airplane performance & design

250

Upload: jwzumwalt

Post on 18-Nov-2014

181 views

Category:

Documents


20 download

DESCRIPTION

*** WARNING 50mb! *** - Aircraft design using graphs & charts instead of formulas (formulas are explained too). Shows how to design anything from gliders or man powered flight to large aircraft.

TRANSCRIPT

Page 1: Airplane Performance & Design
Page 2: Airplane Performance & Design
Page 3: Airplane Performance & Design
Page 4: Airplane Performance & Design
Page 5: Airplane Performance & Design
Page 6: Airplane Performance & Design
Page 7: Airplane Performance & Design
Page 8: Airplane Performance & Design
Page 9: Airplane Performance & Design
Page 10: Airplane Performance & Design
Page 11: Airplane Performance & Design
Page 12: Airplane Performance & Design
Page 13: Airplane Performance & Design
Page 14: Airplane Performance & Design
Page 15: Airplane Performance & Design
Page 16: Airplane Performance & Design
Page 17: Airplane Performance & Design
Page 18: Airplane Performance & Design
Page 19: Airplane Performance & Design
Page 20: Airplane Performance & Design
Page 21: Airplane Performance & Design

This Page Blank

Page 22: Airplane Performance & Design
Page 23: Airplane Performance & Design

This Page Blank

Page 24: Airplane Performance & Design
Page 25: Airplane Performance & Design
Page 26: Airplane Performance & Design
Page 27: Airplane Performance & Design
Page 28: Airplane Performance & Design
Page 29: Airplane Performance & Design
Page 30: Airplane Performance & Design
Page 31: Airplane Performance & Design
Page 32: Airplane Performance & Design
Page 33: Airplane Performance & Design
Page 34: Airplane Performance & Design
Page 35: Airplane Performance & Design
Page 36: Airplane Performance & Design
Page 37: Airplane Performance & Design
Page 38: Airplane Performance & Design
Page 39: Airplane Performance & Design
Page 40: Airplane Performance & Design
Page 41: Airplane Performance & Design
Page 42: Airplane Performance & Design
Page 43: Airplane Performance & Design
Page 44: Airplane Performance & Design
Page 45: Airplane Performance & Design
Page 46: Airplane Performance & Design
Page 47: Airplane Performance & Design

This Page Blank

Page 48: Airplane Performance & Design
Page 49: Airplane Performance & Design
Page 50: Airplane Performance & Design
Page 51: Airplane Performance & Design

This Page Blank

Page 52: Airplane Performance & Design
Page 53: Airplane Performance & Design
Page 54: Airplane Performance & Design
Page 55: Airplane Performance & Design
Page 56: Airplane Performance & Design
Page 57: Airplane Performance & Design

This Page Blank

Page 58: Airplane Performance & Design
Page 59: Airplane Performance & Design
Page 60: Airplane Performance & Design
Page 61: Airplane Performance & Design
Page 62: Airplane Performance & Design
Page 63: Airplane Performance & Design
Page 64: Airplane Performance & Design
Page 65: Airplane Performance & Design

This Page Blank

Page 66: Airplane Performance & Design
Page 67: Airplane Performance & Design
Page 68: Airplane Performance & Design
Page 69: Airplane Performance & Design

This Page Blank

Page 70: Airplane Performance & Design
Page 71: Airplane Performance & Design
Page 72: Airplane Performance & Design
Page 73: Airplane Performance & Design

This Page Blank

Page 74: Airplane Performance & Design
Page 75: Airplane Performance & Design
Page 76: Airplane Performance & Design
Page 77: Airplane Performance & Design
Page 78: Airplane Performance & Design
Page 79: Airplane Performance & Design
Page 80: Airplane Performance & Design
Page 81: Airplane Performance & Design
Page 82: Airplane Performance & Design
Page 83: Airplane Performance & Design

