in the formation of adventitious roots and their effects on the development of shoots between

representatives of Populus and Betula species in in vitro systems.

Objectives

1. To investigate the features of the explants of silver birch (Betula pendula Roth) during their

initial development in in vitro culture that are associated with the natural potential of

subsequent root formation in the course of propagation.

2. To determine which regulating hormones and what quantities have the greatest influence on

the formation and development of adventitious roots of aspen (Populus tremula L.) in in

vitro culture.

Page 91: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

91

To investigate the peculiarities of the quantity of endogenous hormones in the shoots of the

Populus (P. tremula, P. tremuloides × P. tremula, P. alba L. × P. tremula) and B. pendula

genotypes with different rooting ability.

To determine the main differences in the morphological response to regulation of hormone

quantity between P. tremula and its hybrids and B. pendula genotypes.

To investigate the relationships between indicators of in vitro development of the roots and

shoots of trees genotypes with different amounts of endogenous hormones.

Scientific novelty

For the first time, explant features of silver birch (Betula pendula Roth) first subcultures

have been associated with the potential for individual birch genotypes to show root formation in

later stages of the culture: these included those subcultures that formed a green shoot apex on

the medium without hormones and remained viable on the medium with benzylaminopurine

(cytokinin).

For the first time, a determination was made that inhibition of formation of adventitious

roots of Populus tremula L. by using auxin transport inhibitor (TIBA) could not be reversed by

supplementing the medium with auxin indolyl-3-acetic acid.

For the first time, a determination was made that the quantity of endogenous hormones in

explant shoots of micro-vegetatively propagated Populus and Betula genotypes resulted in

different morphogenetic peculiarities. In addition, the concentration of indolyl-3-acetic acid was

determined to be significantly greater in shoots of the Populus genotypes than in shoots of the

silver birch, independently of their abilities for root formation. Meanwhile, in the birch

genotypes, which form the roots in in vitro culture, much higher concentrations of abscisic acid

were found than in the shoots of the birch,which did not form roots, and which, in turn, were

determined to have higher concentrations of the cytokinin zeatin.

For the first time, abscisic acid was determined to promote or inhibit the gibberellin

synthesis of the paclobutrazol, which inhibits the formation of lateral adventitious roots of silver

birch grown in vitro. Additionally, the in vitro culture of birch showed that, in contrast to culture

of the Populus genotype, the abscisic acid does not have a negative effect on the shoot growth

and adventitious root formation.

Practical significance

Those specific methodological conditions determined as necessary when preparing plant

material for introduction to in vitro culture, led to more efficient production of viable Betula

pendula Roth microshoots from culture. Determination of the genotype-dependent features of

the explants in the first subcultures led to the ability to predict the rooting potential of the silver

birch genotype in later stages of the in vitro culture and to the ability to perform early selection

Page 92: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

92

of genotypes. Established and stable root formation was obtained from in vitro cultures of the

different Betula pendula Roth genotypes.

The peculiarity of internal phytohormone concentrations were determined for the in vitro

explants of micro-vegetative genotypes of Populus and Betula. In addition, differences in the

morphological responses to the regulation of gibberellin and abscisic acid quantity enabled

preparation of an optimal plan for the use of growth regulators for the productive development

of shoots and roots in in vitro culture. This plan is important for the more effective application

of microvegetative propagation for the prospective establishment of short rotation plantations of

forest trees.

Defended statements

1. The peculiarities of the explants of the silver birch (Betula pendula Roth) in the initial stage

of the in vitro culture are associated with the natural potential of root formation in the

subsequent process of propagation.

2. The quantity of the regulating phytohormones auxin and gibberellin of aspen (Populus

tremula L.) in in vitro culture have the greatest influence on the formation and development

of the adventitious roots.

3. Differences in the quantities of the endogenous hormones indolyl-3-acetic acid and abscisic

acid determine peculiarities in the rooting abilities of the shoots of the Populus (P. tremula,

P. tremuloides × P. tremula, P. alba L. × P. tremula) and B. pendula genotypes.

4. The main differences between P. tremula and its hybrids and B. pendula genotypes are the

morphological responses to regulation of the amount of gibberellin and abscisic acid

activity.

5. Different amounts of endogenous hormones in the studied tree genotypes lead to peculiar

relationships among the in vitro development indicators of roots and shoots.

Approval of the research

The results of the dissertation research were published in five scientific articles

(Physiology plantarum, (IF=2.58) DOI: 10.1111/ppl.12860; Biologija 63 (3): 246–255;

Miškininkystė 1 (79): 69-79 also 1 (82): 16–26 and 1 (82): 38–45) and have been presented at

five international conferences in Belgium, the Czech Republic, Lithuania and Sweden.

Volume and structure of the work

The dissertation consists of six parts: Introduction, Literature Review, Material and

Methods, Results and Discussion, The Main Conclusions, and References. The work is

illustrated by 19 figures and 4 tables. The dissertation contains 88 pages (116 pages with

summary). The list of literature consists of 231 sources.

Page 93: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

93

Materials and methods

The research was conducted at the Laboratory of Forest Plant Biotechnology in the

Institute of Forestry of the Lithuanian Research Centre for Agriculture and Forestry.

The objects of this research are the genera Populus and Betula and their shoot cultures.

Experiments were conducted on clones of four Populus and seven Betula pendula Roth

genotypes selected in Lithuania (Table 1). Populus genotypes were taken from selected forest

trees and introduced to in vitro culture much earlier than the Betula pendula genotypes. One of

the Betula pendula Roth genotypes was originally a rot-free tree from the birch seed stand of the

Satkūnai Forest Enterprise (Joniškis District). The explants of this birch tree were introduced to

in vitro culture in 2014, 2 years before the other six genotypes. The latter were taken from the

seed stand of B. pendula, established from selected birch tree clones in the nursery of Dubrava

Experimental and Training Forest Enterprise. The explants of the six Betula pendula genotypes

were introduced to in vitro culture during this study. The characteristics of the original donor

trees of these Populus and Betula pendula genotypes are given in Table 1.

The shoots of these genotypes were cloned under laboratory conditions, using young aspen

or birch twigs collected from the middle part of the crown in early spring (just before the bud-

break) for the establishment of proliferating shoot cultures. The microshoot culture method used

in these experiments has previously been described by Ahuja (1987). These shoot cultures were

maintained in vitro for several years through successive bimonthly passages on a solidified (with

4 g L-1 Gelrite) Woody Plant Medium (WPM) which included vitamins (Lloyd and McCown

1980) and was enriched with 20 g L-1 sucrose, and for the first year of culture only, also

included 0.5 mg L-1 6-benzylaminopurine (all components of the medium were purchased from

Duchefa Biochemie, The Netherlands).

Birch explant introduction to in vitro culture

Introduction of the six birch genotypes (Table 1) to aseptic in vitro culture was done in

early spring. First, branches with ready-to-burst vegetative buds were cut from the tree crowns.

The collected branches were immersed into containers with water at room temperature. For

experimental purposes, the branches from each tree were divided into two groups which differed

from each other with respect to the time span between branch collection and explant

introduction to in vitro culture. This varied branch storage time was either 1 or 2 weeks. After

that time, approximately 2-cm-long apical stem segments of young shoots, carrying two to three

buds (including an apical bud), were collected from branches and prepared for introduction to in

vitro culture. Before being transferred onto the nutrient medium, these explants were disinfected

with 50% commercial bleach Ace (Dalli Production Romania SRL) for 2 min, commercial

bactericide Bacticid (AS Chemi-Pharm, Estonia) for 3 min, and 75% ethanol (Stumbras,

Page 94: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

94

Lithuania) for 2 min. After each of these treatments, the explants were washed twice with

disinfected distilled water: the first time for 1 min and the second time for 3 min. Afterwards,

the explants were placed onto disinfected (autoclaved) WPM in closed culture tubes.

Table 1. Original donor trees of Populus or its hybrids and Betula pendula genotypes used in the study

Species or hybrid

Tree code in the database of the

Lithuanian State Forest Service (2015)

Coordinates (of the forest enterprise)

Tree characteristics in 2015

Age in years

Height in metres

Diameter in metres

Populus

tremula L.

