airspace resource allocation -operations impact prof. r. john hansman, director mit international...

12
M M Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation [email protected] 617-253-2271

Post on 21-Dec-2015

219 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation rjhans@mit.edu 617-253-2271

MIT ICATMIT ICATAirspace Resource Allocation

-Operations Impact

Prof. R. John Hansman, DirectorMIT International Center for Air Transportation

[email protected] 617-253-2271

Page 2: Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation rjhans@mit.edu 617-253-2271

MIT ICATMIT ICATPreliminary Thoughts

Have not seen the political argument to justify the costs/pain of transition What is the problem we are trying to solve What are the functional requirements Is this an issue which extends beyond LGA

Current system is regulated by delay Schedule integrity, passenger tolerance

Current system is complex, evolved and impedance matched Gates Runways Taxiways Landside Security Arrival fixes Departure fixes

Safety Concerns will drive Arguments to Resist

Page 3: Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation rjhans@mit.edu 617-253-2271

MIT ICATMIT ICATWhat are the property rights that make sense in the operating environment?

Landing Slots (Perishable) Time Based

Time scale (1min, 15 min, 1hr, 3hr, day) Sequence Based

Priority

What are the rights and responsibilities of property ownership Users

Precision When do you loose the resource Provider (Safety) induced delays (who is responsible)

Providers Guarantees Substitution Failure propagation

Page 4: Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation rjhans@mit.edu 617-253-2271

MIT ICATMIT ICATHow do you set the resource limit?

VFR Capacity ?

IFR Capacity ?

With Margin ?

Peak Capacity Airport “flush” modes

Page 5: Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation rjhans@mit.edu 617-253-2271

MIT ICATMIT ICATRunway Configuration Capacity Envelops

Runway Configuration Capacity Envelops(Source: ETMS / Tower Records, 7-9 AM, 4-8 PM, July 1-15

1998 except Saturdays, Logan Airport)

0

5

10

15

20

25

0 5 10 15 20 25

Actual Departure Rate (per 15 minutes)

Actual Arrival Rate (per 15 minutes)

4L/4R-9 (reportedaverage 68 AAR - 50DEP)

27/22L-22R (reportedaverage 60 AAR - 50DEP)

33L/33R-27 (reportedaverage 44 AAR - 44DEP)

Single Runway (January1999, reported average34 AAR 34 DEP)

Page 6: Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation rjhans@mit.edu 617-253-2271

MIT ICATMIT ICATVariable Capacity Effects1995 Delays vs Operations

10000008000006000004000002000000

0

10

20

30

40

50

60

Total Operations (CY95)

Delayed Flights (per 1000)

SFO

LGA EWR STL

LAX

ORD

DFW

ATL

BOS

JFK

PHX

LAS

SJU

HNL

PITDEN

CLT

IAH

MEM

Data from FAA Capacity Office, CY95

From John Andrews, MIT Lincoln Lab

Page 7: Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation rjhans@mit.edu 617-253-2271

MIT ICATMIT ICAT

From: Xavier Fron, Eurocontrol

Page 8: Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation rjhans@mit.edu 617-253-2271

MIT ICATMIT ICATRobustness Issues

Robustness Issues Flexibility to normal interruptions

Convective Weather Go around Mechanicals Deicing Lack of Data Special Runway Requirements

Non-Normal Ops

How do you handle high priority non planned demand? Air Force 1 “Lifeguard”

How do you handle unplanned resource loss? Disabled Aircraft Blown Tire Snow Plow

Page 9: Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation rjhans@mit.edu 617-253-2271

MIT ICATMIT ICATConvective Weather Impact

May 3, 2001 6:20 p.m. 295 Aircraft In-bound

Page 10: Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation rjhans@mit.edu 617-253-2271

MIT ICATMIT ICATTerminal Area Weather Impact

Two responses observed: Standard flow abstraction for

aircraft traversing the weather no longer available – aircraft treated as “special cases.”

Alternative standard flow abstraction is used.

Weather disrupting NW corner fix into Chicago perturbs standard flow abstraction.

Page 11: Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation rjhans@mit.edu 617-253-2271

MIT ICATMIT ICATReal Time Allocation Challenges

Planning Time Horizons Weather time constants (< 30 min for convective) Airline response time constants ( ATC Response

Safety Constraints Acceptable Level of Traffic Wake Vortex

Asymmetric Control Fast Shut Down Slow Start Up

Airline Planning/Response issues Planning time constant

(median 90 min) Disrupted Options Lack of consistent or clear objective function

Inter Airline Units

Page 12: Airspace Resource Allocation -Operations Impact Prof. R. John Hansman, Director MIT International Center for Air Transportation rjhans@mit.edu 617-253-2271

MIT ICATMIT ICATIdentification of AOC dynamics Timing of Flight Planning

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-25 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

Minutes before actual departure time

Cumulative percentage

Start of flight planning End of flight planning - all flights End of flight planning - flights with delay > 5 min.

Actual departure time

# samples = 4180

Source: AOC computer transactional data from a major airline (March 1998)

Nominal Flight PlanComplete 90 min prior to departure

Flight Planning Tools eg, Wind Optimal Routing

Optimization Basis Rarely Presented to Flight Crews