This Page Blank

Page 84: Airplane Performance & Design
Page 85: Airplane Performance & Design
Page 86: Airplane Performance & Design
Page 87: Airplane Performance & Design
Page 88: Airplane Performance & Design
Page 89: Airplane Performance & Design
Page 90: Airplane Performance & Design
Page 91: Airplane Performance & Design
Page 92: Airplane Performance & Design
Page 93: Airplane Performance & Design
Page 94: Airplane Performance & Design
Page 95: Airplane Performance & Design
Page 96: Airplane Performance & Design
Page 97: Airplane Performance & Design
Page 98: Airplane Performance & Design
Page 99: Airplane Performance & Design
Page 100: Airplane Performance & Design
Page 101: Airplane Performance & Design
Page 102: Airplane Performance & Design
Page 103: Airplane Performance & Design
Page 104: Airplane Performance & Design
Page 105: Airplane Performance & Design
Page 106: Airplane Performance & Design
Page 107: Airplane Performance & Design
Page 108: Airplane Performance & Design
Page 109: Airplane Performance & Design
Page 110: Airplane Performance & Design
Page 111: Airplane Performance & Design
Page 112: Airplane Performance & Design
Page 113: Airplane Performance & Design
Page 114: Airplane Performance & Design
Page 115: Airplane Performance & Design
Page 116: Airplane Performance & Design
Page 117: Airplane Performance & Design
Page 118: Airplane Performance & Design
Page 119: Airplane Performance & Design
Page 120: Airplane Performance & Design
Page 121: Airplane Performance & Design
Page 122: Airplane Performance & Design
Page 123: Airplane Performance & Design
Page 124: Airplane Performance & Design
Page 125: Airplane Performance & Design
Page 126: Airplane Performance & Design
Page 127: Airplane Performance & Design

This Page Blank

Page 128: Airplane Performance & Design
Page 129: Airplane Performance & Design
Page 130: Airplane Performance & Design
Page 131: Airplane Performance & Design
Page 132: Airplane Performance & Design
Page 133: Airplane Performance & Design
Page 134: Airplane Performance & Design
Page 135: Airplane Performance & Design
Page 136: Airplane Performance & Design
Page 137: Airplane Performance & Design
Page 138: Airplane Performance & Design
Page 139: Airplane Performance & Design
Page 140: Airplane Performance & Design
Page 141: Airplane Performance & Design
Page 142: Airplane Performance & Design
Page 143: Airplane Performance & Design
Page 144: Airplane Performance & Design
Page 145: Airplane Performance & Design
Page 146: Airplane Performance & Design
Page 147: Airplane Performance & Design
Page 148: Airplane Performance & Design
Page 149: Airplane Performance & Design

This Page Blank

Page 150: Airplane Performance & Design
Page 151: Airplane Performance & Design

This Page Blank

Page 152: Airplane Performance & Design
Page 153: Airplane Performance & Design
Page 154: Airplane Performance & Design
Page 155: Airplane Performance & Design
Page 156: Airplane Performance & Design
Page 157: Airplane Performance & Design

This Page Blank

Page 158: Airplane Performance & Design
Page 159: Airplane Performance & Design
Page 160: Airplane Performance & Design
Page 161: Airplane Performance & Design

This Page Blank

Page 162: Airplane Performance & Design
Page 163: Airplane Performance & Design
Page 164: Airplane Performance & Design
Page 165: Airplane Performance & Design
Page 166: Airplane Performance & Design
Page 167: Airplane Performance & Design
Page 168: Airplane Performance & Design
Page 169: Airplane Performance & Design
Page 170: Airplane Performance & Design
Page 171: Airplane Performance & Design
Page 172: Airplane Performance & Design
Page 173: Airplane Performance & Design

