aircraft design: t/w

Upload: yak

Post on 06-Mar-2016

17 views

Category:

Documents


0 download

DESCRIPTION

itü uck 451e

TRANSCRIPT

  • TheT/WandW/S(wingloading)arethetwomostimportantparametersaffectingaircraftperformance.Optimizationoftheseparametersformsamajorpartoftheanalyticaldesignactivitiesconductedafteraninitialdesignlayout.

    SW

    Lowlargewingenoughvolumeforlandinggearandfuel.

    Highsmallwingnotenoughvolumeforlandinggearandfuel.incrementofwettedareaandadditionaldragforce

    TakeoffdistanceWT

    SW ,

    Forshorttakeoff SW

    WTlargewing,smallengine; smallerThrust

    smallwing,largeengine; SW

    WT higher

    Thrust

    It is frequentlydifficult tousehistoricaldata to independently select initialvaluesforT/WandW/S

  • Thedesignermustguessatoneoftheparametersandusethatguesstocalculatetheotherparameterfromthecriticaldesignrequirements.

    SW

    Criticaldesignrequirement;stallspeedduringtheapproachforlanding.

    (Approachstallspeedisindependentofenginesize.)Then,theestimatedW/ScanbeusedtocalculatetheT/Wrequiredtoattainotherperformancedriverssuchassingleenginerateofclimb.

  • la

    n

    d

    i

    n

    g

    l

    a

    n

    d

    i

    n

    g

    takeoff

    l

    a

    n

    d

    i

    n

    g

  • ThrusttoWeightRatioThrusttoWeightDefinitions

    WT

    quickaccelarationrapidclimbhighermaximumspeedhigherturnrates

    morefuelconsumptionhigherengineweight

    constWTburningfuelW )(

    ),( VhTT

    DesignT/WmustbemeanT/Wduringsealevel(zerovelocity),standarddayconditionsatdesigntakeoffweightandmaximumthrottlesetting.IfarequiredT/Wiscalculatedatsomeothercondition,itmustbeadjustedbacktotakeoffconditions.

  • PowerLoadingandHorsepowertoWeight

    JetengineaircraftWT Propellerpoweredaircraftpowerloading

    hpW

    Powerloadingformostaircraft:1015[lb/hp]

    Powerloadingforaerobaticaircraft:6[lb/hp]

    EquivalentT/Wforpropelleredaircraft:

    ][550

    unitsfpsWhp

    VWP

    VWT pp

  • StatisticalEstimationofT/W

    Aircrafttype TypicalinstalledT/W

    Jettrainer 0.4

    Jetfighter(dogfighter)(afterburner) 0.9

    Jetfighter(other) 0.6

    Militarycargo/bomber 0.25

    Jettransport(highervalueforfewerengines)

    0.250.4

    (Inmksunits,thethrustforceisfoundas(T/W)x(mass)x(g[9.807]))

    AircrafttypeTypicalP/W Typicalpower

    loading[lb/hp]hp/lb [watt/g]

    Poweredairplane 0.04 [0.07] 25

    Homebuilt 0.08 [0.13] 12

    Generalaviation(singleengine) 0.07 [0.12] 14

    Generalaviation(twinengine) 0.17 [0.30] 6

    Agricultural 0.09 [0.15] 11

    Twinturboprop 0.20 [0.33] 5

    Flyingboat 0.10 [0.16] 10

    Thrusttoweightratio.

    Powertoweightratio.

    Atmaximumpowersettingsat sealevel and zerovelocity(static)condition.