18DPL037 55°22' N; 22°14' E

(Pagramančiai) 60 33 0.64

17DPL038 55°15' N; 23°20' E

(Šimkaičiai) 70 33 0.64

P. tremuloides Michx. × P. tremula L.

51DF1001 54°51' N; 24°04' E

(Vaišvydava) 21 24 0.33

P. alba L. × P. tremula L.

51DhPL022 54°51' N; 24°03' E

(Vaišvydava) 40 34 0.63

Betula pendula Roth

49BPL073 55°06' N; 24°22' E

(Pageležių) 100 28 0.45

51BPL088 54°47' N; 24°4' E

(Šilėnai) 65 28 0.43

01BPL115 56°16' N; 24°48' E

(Spalviškiai) 50 34,5 0.35

20BPL125 55°42' N; 24°23' E

(Vainagiai) 60 32 0.40

52BPL171 54°47' N; 23°38' E

(Šališkiai) 70 33 0.44

22BPL195 55°07' N; 21°53' E

(Pagėgiai) 65 28 0.35

Species

Seed stand code in the database of the Lithuanian State Forest Service (2015)

Coordinates (of the forest enterprise)

Stand characteristics in 2015

Area in hectares

Alt, yr

Betula pendula Roth

43BSM001

56°18'00,37” N; 23°39'01,20” E

(Satkūnai)

5.6

49

Table 2. Culture conditions for Betula pendula explants during the 12-month period after introduction to in vitro culture

Period (from the start of culture) Subculture frequency Nutrient medium 12 days - Control BAP1

13 days – 2 months 7 days Control 3-4 months 1 month Control 5-9 months 1 month BAP

10-12 months 1 month Control 1 BAP – 6-benzylaminopurine (24 µmol·L-1)

During the first 12 d of in vitro culture, the explants of each of the six genotypes were

divided between the control and the BAP-supplemented media for experimental purposes. After

Page 95: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

95

this initial period, and until the third month in vitro, the frequency of explant subculturing was 1

week, which was prolonged to 1 month afterwards. After the first 4 months in vitro, all

remaining explants were transferred onto the medium with BAP to induce callus formation until

being planted on the control medium again 5 months later. The overall scheme of explant

culture conditions during the 12 month period is given in Table 2.

Experiments on the influence of exogenously applied chemicals

The basal WPM (as described above) was used in all experiments. The control groups were

cultured on the medium without any additional compounds (hormone-free), while particular

chemicals were added to the medium for culturing of designated experimental groups. These

chemicals included 2,3,5-triiodobenzoic acid (TIBA), indolyl-3-acetic acid (IAA), indolyl-3-

butyric acid (IBA), 6-benzylaminopurine (BAP), abscisic acid (ABA), paclobutrazol (PBZ), and

gibberellin (GA4/7) (all purchased from Duchefa Biochemie, Haarlem, The Netherlands). The

TIBA, IAA, BAP, and ABA powders were first dissolved in a drop of NaOH, IBA and GA4/7 in

ethanol, and PBZ directly in distilled water, with each then being diluted with distilled water to

an appropriate volume for the basal solution. The pH value of the basal solution of these

chemicals was adjusted to 4.8 (the same as the medium). The basal solutions of these chemicals

were filtered through a syringe-driven membrane filter (pore size 0.1 μm), prior to being added

(at the appropriate volume) to the autoclaved nutrient medium; the pH value of the medium had

been adjusted to 4.8 before the medium was autoclaved for 30 min at 121 ºC. The experimental

in vitro cultures were maintained in glass culture tubes (150 mm × 20 mm) covered with plastic

caps. Single stem explants were inserted vertically into one test tube containing 5 ml of the

nutrient medium. All cultures were maintained in controlled environmental conditions under 16

h photoperiod provided by white-light illumination (irradiance 30 µE m-2 s-1) and a temperature

regime of 25 ºC/18 ºC during day and night conditions, respectively. For the whole experimental

period, the glass culture tubes containing the tree explants were put into wooden pallets with

holes, where the lowest part of the tube with the medium (approximately 3 cm) was placed in

partial darkness to decrease the light intensity to the medium.

The experimental results were evaluated after 2 months of culture. For each particular

explant, the shoot number and adventitious and lateral root numbers were counted visually,

while the lengths of a main shoot and of all adventitious roots or the lengths and the width of the

callus were recorded using a ruler. The callus weight was measured using scales, and the density

was obtained by dividing the weight by the volume, whereas the volume was obtained using the

formula for calculating the semi-spheroid volume: (4/3*Πr2h)2. The lateral root density for each

Page 96: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

96

rooted explant was obtained by dividing the number of lateral root by the total of the lengths of

the adventitious roots.

Extraction of plant hormones and high-performance liquid chromatography (HPLC)

analysis

One gram of fresh in vitro-grown shoots (after 2 months of culture) was ground and

extracted in 10 mL of 85% methanol for 24 h at 4 °C. The homogenate was centrifuged at

13,500 ×g for 5 min, and the supernatant was collected and kept at -80 °C until analysis by

HPLC. Extractions were performed in triplicate.

Plant extracts were treated and analysed by a modified method of Bendokas et al. (2017). 

Plant hormones were separated and quantified using an Agilent 1200 series HPLC system

(Agilent Technologies Inc., USA) with a diode array detector. Samples were filtered through a

syringe filter with a PVDF membrane (pore diameter 0.22 µm), diluted 10 times prior to

injection (injection volume 20 µl), and separated on a reversed-phase column (Spherisorb

ODS2, 4 × 125 mm, Waters Corporation, USA). A quaternary solvent (A, 50% methanol; B,

50% methanol and 1.2% acetic acid; C, water; and D, methanol) gradient elution was used as

follows: initial conditions were 10% B, 60% C; 10.5 min 50% B, 15.75 min 50% B; 23 min

40% B, 60% D, 30 min 40% B, 60% D; and 32 min 10% B, 60% C. The samples were spiked

with a standard mixture and analysed again to verify their peak positions. GA3 and ABA were

detected at the wavelength of 254 nm, whereas IAA and zeatin were detected at 280 nm.

Standards for GA3, IAA, ABA, and zeatin (Sigma, Germany) were used for identification and

quantification of hormones. Peak positions of the analytes were identified by the retention time,

peak spiking, and spectral properties. Hormone concentrations were valued via the linear

regression equation of the calibration curves for the standards. ChemStаtion 3D LC software

was used to check the purity of the separated peaks based on different spectral properties of

possible co-eluting compounds. The analyses were performed in triplicate, and the results were

presented as the mean ± standard error.

Statistics

For the comparative analysis of the experimentally obtained rates and means, a two-tailed

Welch’s t-test intended for use with samples having possibly unequal variances (Welch, 1947)

was performed in Microsoft Excel 2010; in this way, the probability (P) that two separate

samples come from populations with the same mean was calculated. The results, which were

given in rates (e.g., a rate of explants with a certain characteristic) were also treated as the

means of binomial distribution for statistical purposes. A difference between experimental

variants is considered significant if an obtained t-test result is P <0.05. In the investigation of the

correlation, the correlation coefficient (r) is validated according to criterion tr. The tr criterion is

Page 97: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

97

calculated by the correlation coefficient r and the standard error of the correlation coefficient Sr

ratio. The calculated correlation coefficient is statistically significant if the probability level is

equal to or greater than 95 %.

Research plan

According to the tasks set at the beginning of this work, a research plan has been

developed. The research plan is divided into parts, the order of which is presented in Table 3.

These parts correspond to a particular research task (the numbers for each task and the relevant

part of the study coincide).

Table 3. Parts of the research plan

No. Parts of the research Chemical material used to supplement the nutritional medium in specific experiments

1.

Research, in in vitro culture, those features of the initial development of Betula pendula Roth explants that are related to the natural potential of root formation in the course of further propagation

Hormone: BAP.

2.

Research the regulation of hormonal activity that has a major influence on the formation and development of adventitious roots of Populus tremula L. in in vitro culture

Hormones: ABA, IAA, gibberellin A4/7, and BAP.

Hormones and their synthesis or transport inhibitors: ABA, IAA, gibberellins A4/7, BAP,

TIBA, and PBZ.

3.

Research the composition of endogenous hormones in shoots of Populus (P. tremula, P. tremuloides × P. tremula, P. alba L. × P. tremula) and B. pendula genotypes with different rooting abilities

-

4.

Research the most important differences of the morphological response to the regulation of the chemical hormone activity among the investigated P. tremula, its hybrids and B. pendula genotypes

Hormones and their inhibitors that regulate root development: IAA, ABA, and PBZ (according to

results of parts 2 and 3)

5.

Research the relation between the in vitro development of characteristic of roots and shoots of tree genotypes that differ in endogenous hormone amount

Inhibitor of the hormone gibberellin: PBZ (according to results of parts 2, 3 and 4)

Results

Introduction of Betula pendula Roth explants to in vitro culture

In earlier in vitro studies of factors determining the viability of Betula pendula explants,

attention was largely given to the effects of certain environmental and chemical treatments

conducted on already established in vitro cultures (Bojarczuk et al., 2000; Wynne et al., 2002).

However, the present study also showed that pretreatment conditions of collected plant material,

e.g., storage time between cutting of branches and explant preparation, can have a decisive

influence on explant viability in vitro. The results showed that, 12 d after the introduction of the

Page 98: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

98

explants to in vitro culture, the average rate of infected explants varied among individual birch

genotypes from 0 (01BPL115, 20BPL125, 52BPL171, 22BPL195, 51BPL088, 49BPL073) to

80% (22BPL195). In some of the genotypes, the infection rate was found to be dependent on the

storage time between the cutting of the branches from a donor tree and the disinfection of the

explants (Fig. 1A). The most dramatic difference (P < 0.001) in this respect was observed in

genotype 22BPL195: no explant of this genotype became infected if the storage time was just 1

week, but the infection rate reached 80% if storage time was prolonged to 2 weeks.

Interestingly, the genotype 01BPL115 was the only one to acquire some infection (20%) when

the explants were disinfected after 1 week of branch storage, although no infection was observed

among the explants of this genotype if the branches were stored for 2 weeks. However, the

negative effect of prolonged branch storage time before explant introduction to in vitro culture

was even more clearly revealed by the rates of brown (signifying the loss of viability) explants.