/* ------------------------------------------------ -------------------- PROGRAM: index.html Ver: 1.0 Re v: 03/01/2010 DESCRIPTION: www.neatinfo.com main menu BY: Jan Zumwalt - www.zoomaviation.com ------------------------------------------------ -------------------- COMMENTS: Practical calculation of aircraft p erformance Compiled and ran on the free Pellec C compiler http://www.smorgasbordet.com/pelles c/ ------------------------------------------------ -------------------- Ver info: V1.0 users will note slight variations in output compared to the basic version of this program due to different ro und off error in math packages. */ #include <stdio.h> #include <math.h> /* ------------------------------------------------ -------------------- This section is user variables that can be custo mized to a particular aircraft. See The book for descriptions. ------------------------------------------------ -------------------- */ const float altitude_ft = 0.00; // Defines the value of Pi as fixed const float air_density_slug = 0.00237; // (sealevel) const float pi = 3.14159; // Defines the value of Pi as fixed const float vel_delta = 1.00; // airspeed increment for each iteration const float vel_stall_clean_mph = 67.00; // VS1 const float cl_max_clean = 1.53; // const float cl_max_flap = 2.10; // const float gross_lb = 1500.00; // const float useful_load_lb = 600.00; // const float plane_efficiancy = 0.744; // const float bhp = 150.00; // Defines the value of Pi as fixed const float vel_max_mph = 180.00; // const float prop_dia_in = 72.00; // const float prop_dia_ft = 72 / 12; // const float wing_span_ft = 20.83; // const float prop_max_rpm = 2700.00; // // end of user editable custom variables void main() float wing_load_lb_ft = cl_max_clean * po w(vel_stall_clean_mph,2) / 391; // float vel_stall_flaps_mph = sqrt(wing_load_lb _ft * 391 / cl_max_flap); // VS0 float wing_area_ft = gross_lb / wing_l oad_lb_ft; // float wing_aspect = pow(wing_span_ft, 2) / wing_area_ft; // float wing_chord_ft = wing_span_ft / wi ng_aspect; // float wing_span_effective = wing_span_ft * sq rt(plane_efficiancy); // float wing_chord_effective = wing_area_ft / wi ng_span_effective; // float wing_load_effective = gross_lb / wing_s pan_effective; // float drag_area_ft = .8 * bhp * 146625 / pow(vel_max_mph,3); // // float cd_drag = drag_area_ft / wi ng_area_ft; // float vel_sink_min_ft = 11.29 * sqrt(wing _load_effective) / sqrt(sqrt(drag_area_ft)); // float pwr_min_req_hp = .03922 * sqrt( sq rt(drag_area_ft)) * wing_load_effective * sqrt(wing_load_effective); // float rate_sink_min_ft = 33000 * pwr_min_r eq_hp / gross_lb; // float ld_max = .8862 * wing_span _effective / sqrt(drag_area_ft); //

Page 174: Airplane Performance & Design

float drag_min = gross_lb / ld_max ; // float cl_min_sink = 3.07 * sqrt(drag_ area_ft) / wing_chord_effective; // float rate_climb_ideal = 33000 * bhp / gro ss_lb; // float prop_tip_mach = prop_max_rpm * pr op_dia_ft * .05236 / 1100; // float prop_vel_ref = 41.9 * pow(bhp / pow(prop_dia_ft,2),.33333); // float static_thrust_ideal = 10.41 * pow(bhp * prop_dia_ft,.66666); // printf("\n\t wing_load_lb_ft = %.02f", wing _load_lb_ft); printf("\n\t vel_stall_flaps_mph = %.02f", vel_ stall_flaps_mph); printf("\n\t wing_area_ft = %.02f", wing _area_ft); printf("\n\t wing_aspect = %.02f", wing _aspect); printf("\n\t wing_chord_ft = %.02f", wing _chord_ft); printf("\n\t wing_span_effective = %.02f", wing _span_effective); printf("\n\t wing_chord_effective = %.02f", wing _chord_effective); printf("\n\t wing_load_effective = %.02f", wing _load_effective); printf("\n\t drag_area_ft = %.02f", drag _area_ft); printf("\n\t cd_drag = %.04f", cd_d rag); printf("\n\t vel_sink_min_ft = %.02f", vel_ sink_min_ft); printf("\n\t pwr_min_req_hp = %.02f", pwr_ min_req_hp); printf("\n\t rate_sink_min_ft = %.02f", rate _sink_min_ft); printf("\n\t ld_max = %.02f", ld_m ax); printf("\n\t drag_min = %.02f", drag _min); printf("\n\t cl_min_sink = %.02f", cl_m in_sink); printf("\n\t rate_climb_ideal = %.02f", rate _climb_ideal); printf("\n\t prop_tip_mach = %.02f", prop _tip_mach); printf("\n\t prop_vel_ref = %.02f", prop _vel_ref); printf("\n\t static_thrust_ideal = %.02f", stat ic_thrust_ideal); printf("\n\n"); printf("\n\t ----------------------------------- ------------------------------------------"); printf("\n\t airspeed \t climb rate \t prop eff \t sink rate \t rennolds num"); printf("\n\t v(mph) \t rc(fpm) \t eta \ t rs(fpm) \t re=rho*v*c/mu"); printf("\n\t ----------------------------------- ------------------------------------------"); float eta = 1; float fp = 0; float rc = 1; float rc1 = 0; float rc2 = 0; float rcmax = 0; float rec = 0; float rsh = 0; float rmu = 1; float rs = 0; float sig = pow(1 - altitude_ft / 145800,4.265); // float t = 518.7 - 0.00356 * altitude_ft; float t1 = .3333; float t2 = 0; float v = vel_stall_clean_mph; float vh = 0; float vmax = 0; float vt = 0; float wv2 = 0; while (rc > 0) vh = v / vel_sink_min_ft; rsh = .25 * (pow(vh,4) + 3) / vh; rs = rsh * rate_sink_min_ft; vt = v / prop_vel_ref; t2 = sqrt(1 + .23271 * pow(vt,3)); eta = .92264 * vt * (pow( 1 + t2,t1) - pow(t2 - 1,t1)) * .85; rc = rate_climb_ideal * eta - rs;