  • Attakeoffweights:ModernjetfighterT/W1.0Atcombatconditions(withfuelburningW):T/W>1.0 capableofaccelerating

    T/W0=aMCmax a C

    Jettrainer 0.488 0.728

    Jetfighter(dogfighter) 0.648 0.594

    Jetfighter(other) 0.514 0.141

    Militarycargo/bomber 0.244 0.341

    Jettransport 0.267 0.363

    T/W0vsMmax

    P/W0=aVCmax:hp/lbor[watt/g] a C

    Sailplanepowered 0.043[0.071] 0

    Homebuiltmetal/wood 0.005[0.006] 0.57

    Homebuiltcomposite 0.004[0.005] 0.57

    Generalaviation(singleengine) 0.025[0.036] 0.22

    Generalaviation(twinengine) 0.036[0.048] 0.32

    Agriculturalaircraft 0.009[0.010] 0.50

    Twinturboprop 0.013[0.016] 0.50

    Flyingboat 0.030[0.043] 0.23

    P/W0vsVmaxKnotsor[km/hr]

    Curvefit equaitons basedupon maximum Machnumberorvelocity.Thesecanbeusedforfirstestimation.

  • ThrustMatching

    Foraircraftdesignedprimarilyforefficiencyduringcruise:AbetterinitialestimateoftherequiredT/Wcanbeobtainedbythrustmatching:Comparisonoftheselectedenginesthrustavailableduringcruisetotheestimatedaircraftdrag.

    DT WL

    Cruiseflightcondition:

    cruisecruisecruise DLLD

    WT

    /1

    estimatedvaluecanbeused.

    Cruise

    Jet 0.866(L/D)max

    Propeller (L/D)max

    refwet SS /

    ThisT/Wisatcruisecondition.T/W,fortakeoffatsealevelcondition,mustbecalculated.

  • Thismethodassumesthattheaircraft iscruisingatapproximatelytheoptimumaltitude fortheasyetunknownW/S.Themethodwouldbeinvalidiftheaircraftwereforcedbythemissionrequirementstocruiseatsomeotheraltitude,suchassealevel.Whenthewing loadinghasbeenselected,theL/DattheactualcruiseconditionsshouldbecalculatedandusedtorechecktheinitialestimateforT/W.Thehighestweightduringcruiseoccursat thebeginningof thecruise.Fuelburnedduringtakeoffandclimbtocruisealtitudecanbecalculated.

    Mission segmentsweightfractions

    Atthebeginningofthecruise:

    offtakestartcruise WW 956.0Thrustduringcruiseisdifferentfromthetakeoffvalue.Jetaircraftsaredesignedtocruiseatapproximatelyatwhichtheselectedenginehasthe lowestspecificfuelconsumption(SFC),typically10000m.WhileSFCisimprovedatthesealtitudes,thethrustdecreases.

  • Also, theengine issizedusing the thrustsetting thatproduces thebestSFC.This isusually70100%ofthemaximumcontinuous,nonafterburningthrust.

    offtakecruise TT RequiredcruiseT/WmustbeadjustedtoobtaintheequivalenttakeoffT/W.

    asubsonic,highbypassratioturbofanforatransportaircraft:alowbypassafterburningturbofanorturbojet:

    2025%ofthe offtakeT

    4070%ofthe offtakeT Thrustlapseatcruise.

    AircraftDesign:AConceptualApproach,RaymerD.P.

  • Forapistonpowered,propellerdrivenaircraft,thepoweravailablevarieswiththedensityoftheairprovidedtotheintakemanifold.Iftheengineisnotsupercharged,thenthepowerfallsoffwithincreasingaltitudeaccordingtodensityratio,:Anonsuperchargedengineat3048mwillhaveabout73%ofitssealevelpower.

    To prevent this powerdecrease, many pistonengines use a superchargertomaintain theairprovidedtothemanifoldatessentiallysealevel density up to thecompression limit of thesupercharger. Above thisaltitude,thepowerbeginstodropoff:Piston powered aircrafttypicallycruiseatabout75%oftakeoffpower.

    Pistonenginepowervariationwithaltitude

    AircraftDesign:AConceptualApproach,RaymerD.P.