In four of the studied six genotypes, the rate of brown explants was significantly higher if the

branches were stored for 2 weeks, in comparison to the 1-week storage (Fig. 1B). The

differences were most significant (P < 0.001) in genotypes 01BPL115 and 20BPL125, which

had relatively small rates of browning of explants (20%) if the storage time was 1 week but lost

most or even all (genotype 20BPL125) explants to browning in the case of 2 weeks of storage.

Following the observed negative effect of prolonged storage time on explant viability, the

results subsequently described in the text consider those explants only that were introduced in

vitro after 1 week of storage. Instead, the supplement of nutrient medium with the cytokinin

BAP (24 µmol·L-1) is considered here. Among the different genotypes, the average rates of

explants with a green stem (after 12 d in vitro) varied from 60% (22BPL195, 51BPL088, and

49BPL073) to 100% (52BPL171) on the hormone-free medium (Fig. 2A) and from 0

(51BPL088 and 49BPL073) to 80% (52BPL171) on the medium with BAP (Fig. 2B). Although

most of the early studies on B. pendula micropropagation recommend the use of cytokinin-type

growth regulators not only for the multiplication but also for the introduction of birch material in

vitro (Chalupa et al., 1981; Ditmar,1991; Huetteman et al., 1993), during this first stage in the in

vitro culture, the BAP negatively affected the explant viability. However, even on the hormone-

free medium, only a part of the explants with a green stem had a green apex as well. For

instance, although all the explants of genotype 52BPL171 had a green stem, only 20% of them

had a green apex (Fig. 2A). Meanwhile, genotypes 01BPL115 and 51BPL088 were

distinguished from the other genotypes by all their explants with a green stem also having a

green apex. Thus, genotype 01BPL115 was the one with the highest rate of green apices (80%)

on the hormone-free medium. Interestingly, genotype 22BPL195 was the only one of the six

tested genotypes, whose explants (40%) had green apices on the medium with BAP (Fig. 2B)

Page 99: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

99

but not on the hormone-free medium. This observation might be associated with natural auxin,

since this hormone is known to be synthesized largely in young leaves around a shoot apex

(Ljung et al., 2001), and once transported through the cambium downwards, auxin is able to

stimulate adventitious rooting on the basal part of a stem (Blilou et al., 2005; Petrasek and

Frimley, 2009). This generally accepted model of auxin synthesis, transport and action in plants

provides a possible explanation as to how the maintenance of a green shoot apex during the very

first subculture in vitro could have contributed to the effective realization of rooting potential in

the particular birch genotype – 01BPL115 – during later stages of tissue culture.

*

***

0

20

40

60

80

100

01BPL115 20BPL125 52BPL171 22BPL195 51BPL088 49BPL073

Ra

te o

f in

fect

ed

exp

lan

ts,

%

storage time 1 week storage time 2 weeksA

***

***

**

*

0

20

40

60

80

100

01BPL115 20BPL125 52BPL171 22BPL195 51BPL088 49BPL073

Rat

e o

f b

row

n

exp

lan

ts,

%

storage time 1 week storage time 2 weeksB

Fig. 1. Rates of infected (A) and brown (B) explants in different Betula pendula genotypes 12 d after introduction to in vitro culture on a hormone-free medium. ‘Storage time’ refers to a time span between collecting of branches from the trees and disinfection of explants. Significant differences between the tested storage times are labelled: * (P < 0.05), ** (P < 0.01), *** (P < 0.01)

The loss of a green shoot apex under the influence of BAP might be associated with auxin-

cytokinin crosstalk, since other authors (Marhavý et al., 2011) found that an increased amount

of cytokinin leads to a decrease in the auxin efflux proteins in the plant cell membrane. Such

interference with auxin transport might have led to an increased auxin concentration in the shoot

apex of the BAP-treated birch explants, resulting in apex browning because of the herbicidal

action of local auxin excess (auxin ability to act as an herbicide is described in detail by Kraft

et al. (2007)).

Page 100: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

100

B BA

B B B

a

b,c

c

d

a,b

b,c

0

20

40

60

80

100

01BPL115 20BPL125 52BPL171 22BPL195 51BPL088 49BPL073R

ate

of

ex

pla

nts

, %

green stem green apex

A

B

A

A

C Cb b b

a

b b0

20

40

60

80

100

01BPL115 20BPL125 52BPL171 22BPL195 51BPL088 49BPL073

Ra

te o

f e

xp

lan

ts,

%green stem green apex

A

B

Fig. 2. Rates of green explants in different Betula pendula genotypes 12 d after introduction to in vitro culture on a hormone-free medium (A) or a medium with 24 µmol·L-1 of 6-benzylaminopurine (B). Birch genotypes labelled with the same letter do not differ significantly (P < 0.05) from each other. Uppercase letters indicate differences in explants with a green stem, and lowercase letters indicate differences in explants with a green apex

Four months after the introduction of birch explants to in vitro culture, all surviving

explants of all the genotypes were transferred onto a medium containing 24 µmol/l of BAP. This

step was taken for callus induction. After 2 months on the medium with BAP, all explants of

genotypes 51BPL088 and 49BPL073 had become brown and not suitable for further culture.

Meanwhile, the other genotypes (01BPL115, 20BPL125, 52BPL171, and 22BPL195) formed a

callus that was cultured on BAP-supplemented medium for 3 additional months. After this

period, the results showed that regeneration of new shoots from the callus occurred only in

genotypes 01BPL115 and 52BPL171. Accordingly, only these two genotypes remained in the

culture and were able to produce new shoots continuously. However, the differences between

the two were distinct: after 12 months in tissue culture, genotype 01BPL115 was characterized

by regular shoot growth and a well-developed root system, whereas genotype 52BPL171

regenerated relatively weak shoots from the callus, and these mostly did not form roots

(Table 4). Interestingly, although genotype 01BPL115 had a 5.6 times higher propagation rate

than 52BPL171 (if all viable explants after the first 12-d subculture in vitro were considered as

starting material), the rates between the total number of explants after 12 months and the

number of explants with a green apex after the first 12 d were quite similar in both genotypes

(Table 4).

Page 101: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

101

Table 4. Explant propagation results in two Betula pendula genotypes 12 months after introduction to sterile in vitro culture

Genotype

Total number

of explants

Rate of rooted explants (from

the total number), %

Propagation rate (from the number of viable explants after

the first 12 d of subculture in vitro)

Rate between the total number of explants after 12 months and the number of explants with a green

apex after the first 12 d of subculture in vitro

01BPL115 201 88.1 6.7 12.6

52BPL171 44 2.3 1.2 11.0

Thus, difficult-to-root birch genotypes seemed to experience cytokinin-like influence even

on the control medium. Internally produced or accumulated cytokinin might have contributed to

this phenomenon. Although the role of the main biosynthesis site of plant cytokinin is attributed

to the root tip (Aloni et al., 2005), the shoot apex is also known, e.g., from an early study of

asparagus (Yasunori et al., 1980), to produce cytokinin during in vitro culture. Meanwhile, the

question about hormone production and balances in different birch genotypes remains open for

further research.

Regulation of quantity of the most important hormones that determine the formation

and development of adventitious roots in Populus in in vitro culture

In this section, the chemical factors that determine the formation of adventitious roots of

aspen (P. tremula) genotype, by using transfer or synthesis inhibitors of natural hormone or

hormones that inhibit the signal of other hormones, are examined. In particular, the transport

mechanism of auxin was investigated. The results of the determination of the optimal

concentration of 2,3,5-triiodobenzoic acid (TIBA), an inhibitor of auxin transport, showed that

the lowest 1 μmol/l concentration resulted in a statistically significant (P <0.001) decrease in the

number adventitious roots (Fig. 3 B) in comparison with data from the control explants. The

1 μmol/l TIBA concentration did not have a significant effect on the number of shoots.

Although the used higher TIBA concentrations significantly increased shoots number, and

interestingly, the 5 μmol/l concentration caused a greater increase in shoots than the 15 μmol/l

(Fig. 3 A), whereas the 1 μmol/l concentration reduced the number of adventitious roots in

comparison with data from the control explants (Fig. 3 B). The results of the data from the

whole sample of explants indicate that TIBA reduced the percentage of explants with lateral

roots. In this case, when 1 μmol/l had no significant effect, when compared with data from

control explants, the concentrations of 5 and 15 μmol/l significantly reduced the percentage of

explants with lateral roots from 75 or 64%. In the following results for TIBA, the data on the

length of the adventitious roots and the density of the lateral roots are analysed only for samples

of explants with lateral roots. Therefore, these data were analysed using concentrations of TIBA

Page 102: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

102

at 1, 5 and 15 μmol/l, using methodology based on the percentage of the sample with lateral

roots forming more than ½ of the total sample (Fig. 3 D, E, F). In the case of the main

adventitious root length, only the 5 μmol/l concentration of TIBA effected a significant change,

which in contrast to the decrease of total root length, was positive when all concentrations were

combined for comparison with data from the control explants (Fig. 3 D, E). All concentrations

of TIBA reduced the number and total length of the adventitious root; however, with regard to

the density of the lateral roots, even when the lower concentrations did not have a significant

effect, the 15 μmol/l increased their density (Fig. 3 F).