Page 175: Airplane Performance & Design

rc2 = rc; rec = sig * v * wing_chord_ft * 9324 / rmu; if (rc < 0) break; rcmax = fmax(rc,rcmax); vmax = fmax(v,vmax); printf("\n\t %.01f \t %.01f \t %.02f \t %.01f \t %.0f",v, rc, eta, rs, rec ); v = v + vel_delta * rc2 / (rc2 - rc1); fp = rcmax * useful_load_lb / 33000 / bhp * (1 - (vel_stall_flaps_mph / vmax)); wv2 = gross_lb * pow(v,2); printf("\n\n\t performance parameter......... f p = %.04f",fp); printf("\n\t kinetic energy parameter...... wv2 = %.02f",wv2); printf("\n\t maximum rate of climb.. ...... rcm ax = %.02f",rcmax); printf("\n\t maximum speed................. vma x = %.02f",vmax); printf("\n\t useful load lb....... useful_load_ lb = %.02f",useful_load_lb); printf("\n\n\t +-------------------------------- ----------------------+"); printf("\n\t | Thank you for us ing |"); printf("\n\t | Air-Performance 1.0 |"); printf("\n\t +---------------------------------- --------------------+"); printf("\n\n\t Press <Enter> key to exit... "); while ((getchar()) != '\n'); printf("\n");

OUTPUT... ------------------------------------------------- ---------------------------- airspeed climb rate prop eff sink rate re nnolds num v(mph) rc(fpm) eta rs(fpm) re= rho*v*c/mu ------------------------------------------------- ---------------------------- 67.0 1175.5 0.63 896.1 256 1031 68.0 1196.3 0.63 891.1 259 9255 69.0 1216.2 0.64 886.6 263 7480 70.0 1235.3 0.64 882.6 267 5704 71.0 1253.5 0.65 879.1 271 3928 72.0 1271.0 0.65 876.1 275 2153 - - - 170.0 183.4 0.82 2521.4 649 8138 171.0 147.3 0.82 2559.0 653 6362 172.0 110.7 0.82 2597.2 657 4587 173.0 73.5 0.82 2635.9 6612 811 174.0 35.8 0.82 2675.0 6651 035 performance parameter......... fp = 0.1206 kinetic energy parameter...... wv2 = 45937500. 00 maximum rate of climb.. ...... rcmax = 1482.42 maximum speed................. vmax = 174.00 useful load lb....... useful_load_lb = 600.00 +------------------------------------------------ ------+ | Thank you for using | | Air-Performance 1.0 | +------------------------------------------------ ------+ Press <Enter> key to exit...

Page 176: Airplane Performance & Design
Page 177: Airplane Performance & Design
Page 178: Airplane Performance & Design
Page 179: Airplane Performance & Design
Page 180: Airplane Performance & Design
Page 181: Airplane Performance & Design
Page 182: Airplane Performance & Design
Page 183: Airplane Performance & Design
Page 184: Airplane Performance & Design
Page 185: Airplane Performance & Design
Page 186: Airplane Performance & Design
Page 187: Airplane Performance & Design