  • With a turboprop, there is an additional, residual thrust contribution from the turbineexhaust.Itiscustomarytoconvertthisthrusttoitshorsepowerequivalentandaddittotheactualhorsepower,creatinganequivalentshafthorsepower(eshp).Foratypicallyturbopropengineinstallation,thecruiseeshpisabout6080%ofthetakeoffvalue.ThetakeoffT/Wrequiredforcruisematchingcannowbeapproximated:

    cruise

    offtake

    offtake

    cruise

    cruiseofftake TT

    WW

    WT

    WT

    0.956 shouldbeobtainedfromactualenginedataifpossible.

    Afteran initial layouthasbeen completed,actualaerodynamic calculationsaremade tocomparethedragduringcruisewiththethrustavailable.

  • T/Wisoftendeterminedbyaclimbrequirementratherthanbycruiseconditions.Commonproblem:TheT/Wforclimbcanbeso largethattheenginesmustthrottledwaybackduringcruise,andanaircraftengineisusuallyveryinefficient.Thisisespeciallytrueforjetengines.

    cruisecruise DLWT

    /1

    T/Wforclimb:

    (T/Wforlevelflight)+ (anextrathrustpowerrequiredfortheclimbgradient)

    VV

    DLWT vertical

    mbclimbcli

    /1 design

    requirement

    Forthefirstpassestimate,theT/W(orP/W)shouldbeselectedasthehigherofeitherthestatisticalvalueobtainedfromthetablesorthevalueobtainedfromthethrustmatching.AfterselectionofW/S,theselectedT/Wshouldberecheckedagainstallrequirements.

  • WingLoading

    SW

    stallspeedclimbratetakeoffdistancelandingdistanceturnperformancedesignliftcoefficientwettedarea,wingspandrag

    SW

    Takeoffgrossweight

    SW

    Largerwing

    Performanceimprovement

    DragWtakeoff

    HistoricalterndsTypicaltakeoff(W/S)

    lb/ft2 [kg/m2]

    Sailplane 6 [30]

    Homebuilt 11 [54]

    Generalaviation(singleengine) 17 [83]

    Generalaviation(twinengine) 26 [127]

    Twinturboprop 40 [195]

    Jettrainer 50 [244]

    Jetfighter 70 [342]

    Jettransport/bomber 120 [586](Inmksunits,thethrustforceisfoundas(T/W)x(mass)x(g[9.807]))

    Wingloading

  • T/WandW/Smustbeoptimizedtogether.InitiallyestimationofW/Sallowthedesignertobeginthelayoutwithsomeassurancethatthedesignwillnotrequirecompleterevisionaftertheaircraftisanalyzedandsized.Toensurethatthewingprovidesenoughliftinallcircumstances,thedesignershouldselectthelowestoftheestimatedwingloadings.If an unreasonably low wing loading value is driven by only one of these performanceconditions,thedesignershouldconsideranotherwaytomeetthatcondition.Forexample,ifthewingloadingrequiredtomeetastallspeedrequirementiswellbelowallotherrequirements,itmaybebettertoequiptheaircraftwithahighliftflapsystem.Iftakeoffdistanceorrateofclimbrequireaverylowwingloading,perhapstheT/Wratioshouldbeincreased.

  • StallSpeed

    ThestallspeedofanaircraftisdirectlydeterminedbytheW/SandcLmax.Stallspeedisamajorcontributortoflyingsafety,withasubstantialnumberoffatalaccidentseachyearduetofailuretomaintainflyingspeed.Also, theapproach speed,which is themost important factor in landingdistanceandalsocontributestoposttouchdownaccidents,isdefinedbythestallspeed.

    FAR23certifiedaircrafts: W

  • Stallspeedflightwithmaximumliftcoefficient

    LSLL ScVScVWL 22 21

    21

    2/1

    max

    )/(2

    LSLstall c

    SWV ?