c c

a

b

0

2

4

0 1 5 15Sh

oo

t n

um

be

r p

er

ex

pla

nt

A

a

b

c c

0

2

4

0 1 5 15

Ro

ot

nu

mb

er

pe

r e

xpla

nt

B

a

a,bb,c

c

0

25

50

75

100

0 1 5 15

Ra

te o

f e

xp

lan

ts

wit

h la

tera

l ro

ots

, %

C

b ba

b

0

2

4

6

0 1 5 15

La

rges

t ro

ot

len

gth

, c

m

TIBA concentration,

µmol L-1D

a

b,cb

c

0

2

4

6

0 1 5 15

Tota

l ro

ot

len

gth

, c

m

TIBA concentration,

µmol L-1E

b a,bb

a

0

2

4

6

0 1 5 15

La

tera

l ro

ot

de

ns

ity,

ro

ots

pe

r c

m

TIBA concentration, µmol L-1

F

Fig. 3. Number of shoots (A) and adventitious roots (B) per explant (mean ± SE), the rate of explants with lateral roots (C) and main (D) and total (E) adventitious root lengths (mean ± SE) of explants, as affected by the presence of different TIBA concentrations (0, 1, 5 and 15 µmol/l) in the nutrient medium. A, B, C data are from the total number of explants, and D, E, F are from the number when the part of explants with lateral roots exceeds ½ total number. Significantly different means of samples grown under different nutrient media conditions (P < 0.05) are labelled with different letters

According to the previous results of the Populus tremula studies, the auxin content of the

whole plant strongly depends on the part of the shoot that contains the maximum amount, and

auxin transport from the shoot to the root is an important factor in root formation (Eliasson,

1969; Eliasson 197; Johanson et al., 2018). Additionally, data from research by Yordan and

colleagues revealed that explants of in vitro culture of Populus mutants with larger leaves had a

better adventitious root system (Yordanov et al., 2017). The results of our study, which agreed

with the studies by these researchers, who used TIBA to inhibit auxin transport, showed that the

Page 103: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

103

formation and development of adventitious roots as well as shoots, was inhibited. However, the

complexity of this process is shown by the many genetic studies that have sought to determine

the responsible gene or the creation of mutants of Populus and other plants for this purpose

(Tuominen et al., 1995; Bustillo-Avendaño et al., 2018). Additionally, various other factors that

influence auxin distributions have been investigated in hybrid aspen and other plants (Mauriat et

al., 2014; Abu-Abied et al., 2018). Even studies by El-Showk and co-authors have shown that

auxin transport can be modulated by all other hormones, and they suggest that this may be the

main target of all hormones in the plant (El-Showk et al., 2013).

a

a

a a

0

1

0 0,5 1 3

Sh

oo

t n

um

be

r p

er e

xpla

nt

A

a

bb b

0

4

8

12

0 0,5 1 3

Ro

ot

nu

mb

er

pe

r e

xp

lan

t

B

aa a a

0

25

50

75

100

0 0,5 1 3R

ate

of

exp

lan

t w

ith

late

ral r

oo

ts,

%

C

a,b

a

b b

0

1

2

3

0 0,5 1 3

La

rge

st r

oo

t le

ng

th,

cm

PBZ concentration,

µmol L-1D

b

aa a

0

3

6

9

0 0,5 1 3

Tota

l ro

ot

len

gth

, cm

PBZ concentration,

µmol L-1E

a a aa

0

2

4

0 0,5 1 3

La

tera

l ro

ot

de

ns

ity,

roo

ts p

er

cm

PBZ concentration, µmol L-1

F

Fig. 4. Number of shoots (A) and adventitious roots (B) per explant (mean ± SE), the rate of explants with lateral roots (C), and the main (D) and total (E) adventitious root lengths (mean ± SE) of explants, as affected by the presence of different PBZ concentrations (0, 0.5, 1 and 3 µmol/l) in the nutrient medium. A, B, C data are from the total number of explants, or D, E, F from the number where the part of explants with lateral roots exceeds ½  total number. Significantly different means of samples grown under different nutrient media conditions (P < 0.05) are labelled with different letters

The results of the determination of the optimal concentration of paklobutrazol (PBZ),

which inhibits the synthesis of gibberellin, showed that 0.5 μmol/l was the lowest of the used

concentration that resulted in a statistically significant change in the number of adventitious

roots (P <0.001) in comparison with data from the control explants (Fig. 4B). All concentrations

of PBZ used increased the number of adventitious roots; however, none of the concentrations

used changed the number of shoots significantly (Fig. 4 A). The results of the data from the

whole sample of explants indicate that all used concentrations of PBZ increased the percentage

Page 104: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

104

of explants with lateral roots to 100%. Therefore, the data for the length of the adventitious roots

and the density of the lateral roots were analysed using all concentrations of PBZ, when the

percentage of the sample with lateral roots was more than ½ of the total sample (Fig. 4 D, E, F).

Sample data from the explants with lateral roots revealed that, in the case of length of the main

adventitious root, none of the concentrations used, although significantly different from each

other (from 0.5 to 1 and 3 μmol /l), showed a significant effect in comparison with data from the

control explants (Fig. 4 D). Although all concentrations of PBZ used increased not only the

number of adventitious roots but also their total lengths (Fig. 4 E), none of the concentrations

showed a significant effect on the density of the lateral roots (Fig. 4 F).

These study results show that gibberellin has a particularly significant influence on explant

development; although it inhibited the root growth, it also affected the shoot growth. Our results

are consistent with the results of other researchers, who found that gibberellin inhibits the

formation of the root system of Populus (Gou et al., 2010; Mauriat et al., 2014; Eriksson et al.,

2000). The stimulation of root growth by regulating gibberellin synthesis has been investigated

via transgenic mutants or using synthesis inhibitors such as paclobutrazol (Gou et al., 2010;

Mauriat et al., 2014; Allingham, 2005; Zhiauka et al., 2010). The results of our study are also

consistent with the results of these scientists, since PBZ significantly increased the root

development of explants of aspen in in vitro culture.

Endogenous hormone quantities in different Populus (P. tremula, P. tremuloides ×

P. tremula, P. alba L. × P. tremula) and B. pendula genotypes with different rooting

abilities

The results of the study of phytohormones concentrations in shoots of different genotypes

of Populus and Betula in in vitro culture revealed differences. The highest concentration of IAR

(45 ± 3.6 μg/g fresh weight) was in explants of the 17DPL038 genotype, and among the Populus

genotypes, the results of the hybrid aspen 51DhPL022 genotype were significantly different,

with a lower concentration (P <0.05) (Fig. 5 C). Meanwhile, in both genotypes of birch, the

measured IAA concentrations did not differ from each other but were significantly lower than

these concentrations in the Populus genotypes (P <0.001) (Fig. 5 C). Differences between

Populus and Betula in the in vitro culture were elucidated by comparing the results of the IAA

concentrations to the number of roots. High IAA concentrations of explants of Populus

genotype can be associated with a high number of adventitious roots. Meanwhile, in the case of

explants of the well-rooted 01BPL115 birch genotype, although the number of roots did not

differ from most explants of the Populus genotypes, the amount of IAA was very low.

Regarding the number of shoots, it could be argued that in the explants with higher

Page 105: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

105

concentrations of IAA and normal numbers of roots, as in explants of the Populus genotypes,

the normal number of shoots was observed (from 1.03 ± 0.03 to 1.6 ± 0.2 units per explant).

Meanwhile, in explants with a low concentration of IAR and a small number of roots, as in

explants of the birch 43BMS001 genotype, a very high number of shoots was observed

(Fig. 5 A, B, C). Thus, in the case of auxin, higher concentrations were observed in explants of

the Populus genotype cultures compared with concentrations in Betula pendula genotype

cultures, which were much lower.

The concentration of internal phytohormones in the Populus and Betula pendula trees have

been investigated for a long time. Large IAR concentrations were found in the vegetation tissue

of shoots and roots of aspen explants in 1996 and were found in the stems of hybrid aspen (P.

tremula x P. tremuloides) in 1997 (Tuominen et al. 1997; Eliason, 1996). Investigations where

internal IAR has been determined, for example, in Betula pendula, have also been conducted

over the last several decades (Galoch et al., 1998; Rinne et al., 1993). According to Steupp and

co-authors, the results showing the detection of auxin are complicated because the amount of

auxin in plants are detected at low concentrations, but compounds that interfere with detection,

occur at high concentrations (Steupp et al., 2017).

b

aa a

c

a

0

2

4

Nu

mb

er p

er

exp

lan

t

Aroot

c d d d

a

b

0

5

10

15

20

Bshoot

a,ba a,b

b

c c0

10

20

30

40

50

Co

nc

entr

ati

on

g/g

fr

esh

we

igth

)

CIAA

b

bb b

b

a

0

5

10

15

20

25

30

35DABA

Fig. 5. Adventitious roots (A) and shoots (B) number per explant (mean ± SE), Shoot hormone (C – IAA; D – ABA) concentrations (mean ± SE) in the in vitro cultures of different Populus (18DPL037, 17DPL038 – P. tremula; 51DF1001 – P. tremuloides × P. tremula; 51DhPL022 – P. alba × P. tremuloides) and Betula pendula (43BSM001, 01BPL115) genotypes on a hormone-free nutrient medium. Significant differences (P>0.05) between the different genotypes are indicated with different letters

The highest concentration of ABR (22.3 ± 2.8 μg/g fresh weight) was observed in shoots of

birch explants of the 01BPL115 genotype with well-formed roots (Fig. 5 E). Interestingly, these

Page 106: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

106

ABR results significantly (P <0.05) differed from the results of the 43BMS001 genotype that

did not form roots (Fig. 5 E), with similar differences being observed between these birch

genotypes for the number of adventitious roots (Fig. 5A). Meanwhile, the ABA concentration in

the shoots of the explants of Populus genotypes was lower and not significantly different from

each other or from the birch genotype that did not form roots (Fig. 5 E). According to the

morphological parameters of explants of the birch genotype, differences in the ABA

concentration between the 01BPL115 and 43BMS001 genotypes could be associated with

differences in the root number of these genotypes. As previously noted, differences between

explants of the 01BPL115 birch and Populus genotypes were not observed, which differed from

the concentration of IAA relative to the of number of roots. Therefore, differences in the ABA

concentration between these 01BPL115 birch and Populus genotypes could be associated with

slight differences in shoot numbers (Fig. 5 B, E).