This Page Blank

Page 188: Airplane Performance & Design
Page 189: Airplane Performance & Design
Page 190: Airplane Performance & Design
Page 191: Airplane Performance & Design
Page 192: Airplane Performance & Design
Page 193: Airplane Performance & Design
Page 194: Airplane Performance & Design
Page 195: Airplane Performance & Design
Page 196: Airplane Performance & Design
Page 197: Airplane Performance & Design
Page 198: Airplane Performance & Design
Page 199: Airplane Performance & Design
Page 200: Airplane Performance & Design
Page 201: Airplane Performance & Design
Page 202: Airplane Performance & Design
Page 203: Airplane Performance & Design
Page 204: Airplane Performance & Design
Page 205: Airplane Performance & Design
Page 206: Airplane Performance & Design
Page 207: Airplane Performance & Design
Page 208: Airplane Performance & Design
Page 209: Airplane Performance & Design
Page 210: Airplane Performance & Design
Page 211: Airplane Performance & Design
Page 212: Airplane Performance & Design
Page 213: Airplane Performance & Design
Page 214: Airplane Performance & Design
Page 215: Airplane Performance & Design
Page 216: Airplane Performance & Design
Page 217: Airplane Performance & Design
Page 218: Airplane Performance & Design

Appendix A

(information not in the original book)

Page 219: Airplane Performance & Design
Page 220: Airplane Performance & Design
Page 221: Airplane Performance & Design
Page 222: Airplane Performance & Design
Page 223: Airplane Performance & Design
Page 224: Airplane Performance & Design

Appendix B

(information not in the original book)

Aviation Math Symbols

Page 225: Airplane Performance & Design
Page 226: Airplane Performance & Design
Page 227: Airplane Performance & Design
Page 228: Airplane Performance & Design

Α, α Alpha angle Β, β Beta Γ, γ Gamma

∆, δ Delta change or press/ratio Ε, ε Epsilon Ζ, ζ Zeta Η, η Eta Θ, θ Theta temp/ratio Ι, ι Iota Κ, κ Kappa Λ, λ Lambda Μ, µ Mu Ν, ν Nu Ξ, ξ Xi

Ο, ο Omicron Π, π Pi 3.141 Ρ, ρ Rho density Σ, σ Sigma density/ratio Τ, τ Tau Υ, υ Upsilon Φ, φ Phi trig angle, i.e. sin, cos Χ, χ Chi Ψ, ψ Psi Ω, ω Omega ∠ angle ° degree ≅ approximate ≤ less than or equal ≥ more than or equal

± plus or minus ∞ infinity ∑ sum oC = ( oF-32) * 5/9 oF = ( oC * 5/9) + 32 oR = oF + 460 oK = oC + 273 ft/min = mph * 88 ft/sec = kt * 1.69 ft/sec = mph * 1.47 kt = mph * 0.87

kt = 69.1

fps

mph = kt * 1.15 Note: unit of measure may be in subscript. For example, a distance (X) may be given as Xft or Xin . a = acceleration AC = aerodynamic center AR = wing aspect ratio (no dim) b = wing span C = chord CF = coefficient of force (no dim) CG = center of gravity CL = coefficient of lift (no dim) CLmax = max C L (no dim)

d = distance D = drag Dmin = minimum drag Di = induced drag Dp = parasite drag Dt = total drag EAS = equivalent air speed F = force Fb = braking force FR = friction ft = feet ft/m = feet per minute ft/s = feet per second G = gravity – 32.2(ft/s 2) H = head (total pressure) h = height hp = horse power IAS = indicated air speed k = constant KE = kinetic energy kt = knot L = lift L/D = lift to drag ratio (no dim) L/D max = max lift/drag ratio (no dim) m = mass MAC = mean aerodynamic chord mph = mile per hour N = weight on wheels ŋ = efficiency ŋP = propulsive efficiency P = air density(slugs) PA = power available PE = potential energy PR = power required q = dynamic pressure RN = renold number ROC = rate of climb S = surface area sl = slug SL = sea level Ŧ = thrust (lb) t = time ŦA = thrust available TAS = true air speed TE = total energy ŦR = thrust required u = friction coefficient (no dim) V = velocity VS = velocity at stall VX = velocity best angle VY = velocity best ROC W = weight X = distance or unknown Y = height or unknown

δδδδ = )(P

)(

SL hg

hgP

θθθθ = °

°T

T SL

σσσσ = SLδδ

* θ = SLδδ

°T

T SL

Page 229: Airplane Performance & Design

q = 295

)(2 ktsV∗σ

a(fps 2) = )(2.32/)(

)(

glbW

lbF

= )(

)(

sgm

lbF

= )(*2

)()( 22

ftd

fpsVfpsV endstart +

= [ ])()()(*)(

)(2.32lbFlbDlbT

lbW

gR−−

AR = )(meanchord

span =

area

span2

CAS = IAS ± ∆V”chart”