The quantitative determination of auxin is often associated with the determination of

abscisic acid, as, for example, in trees, where contrasting distribution patterns are investigated

(Mwange et al., 2005). In our study, this trend was also present, with Populus showing a high

level of auxin but a low level of abscisic acid. In the case of birch, this trend appeared only in

the 01BPL115 genotype of Betula pendula, which, unlike Populus, showed a low level of IAA

and high level of abscisic acid. Interestingly, in the 01BPL115 genotype, the concentration of

ABA, which was released at an extremely high level by all studied genotypes, was different

from the other birch—the 43BMS001 genotype—even by more than four times. The results of

this study coincide with the results of Sasamoto and co-authors, where the amount of ABA was

found to be ten times higher in representatives of Betula in comparison with representatives of

Populus (Sasamoto et al., 2002). However, when the internal level of phytohormones is

analysed, the influence of the environment and the different growth stages should be considered.

However, a comparison of the current results with those from the literature was difficult,

especially as the results of in vitro cultures of forest trees, particularly for the genera Populus

and Betula, are very limited in the literature.

Most important differences in the morphological response to the regulation of

hormone quantity between P. tremula and its hybrids and B. pendula genotypes

After the factors that influence the root formation of explants of aspen genotypes were

identified and the concentration of the internal phytohormones in the in vitro cultures of the

different Populus and Betula genotypes were determined, the effect of exogenous hormones or

growth regulators for the different genotypes cultured were investigated. The external PBZ

effects for in vitro cultures of the different Populus and Betula genotypes and the results of the

Page 107: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

107

internal gibberellin concentrations were analysed while considering the established importance

of gibberellin synthesis for the formation of aspen (18DPL037) roots. The results showed that

the effect of the PBZ for organogenesis in the shoots was different from that on the roots. PBZ

increased the number of adventitious roots for explants of all genotypes compared with data on

the control explants. Regarding the effect of PBZ, the greatest difference, was observed for the

explants of the aspen 17DPL038 genotype, which had 3.4 times as many adventitious roots as

the control explants (Fig. 6 A). Meanwhile, the number of shoots was significantly decreased by

the effect of PBZ in explants of all genotypes, except for 51DF1001. The greatest decrease in

shoot number, 2.4 times in comparison with data from control explants, was observed in the

explants of the 01BPL115 genotype (Fig. 6B). Meanwhile, the effect of PBZ on the growth of

shoots and roots (Fig. 6C, D, E) was similar for explants of all genotypes, with variation in both

characters depending on the genotype.

Significant effects of PBZ on the length of adventitious roots were determined only in the

culture of the aspen 18DPL037 and 17DPL038 and in the hybrid aspen 51DF1001 genotypes,

whereas no significant effects were observed in the cultures of hybrid aspen 51DhPL022 and

birch 01BPL115 genotypes (Fig. 6 C, E). Although PBZ decreased the longest length of

adventitious root in explants of the 18DPL037 genotype, in 17DPL038, no significant effect was

observed, even though the length of the total root increased in both genotypes nearly one-half of

the time. Meanwhile, in the case of the hybrid aspen 51DF1001 genotype, although PBZ

significantly decreased the length of the main adventitious root, no significant effect was

observed on the total length of the roots (Fig. 6 C, E). Furthermore, the effect of PBZ on the

shoot length differed according to the genotype. The effect of PBZ on shoot growth was

significantly positive in the aspen 18DPL037 genotype, while being negative in the 17DPL038

in comparison with data from control explants, and no significant effect was observed on the

explants of the hybrid aspen. The greatest difference in the length of the shoot, a 3.6-fold

decrease in comparison with data from the control explants, was observed in the explants of the

Betula pendula genotype (Fig. 6 D).

In the case of lateral root density, PBZ had different effects on explants depending on the

genotypes. Significant positive effects between Populus genotypes were observed, only for

explants of the 17DPL038 genotype; meanwhile for explants of the Betula pendula genotype,

the effect was extremely negative, in comparison with data from control explants (Fig. 6F).

Interestingly, for the explants the of aspen (18DPL037, 17DPL038) genotypes, PBZ increased

the number of adventitious roots and the length of the total root; 18DPL037 also showed

increased shoot length, and 17DPL038 showed decreased shoot length but showed an increase

in the density of the lateral roots (Fig. 6). Although the results of PBZ effects on the explants of

Page 108: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

108

the aspen genotypes were distinguished from each other in certain aspects, the explants of the

hybrid aspen genotype had similar effects. Meanwhile, in the case of explants of the birch

01BPL115 genotype, although PBZ increased the number of adventitious roots, the effect on the

lateral root density and on morphological parameters of the birch shoot were extremely negative

(Fig. 6).

***

* ** **

0

1

2

3

Sh

oo

t n

um

ber

per

exp

lan

t Control PBZ

B

BetulaPopulus

***

***

***

** *

0

5

10

15

Ro

ot

nu

mb

er p

er e

xpla

nt Control PBZ

A

BetulaPopulus

***

*

***

0

2

4S

ho

ot

len

gth

, cm

D

Populus Betula

*

**

0

4

8

12

18D

PL

037

17D

PL

038

51D

F1

00

1

51D

hP

L0

22

01B

PL

115

Lat

eral

ro

ot

den

sity

, ro

ots

per

cm

F

Populus Betula

*** **

*

0

2

4

6

Lar

ges

t ro

ot

len

gth

, cm

C

BetulaPopulus

***

***

0

4

8

12

16

18D

PL

037

17D

PL

038

51D

F10

01

51D

hP

L02

2

01B

PL

115

To

tal r

oo

t le

ng

th, c

m

E

Populus Betula

Fig. 6. Adventitious roots (A) and shoots (B) number per explant, main adventitious root length (C), shoot length (D), total adventitious root length (E), and lateral root density (F) (mean ± SE) of different Populus (18DPL037, 17DPL038 – P. tremula; 51DF1001 – P. tremuloides × P. tremula, 51DhPL022 – P. alba × P. tremuloides) and Betula pendula (01BPL115) genotype explants in in vitro culture, as affected by the presence of PBZ (0 and 1 µmol/l) in the nutrient medium. Significant differences between samples cultured on different media are labelled with * (P < 0.05), ** (P < 0.01), *** (P < 0.001)

These research results for the different Populus genotypes are similar to the results of other

scientists, which state that gibberellin inhibits or exogenously applied PBZ promotes the

development of adventitious root (Gou et al., 2010). In our results, interestingly, the effect of the

PBZ distinguished the aspen from the hybrid aspen genotypes; unlike the aspen, the latter

showed a positive response only on the adventitious roots. In the case of representatives of

Page 109: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

109

Betula, limited literature exists for comparison with our results on the effects of paclobutrazol

on the adventitious root system in in vitro cultures. In this study, the negative response of Betula

pendula shoots to the effects of PBZ can be compared with results obtained by Chorbadjian and

co-authors, who state that PBZ had a negative effect on the stem height of representatives of

Betula (Chorbadjian et al., 2011). So, paclobutrazol can be used to increase the productivity of

in vitro cultures of different Populus genotypes; however, its application to in vitro cultures of

Betula should be limited.

According to the importance of auxin transport to the development of aspen (18DPL037)

roots and to the differences in internal IAA concentrations between Populus and Betula in in

vitro cultures, the effect of external IAA to these in vitro cultures of Populus and Betula

genotypes was analysed further. The results showed that IAA did not have a significant effect on

the formation of roots and shoots in all studied genotypes (Fig. 7, A, B). In the case of organ

growth, as with the length of the adventitious roots and shoots, a significant positive effect of

IAA for the explants was not identified (Fig. 3.14 C, D, E). In fact, the length of the main

adventitious root and the total root in explants of hybrid aspen 51DF1001 genotype were even

reduced by IAA in comparison with data from the control explants (Fig. 7 C, E). Interestingly,

although the IAA did not have a significant effect on the morphological parameters of

adventitious roots and shoots, a significant effect on the root density was even negative in

explants of the 18DPL037 genotype (Fig. 7 F).

Although none of genotypes studied in this research showed a positive response in root

development to auxin application, the results of other scientists showed a positive effect of

exogenously applied IAA on the development of adventitious roots in in vitro cultures of

Populus (Yan et al., 2017). Meanwhile, in the case of the Betula pendula genotypes, our results

can be compared those of Marks and co-authors who stated that rooting of Betula pendula

depends not so much on the amount of auxin but on its transport. According to those authors,

when the top of the explant in the in vitro culture of the Betula pendula was eliminated, even

when IAR or the inhibitor of auxin transport (TIBA) was applied, the development of the roots

was still inhibited (Marks et al., 1996). Furthermore, our results reveal that abscisic acid, in

contrast to auxin, had a significant effect on the Betula pendula genotypes. Perhaps this could be

associated with the concentrations of internal hormones, according to the data from a previous

section, where an explant of the Betula pendula genotype, in contrast to Populus, had low IAR

and a high concentration of ABR.

Page 110: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

110

***

***

0

2

4

Ro

ot

nu

mb

er p

er e

xpla

nt Control IAA ABA

A

BetulaPopulus

0

1

2

3

Sh

oo

t n

um

ber

per

exp

lan

t Control IAA ABA

B

BetulaPopulus

***

**

**

0

2

4

6

Lar

ges

t ro

ot

len

gth

, cm

C

BetulaPopulus

*** ***

0

1

2

3

Sh

oo

t le

ng

th, c

m

D

Populus Betula

* *

*

0

4

8

12

18D

PL

03

7

51D

F1

00

1

01B

PL

11

5

To

tal r

oo

t le

ng

th, c

m

E

Populus Betula

** *

0

2

4

6

18D

PL

03

7

51D

F1

00

1

01B

PL

11

5

Lat

eral

ro

ot

den

sity

, ro

ots

per

cm

F

Populus Betula

Fig. 7. Adventitious roots (A) and shoots (B) number per explant, main adventitious root length (C), shoot length (D), total adventitious root length (E), and lateral root density (F) (mean ± SE) of different Populus (18DPL037– P. tremula; 51DF1001 – P. tremuloides × P. tremula) and Betula pendula (01BPL115) genotype explants of in vitro culture, as affected by the presence of IAA (3 µmol/l) or ABA (3 µmol/l). in the nutrient medium. Significant differences between samples cultured on different media are labelled with * (P < 0.05), ** (P < 0.01), *** (P < 0.001)

According to the differences in the internal concentrations of ABA between in vitro

cultures of the Populus and Betula genotypes, the effect of external ABA to the cultures of the

different genotypes was analysed. The results showed that ABA had a significant negative effect

on the formation of adventitious roots in the studied aspen 18DPL037 and hybrid aspen

51DF1001 genotypes, whereas the significant effect in the birch 01BPL115 genotype was not

detected (Fig. 7 A). In the case of shoot numbers, a significant effect on the explants of all

studied genotypes was not identified (Fig. 3.14 B). While the effect of ABA on growth of shoot

and root varies according to the genotype. ABA significantly reduced the length of the shoots in

explants of aspen 18DPL037 and hybrid aspen 51DF1001 genotypes, whereas the significant

effect in the birch 01BPL115 genotype was not determined (Fig. 7 D). ABA increased the length

Page 111: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

111

of the main adventitious root for both aspen and birch explants, but in the case of total root

length, a significant positive effect was determined only in the birch explants. Meanwhile, ABA

not only did not have a positive effect on the adventitious root length, it even decreased the total

root length in explants of the hybrid aspen genotype (Fig. 7 C, E). ABA application did not have

a significant effect on lateral root density of the explants of hybrid aspen and Betula pendula

genotypes; in fact, a significantly negative effect was observed on the explant of the aspen

18DPL037 genotype (Fig. 7 F). Interestingly, in explants of the 51DF1001 genotype ABR

reduced the number and length of the adventitious root and the length of shoot, but the density

of the lateral roots remained unchanged in comparison with data from control explants (Fig. 7).

Although the literature on exogenously applied ABA in the in vitro culture of forest trees is

limited, studies with other plants often mention the negative effects of ABA on root systems

(McAdam et al., 2016). Although, ABA mostly had negative effects on the morphological

parameters of explants of Populus and Betula genotypes in our study, some positive effects were

found on the 01BPL115 genotype of Betula pendula. Blake and Atkinson, some decades ago,

found that low levels of ABA could stimulate rooting of explants of Populus (Blake and

Atkinson, 1986), whereas higher levels could suppress rooting. According to statements of those

researchers, given the differences in the internal concentrations of ABA in Populus and Betula,

different thresholds for ABA concentrations should be applied to these genera. Some results,

such as those for the birch, from this study may be comparable to the research by Žiauka and co-

researchers who stated that the effect of ABA has positively influenced the development of the

roots of hybrid aspen (Žiauka et al., 2011). In the case of in vitro culture, evidence suggests that

ABA causes tolerance and acclimatization to stress and can act as an agent in the selection for

stress- tolerant plants in in vitro culture (Rai et al., 2011). Thus, the birch 01BPL115 genotype,

which shows a positive response to ABA in growth in the adventitious root, can be associated

with high tolerance to stress.

Relationship between indicators of in vitro development of roots and shoots in tree

genotypes with different amounts of endogenous hormones

According to previous results, in vitro cultures of trees of 18DPL037 (P. tremula),

51DhPL022 (P. alba × P. tremuloides) and 01BPL115 (Betula pendula) genotypes were

selected according to differences in the amounts of endogenous hormones. The results of a study

of the relationship between indicators of the in vitro development of roots and shoots of explants

of these genotypes is provided below. Primarily, changes in morphological parameters were

analysed in different growth stages of explants of different genotypes (18DPL037, 51DhPL022,

01BPL115) cultured in medium without growth regulators. The results of augmentation of the

Page 112: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

112

adventitious root showed that augmentation of all three genotypes were higher in the first

growth stage from weeks 1 to 3 than in the second stage from weeks 4 to 6 (Fig. 8 A). The

greatest difference between augmentation of root at different growth periods was in explants of

the aspen 17DPL038 genotype (P <0.001), at 8.9 times; in the hybrid aspen 51DhPL022 (P

<0.001), at 4.6 times; and in the birch 01BPL115 (P <0.01), at 2.2 times.

*** **

*

**

0

1

2

3

17DPL038 51DhPL022 01BPL115

Ro

ot

nu

mb

er

au

gm

enta

tio

n 1-3 weeks 4-6 weeks

A

***

***

**

0

5

10

15

20

17DPL038 51DhPL022 01BPL115S

ho

ot

au

gm

en

tati

on

, mm

1-3 weeks 4-6 weeks

B

Fig. 8. Adventitious root number augmentation (A) and shoot augmentation (B) (mean ± SE) of explants of different Populus (17DPL038 – P. tremula; 51DhPL022 – P. alba × P. tremuloides) and Betula pendula (01BPL115) genotypes in in vitro culture on nutrient medium without plant growth regulators, during the first (1-3 weeks) and the second (4-6 weeks) growth stages. Significant differences between augmentations during the different growth stages are labelled with ** (P < 0.01), *** (P < 0.001)

In the case of the lengths of the shoots (Fig. 8 B), the augmentation was greater (P <0.001)

in the first than in the second stage of growth in the culture of the aspen 17DPL038 and birch

01BPL115 genotypes. Meanwhile, the augmentation of the shoot of the explant of the aspen

51DhPL022 genotype was greater (P <0.01) in the second than in the first growth stage. The

greatest difference in augmentation between the different stages of growth, as well as of the

roots and of the shoots, was in explants of the aspen 17DPL038 genotype, at 4.5 times; in

explants of birch 01BPL115, at 1.8 times; and in explants of the hybrid aspen 51DhPL022, at

0.5 times.

The results of the relationship between the parameters of the in vitro development of

explants of the studied genotypes showed that the correlation and its coefficient differ depending

on the genotype. A statistically significant correlation coefficient between the shoot and

adventitious root numbers after 3 weeks was positive in the case of hybrid aspen (P <0.05) and

birch (P <0.05), or negative in the case of aspen (P <0.01). Meanwhile, a significant (P <0.01)

and positive correlation coefficient between the root number after 3 weeks and shoot

augmentation from 4-6 weeks was determined only in the explants of hybrid aspen genotype. A

Page 113: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

113

significant (P <0.05) negative correlation coefficient was observed between the shoot length

after 3 weeks and root augmentation from 4-6 weeks only in the aspen genotype (Fig. 9 A).