CL = )(*)(*)(*2/1

)(22 ftSfpsVsgp

lbL

CL = )()(

)(29522 ftSktV

lbw

∗∗∗

σ

d(ft) = V av(fps) * t(s)

= 2

)()( fpsVfpsV endstart + * t(s)

dtakeoff (ft) = [ ]

)(*2

)()(2

2

fpsa

fpswindfpsVTakeoff ±

d2_takeoff (ft) =

2

1

2_1 )(

)(*)(

lbW

lbWftd takeoff

=

2

2

1_1 *)(

σσ

ftd takeoff

d land (ft) = [ ]

)(*2

)()(2

2

fpsa

fpswindfpsVTakeoff ±

d2_land (ft) =

)(

)(*)(

1

2_1 lbW

lbWftd Land

=

2

_1_1 )(

)(1*)(

+

fpsV

fpswindftd

landLand

=

2

1_1 *)(

σσ

ftd land

DT(lb) = ½*p(alt)*V 2(fps)*S(ft 2)*C d

Di min = drag induced at (L/D)max(lb)

DP = 2

1

2min *2

V

VD

Di = 2

2

1min *2

V

VD

Dt = D p + D i

Dmin = max)/(

)(

DL

lbW

EAS = CAS ± ∆V”chart Fb = u * N

hp = 325

)(*)( ktVlbT

m(sg) = )(32

)(

fps

lbW

Vs(fps) = )(*)(*

)(22

max ftSaltpC

lbW

L

TAS = EAS * density = σ1

IASV

Vtip (fps) = 55.9

*)( rpmftr

VDIST = )(*)(*2 2 ftdfpsa

VDmin = )(**

)(2952ftSC

lbW

L σ∗

S(ft 2) = )()(

)(*)(

21

22

lbWlbW

ftLlbW

+

t(s) = )(

)(2fpsa

fpsV

Page 230: Airplane Performance & Design

hyp = 22 basalt + =

a

alt

∠sin =

b

alt

∠cos

= a

base

∠cos =

b

base

∠sin

alt = 22 bashyp + =

a

bas

∠tan

= b

bas

∠tan = hyp * Sin ∠α

bas = hyp * Cos ∠α = b

alt

∠tan

= alt * tan ∠b = hyp * cos ∠a = hyp * sine ∠b

Tan ∠∠∠∠αααα = bas

alt

∠∠∠∠a = 90 – b

***************************************

A1 = V 1 = P 1 = σ = q1 = A2 = V 2 = P 2 = σ = q2 = A3 = V 3 = P 3 = σ = q3 =

A1*V 1 = A 2*V 2 = A 3*V 3

q1 = ½ * P * V 12 =

295

)(21 ktsV∗σ

H = P 1 + q 1

V2(kt) = )(

)()(2

2

12

1

ftA

ktVftA ∗

q2 = 295

)(22 ktsV∗σ

p2 = H - q 2

A3(ft 2) = )(

)()(

3

22

2

ktV

ktVftA ∗

q3 = 295

)(23 ktsV∗σ

p3 = H – q 3

CG(ft) = ∑

∑)(

)/(

lbW

lbftMom

= [ ]

[ ]∑∑

)(

)(*)(

lbW

ftArmlbW

************************************

Page 231: Airplane Performance & Design
Page 232: Airplane Performance & Design
Page 233: Airplane Performance & Design
Page 234: Airplane Performance & Design

Appendix C

(information not in the original book)

Design Notes

Page 235: Airplane Performance & Design
Page 236: Airplane Performance & Design
Page 237: Airplane Performance & Design
Page 238: Airplane Performance & Design
Page 239: Airplane Performance & Design
Page 240: Airplane Performance & Design
Page 241: Airplane Performance & Design
Page 242: Airplane Performance & Design
Page 243: Airplane Performance & Design

Appendix D

(information not in the original book)

Graphs & Charts

Page 244: Airplane Performance & Design
Page 245: Airplane Performance & Design

Log Paper

Page 246: Airplane Performance & Design
Page 247: Airplane Performance & Design
Page 248: Airplane Performance & Design
Page 249: Airplane Performance & Design
Page 250: Airplane Performance & Design