**

*

*

***

-0,8-0,6-0,4-0,2

00,20,40,60,8

shoot length after 3 weeks / rootnumber after 3 weeks

root number after 3 weeks /shoot augmentation during 4-6

weeks

shoot number after 3 weeks /root augmentation during 4-6

weeks

Co

rre

lati

on

co

eff

icie

nt,

(r)

17DPL038 51DhPL022 01BPL115

A

***** *

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

shoot length after 3 weeks / rootnumber after 3 weeks

root number after 3 weeks /shoot augmentation during 4-6

weeks

shoot number after 3 weeks /root augmentation during 4-6

weeks

Co

rrel

atio

n c

oe

ffic

ien

t (r

) 17DPL038 51DhPL022 01BPL115

B

Fig. 9. Correlation coefficients (r) between shoots and adventitious (A) or lateral (B) roots data: between shoot length and root number after 3 weeks (1); between root number after 3 weeks and shoot augmentation from 4–6 weeks (2); between shoot length after 3 weeks and root number augmentation from 4– 6 weeks (3); of explants of different Populus (17DPL038 – P. tremula; 51DhPL022 – P. alba × P. tremuloides) and Betula pendula (01BPL115) genotypes in in vitro culture on nutrient medium without plant growth regulators. Statistically significant correlation coefficients are labelled with *P < 0.05 and **P < 0.01

In the case of lateral root, a statistically significant correlation coefficient between shoot

length and lateral root number after 3 weeks was (P <0.001) in explants of all studied

18DPL037 (P <0.001), 51DhPL022 (P <0.01), 01BPL115 (P <0.05) genotype cultures.

Meanwhile, no significant correlation coefficient was observed between lateral root number

after 3 weeks and the shoot augmentation from 4-6 weeks and between the shoot length after 3

weeks and the lateral root augmentation from 4-6 weeks in any studied genotypes (Fig. 9 B).

A few decades ago, the results of various groups of scientists emphasized the importance

of early development of root system for the further growth of shoot of Populus species

(Tschaplinski and Blake, 1989; Rhodenbaugh and Pallardy 1993; Zalesny et al., 2005b). In this

study, a similar trend was also observed, where the intensive early development of roots of

explants of the studied genotypes highlight the importance of roots in the process of

Page 114: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

114

development of the entire tree. Additionally, Branislov and co-authors studied representatives of

black poplar and observed a positive significant correlation between root number in the early

growth stage and shoot number in a later growth stage (Branislov et al., 2009). Meanwhile, our

study found that the hybrid aspen 51DhPL022 (P. alba × P. tremuloides) genotype was

associated with more intensive growth of the shoots at a later growth stage. The results of this

genotype can be related to the results of Žiauka and co-authors, who observed that the growth of

hybrid aspen and white poplar hybrid (P. alba × P. tremuloides) was associated with more

intense root growth in the first month of growth and with more intense shoot growth only in the

second month (Žiauka et al., 2014). This trait of the hybrid aspen—slow growth in the first

growth stage—could be due to the absence of roots, as this work revealed the positive influence

of the adventitious roots in the initial growth stage to the initial and later growth of the shoot.

Additionally, this trait of the hybrid aspen genotype may be related to differences in internal

concentrations of phytohormones from explants of aspen and birch genotypes. Meanwhile, the

aspen genotype with the highest differences in organ augmentations between growth periods is

especially distinguished by the negative effect on the shoot length after the initial growth stage,

for the formation of lateral root during a later growth stage. These results, obtained under

controlled conditions, coincide with the results of the researcher, Eliasson, who reported that

Populus tremula in vitro culture had an intense growth of root only when the growth of the

shoots and leaves had slowed (Eliasson, 1971).

Page 115: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

115

CONCLUSIONS

Research hypothesis confirmation

Hypothesis Conformation Among the Populus and

Betula genera, significant differences exist in the

morphogenetic effect of the hormones that determine specific peculiarities in the

formation of adventitious roots in in vitro cultures

of these trees.

The hypothesis is confirmed. Between the Populus and Betula genera, significant differences exist in the morphogenetic

effect of the hormones that determine specific peculiarities of the formation of adventitious roots in in vitro cultures of these

trees. The endogenous phytohormones, 3-acetic acid and abscisic acid concentrations in P. tremula and its hybrid

genotypes significantly differed from those hormones of the B. pendula genotypes. The main differences between the

investigated genotypes of P. tremula and its hybrids and B. pendula were determined by the morphological responses of the root system to the regulation of gibberellin and abscisic

acid activity. Relative to the morphological parameters of the different growth stages in the aspen and birch cultures, P. alba

L. × P. tremula hybrid tree culture was distinguished by its intensive development of the root system instead of shoot growth in initial growth stage and by the positive effect of root formation that occurred at the initial growth stage and

promoted further development of the shoots. Main conclusions

1. The introduction of Betula pendula into in vitro culture after more than 1 week of storage

time between collection of the branches and introduction to culture resulted in loss of

explant viability. Additionally, those birch genotypes characterized by the ability to form

roots in later stages of the culture were those, which, in the first subculture, maintained a

green shoot apex on the medium without hormones and remained viable on the medium

with the cytokinin benzylaminopurine.

2. The formation of adventitious roots of Populus tremula L. can be specifically inhibited by

supplementing medium with auxin transport inhibitor 2,3,5-triiodobenzoic acid and can be

promoted by using an inhibitor of gibberellin synthesis—paclobutrazol.

3. The concentration of indolyl-3-acetic acid were significantly much higher in the shoots of

P. tremula and P. tremuloides × P. tremula genotypes than in the shoots of B. pendula.

Among all studied genotypes, the shoots of the P. alba L. × P. tremula genotype were

highly distinguished, with large concentrations of indolyl 3-butyric acid, the cytokinin

zeatin and gibberellin A7. Meanwhile, the birch genotype with a well-developed root system

from all studied genotypes, including birch which did not form roots, was distinguished by

its large concentrations of abscisic acid.

Page 116: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

116

4. Among the studied aspen (P. tremula and its hybrids) and birch (B. pendula) genotypes,

significant differences were found according to how abscisic acid and the inhibitor of

gibberellin synthesis, paclobutrazole, influenced the in vitro development of the roots of

these trees: abscisic acid inhibits the formation of adventitious roots in aspen but not in

birch cultures, whereas paclobutrazole inhibits the formation of lateral roots in birch but not

in aspen cultures.

5. The development of explants in the in vitro culture of P. tremula L. and B. pendula

genotypes was characterized by intensive shoot growth on the fresh nutritional medium in

the initial stage of growth, whereas in the culture of the P. alba L. × P. tremula hybrid tree,

intensive development of the root system occurred first instead of shoot growth. In the latter

genotype, the roots formed in the initial growth stage had a positive effect on the

subsequent development of shoots.

Page 117: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

117

SANTRAUKA

Mokslininkai, pasitelkdami įvairias priemones, ieško naujų galimybių trumpos apyvartos

miško medžių savybėms gerinti ir plantacinės miškininkystės efektyvumui didinti. Tokias

galimybes atveria medžių biotechnologija, kadangi audinių kultūra yra neatsiejama nuo šios

technologijos. Vykdant medžių mikrovegetatyvinį dauginimą audinių kultūroje, medžio

šaknijimasis, daugiausia sąlygojamas fitohormonų sistemos, yra vienas iš esminių procesų,

didele dalimi sąlygojančių viso darbo sėkmę.

Populus sp. ir Betula sp. medžių genčių in vitro kultūros pasižymi radikaliais šaknijimosi

skirtumais: dauguma mikrovegetatyviškai dauginamų Populus genties atstovų, įskaitant drebulę

P. tremula, lengvai formuoja pridėtines šaknis, o tokiu pačiu metodu dauginami beržai šaknis

formuoja itin sunkiai. Kol kas nėra duomenų, kurie leistų šiuos skirtumus pagal in vitro

šaknijimosi pajėgumą aiškiai sieti su atitinkamais hormoninės sistemos veiklos ar kitų

biocheminių veiksnių skirtumais minėtose medžių gentyse. Taigi šio tyrimo tikslas yra nustatyti

biocheminius veiksnius, lemiančius pridėtinių šaknų formavimosi bei jų įtakos ūglių vystymuisi

skirtumus tarp Populus ir Betula genčių atstovų in vitro sistemoje.

Tyrimų objektas – Populus sp. ir Betula pendula Roth kloniniai ūgliai in vitro sistemoje.

Tyrime naudoti drebulės (P. tremula) ir hibridinės drebulės (P. tremuloides × P. tremula,

P. alba × P. tremuloides) bei karpotojo beržo (B. pendula) skirtingų genotipų stabiliai

mikroūglių kultūroje dauginami kloniniai augalai. Taip pat tyrimo metu buvo vykdomas

papildomų šešių B. pendula genotipų sterilių in vitro audinių kultūrų gavimas.

Betula pendula Roth įvedimo į in vitro kultūrą rezultatai atskleidė, kad ilgesnis nei viena

savaitė laikotarpis tarp šakų surinkimo iki įvedimo etapo siejamas su eksplantų gyvybingumo

praradimu. Nustatyta, kad gebėjimu formuoti šaknis vėlesnėse kultūros stadijose pasižymėjo tie

beržo genotipai, kurie pirmoje subkultūroje išlaikė žalią ūglio viršūnę ant terpės be hormonų bei

išliko gyvybingi ant terpės su citokininu benzilaminopurinu. Augimo reguliatorių taikymo

tyrimas parodė, kad Populus tremula L. pridėtinių šaknų formavimąsi galima specifiškai

inhibuoti papildant terpę auksino pernašos inhibitoriumi 2,3,5-trijodobenzoine rūgštimi, o

paskatinti – naudojant giberelino sintezės inhibitorių paklobutrazolį. Nustatant vidines

fitohormonų koncentracijas išsiaiškinta, kad P. tremula ir jos hibridų genotipų in vitro kultūros

itin skyrėsi nuo B. pendula genotipų indolil-3-acto rūgšties bei abscizo rūgšties atžvilgiu.

Augimo reguliatorių išorinio taikymo atžvilgiu svarbiausi skirtumai tarp tiriamų P. tremula ir

jos hibridų bei B. pendula genotipų in vitro kultūrų nustatyti pagal tai, kaip šių medžių šaknų

sistemos vystymąsi in vitro paveikia abscizo rūgštis ir paklobutrazolis. Skirtingų augimo etapų

analizė atskleidė, kad tirtų P. tremula ir B. pendula genotipų eksplantų vystymuisi in vitro buvo

Page 118: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

118

būdingas spartus ūglių augimas ant šviežios maitinamosios terpės pradiniame auginimo etape,

tačiau hibridinio medžio P. alba L. × P. tremula kultūroje pirmiausia vyko ne ūglių augimas, bet

šaknų sistemos vystymasis. Pastarajame genotipe nustatyta, kad pradiniame augimo etape

susiformavusios šaknys turėjo teigiamą įtaką tolimesniam ūglio vystymuisi.

Page 119: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

119

Mokslinių straipsnių disertacijos tema sąrašas

1. Vaičiukynė M., Žiauka J., Kuusienė S. 2016. Fitohormonai ir jų vaidmuo reguliuojant

sumedėjusių augalų šaknų indukciją ir vystymąsi. Miškininkystė, 1 (79), p. 69–79.

2. Vaičukynė M., Žiauka J., Kuusienė S. 2017. Factors that determine shoot viability and root

development during in vitro adaptation and propagation of silver birch (Betula pendula

Roth). Biologija, 63 (3), p. 246–255.

3. Vaičukynė M., Žiauka J., Kuusienė S. 2018. Hormonų veiklos reguliacijos įtaka Populus

tremula L. pridėtinių šaknų formavimuisi ir vystymuisi in vitro kultūroje Miškininkystė,

1 (82), p. 16–26.

4. Vaičukynė M., Vertelkaitė L., Žiauka J., Kuusienė S. 2018. Betula sp. svarba, tyrimų plėtra

ir panaudojimo perspektyvos. Miškininkystė, 1 (82), p. 38–45.

5. Vaičiukynė M., Žiauka J., Žūkienė R., Vertelkaitė L., Kuusienė S. 2019. Abscisic acid

promotes root system development in birch tissue culture: a comparison to aspen culture

and to conventional rooting-related growth regulators. Physiologia Plantarum, 165(1),

p. 114–122. (IF=2,58).

Page 120: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

120

Padėka

Nuoširdžiai dėkoju savo moklinei vadovei dr. Sigutei Kuusienei už vadovavimą ir

kantrybę, padrąsinimą ir palaikymą bei pagalbą ir pasitikėjimą.

Esu dėkinga dr. Jonui Žiaukai už naudingus pamokymus, vertingus mokslinius patarimus,

išsamias konsultacijas bei kantrybę atliekant šiuos tyrimus bei rengiant šią disertaciją, taip pat

už pagalbą rengiant mokslines publikacijas. Dėkoju visam LAMMC Miškų instituto Miško

augalų biotechnologijų laboratorijos kolektyvui už pagalbą ir palaikymą.

Dėkoju prof. dr. Virgilijui Baliuckui už suteiktą karpotojo beržo augalinę medžiagą. Esu

dėkinga visiems LAMMC Miškų instituto darbuojams, kurie savo patarimais prisidėjo prie

disertacijos rengimo.

Dėkoju VDU Biotechnologijos katedros mokslininkei doc. dr. Rasai Žūkienei už pagalbą

atliekant HPLC tyrimus.

Už supratingumą ir palaikymą dėkoju savo šeimos nariams.

Tyrimai finansuoti doktorantūros projekto Nr. 21114 lėšomis.

Page 121: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

121

Curriculum vitae

Name, surname Miglė Vaičiukynė

Date of birth 07 April, 1988

Education 2014 december – 2018 december Lithuanian Research Centre for Agriculture and Forestry

(Institute of Forestry) & Aleksandras Stulginskis University. Doctoral (PhD) studies in

Forestry.

2011–2014 Vytautas Magnus university, Faculty of Nature Sciences. Master degree in

Molecular biology and biotechnology.

2007-2011 Vytautas Magnus university, Faculty of Nature Sciences. Bachelor degree in

Biology.

Professional experience

From 2018 April 2nd – present junior researcher in Lithuanian Research Centre for

Agriculture and Forestry, Institute of Forestry

From 2017 July 3rd – 2018 March 30th Engineer in Lithuanian Research Centre for

Agriculture and Forestry, Institute of Forestry

From 2015 february 2nd – 2017 June 30th Senior Technician in Lithuanian Research

Centre for Agriculture and Forestry, Institute of Forestry

Conferences

1. International scientific conference “Plant Organ Growth Symposium 2015”, Ghent, Belgium,

(2015 m.). Poster presentation: ‘‘Abscisic acid influence on root growth control in shoot

cultures of different Populus genotypes”;

2. International scientific conference “Plant Biology Europe EPSO/FESPB 2016 Congress”,

Prague, Czech Republic, (2016 m.). Poster presentation: “Auxin transport inhibitor 2,3,5-

triiodobenzoic acid does not mimic the adventitious shoot formation-promoting effect of

exogenously applied cytokinin in aspen shoot culture”;

3. The 5th international conference of young scientists “The young scientists for advance of

agriculture”, Vilnius, Lithuania, (2016 m.). Oral presentation: “Effects of different

Page 122: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

122

exogenous auxins on aspen morphogenesis in vitro in the context of auxin transport

inhibition by 2,3,5-triiodobenzoic acid”;

4. International scientific conference “Smart Bio”, Kaunas, Lithuania, (2017 m.). Poster

presentation: “Factors that Determine Shoot Viability and Root Development during in vitro

Adaptation and Propagation of Birch (Betula pendula)”;

5. International scientific conference “8th International Symposium on Root Development”,

Umea, Sweden, (2017 m.). Poster presentation: “Comparison of exogenous auxin and

paclobutrazol effects on aspen and birch in vitro cultures in respect of adventitious root

formation”.

Projects

Project of research groups: „Biogeography and spread of local and invasive tree pathogens:

focus on climate, tree species and intensity of forest management“. Funding: Research Council

of Lithuanian. Project no. S-MIP-17-6. Period: 2017-2020. (junior researcher)

Published articles

Articles in journals with Impact Factor (In Clarivate Analytics Web of Science

database)

Vaičukynė M., Žiauka J., Žūkienė R., Vertelkaitė L., Kuusienė S. 2019. Abscisic acid

promotes root system development in birch tissue culture: a comparison to aspen culture and

conventional rooting-related growth regulators. Physiology plantarum, 165(1), p. 114–122.

(IF=2,58).

Articles in peer reviewed periodicals

1. Vaičukynė M., Žiauka J., Kuusienė S. 2016. Fitohormonai ir jų vaidmuo reguliuojant

sumedėjusių augalų šaknų indukciją ir vystymąsi [Phytohormones and their role in root

induction and development in woody plants]. Miškininkystė [Forest Sciences], 79, p. 69–

79. (in Lithuanian with English summary).

2. Vaičukynė M., Žiauka J., Kuusienė S. 2017. Factors that determine shoot viability and root

development during in vitro adaptation and propagation of silver birch (Betula pendula

Roth). Biologija, 63(3), p. 246–255.

3. Vaičukynė M., Žiauka J., Kuusienė S. 2018. Hormonų veiklos reguliacijos įtaka Populus

tremula L. pridėtinių šaknų formavimuisi ir vystymuisi in vitro kultūroje [Influence of

regulation of hormonal activity to the formation and development of adventitious roots of

Page 123: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

123

Populus tremula in vitro culture]. Miškininkystė [Forest Sciences], 1 (82), p. 16–26. (in

Lithuanian with English summary).

4. Vaičukynė M., Vertelkaitė L., Žiauka J., Kuusienė S. 2018. Betula sp. svarba, tyrimų plėtra

ir panaudojimo perspektyvos. [The importance, research development and prospects for the

use of Betula sp.]. Miškininkystė [Forest Sciences], 1 (82), p. 38–45. (in Lithuanian with

English summary).

Page 124: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą
Page 125: ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI · ABR – abscizo rūgštis (fitohormonas) AHP – Arabidopsis histidino fosfotransferazės baltymai, perduodantys citokininų signalą

Miglė VAIČIUKYNĖ

ŠAKNŲ VYSTYMOSI HORMONINIO REGULIAVIMO TYRIMAI

POPULUS TREMULA L. IR JOS HIBRIDŲ BEI BETULA PENDULA

ROTH IN VITRO KULTŪROSE

Mokslo daktaro disertacija

Redaktoriai: Rūta Anusevičienė (lietuvių k.), „Wiley Editing Services“ (anglų k.)

Spausdino – Vytauto Didžiojo universitetas (Studentų g. 11, LT-53361 Akademija, Kauno r.)

Užsakymo Nr. K19-014. Tiražas 15 egz. 2019 03 04. Nemokamai.