    Aplainwingwithnoflaps 1.21.5

    Awingwithlargeflapsimmersedinthepropwashorjetwash 5.0

    Shorttakeoffandlandingaircraft 3.0

    Aregulartransportaircraftwithflapsandslats 2.4

    Otheraircraftswithflapsontheinnerpartofthewing 1.62.0

    ceInterferentextureSurface

    numberslotedgeLeading

    SpangeometryFlap

    shapeAirfoilgeometryWing

    fcL

    Re

    max

    (Thetrimforceprovidedbythehorizontaltailwillincreaseorreducethemaximumlift,dependingonthedirectioofthetrimforce)

    Duringlanding,theflapswillbedeployedthemaximumamounttoprovidegreatestlift.However,fortakeoffthemaximumflapanglewillprobablycausemoredragforce:Typically,thetakeoffmaximumliftcoefficientisabout80%ofthelandingvalue.

  • A > 5 the maximum lift coefficient of wing will be approximately 90% of the airfoilmaximumliftcoefficientatthesameReynoldsnumber.Ifpartialspanflapsareused,theirdeflectionwillintroducealarge,discontinuoustwistintothewinggeometrythatchangesthe liftdistribution,thusthe induceddownwash,causingtheeffectiveangleofattacktovaryatdifferentspanstations.

    ref

    unflappedunflappedl

    ref

    flappedflappedlL S

    Sc

    SS

    cc )()(9.0 maxmax

    The lift coefficient of the unflappedairfoil at the angleof attack atwhichtheflappedairfoilstalls.

    For a better initial estimationofmaximumlift,itisnecessaryto resort to test results andhistoricaldata.

    (remember:thetakeoffmaximumliftcoefficientisabout80%ofthelandingvalue)

    AircraftDesign:AConceptualApproach,RaymerD.P.

  • TakeoffDistance

    Groundrollistheactualdistancetraveledbeforethewheelsleavetheground.Theliftoffspeedforanormaltakeoffis1.1Vstall.Obstacleclearancedistance isthedistancerequiredfrombrakereleaseuntiltheaircrafthasreachedsomespecifiedaltitude.This is usually 50 ft (15.24 m) for military or small civil aircraft and 35 ft (10.7 m) forcommercialaircraft.

  • BalancedFieldLengthisthelengthofthefieldrequiredforsafetyintheeventofanenginefailureattheworstpossibletimeinamultiengineaircraft.Thespeedatwhichthedistancetostopafteranenginefailureexactlyequalsthedistancetocontinuethetakeoffontheremainingenginesiscalledthedecisionspeed.(V1)

  • W

    TcgS

    WS

    SLLSL

    LO

    max

    2

    44.1

    AircraftDesign:AConceptualApproach,RaymerD.P.

    ForinitialestimationoftherequiredW/S,astatisticalapproachforestimationoftakeoffdistancecanbeused.

    Thetakeoffliftcoefficientistheactualliftcoefficientattakeoff,notthemaximumliftcoefficientattakeoffconditionsasusedforstallcalculation.Theaircrafttakesoffatabout1.1Vstallsothetakeoffliftcoefficientisthe(cLmax/1.21).Required(W/S)tomeetagiventakeoffdistancerequirement:

    WhpcTOP

    SW

    TOL)(

    WTcTOP

    SW

    TOL)(

    Propeller:Jet:

    TOP

  • Aircraft TakeoffWeight TakeoffSpeedBoeing737 100,000lb[45,360kg] 150mph[250km/h,130kts]Boeing757240,000lb[108,860kg] 160mph[260km/h,140kts]AirbusA320 155,000lb[70,305kg] 170mph[275km/h,150kts]AirbusA340 571,000lb[259,000kg] 180mph[290km/h,155kts]Boeing747 800,000lb[362,870kg] 180mph[290km/h,155kts]Concorde 400,000lb[181,435kg] 225mph[360km/h,195kts]

    Speed Description FAR25RequirementVs Stallspeedintakeoffconfiguration Vmc Minimumcontrolspeedwithoneengineinoperative(OEI) V1 OEIdecisionspeed =or>VmcVr Rotationspeed 5%>VmcVmu Minimumunstickspeedforsafeflight =or>VsVlof Liftoffspeed 10%>Vmu

    5%>Vmu(OEI)V2 Takeoffclimbspeedat35ft 20%>Vs

    10%>Vmc

  • CatapultTakeoff

    Mostnavalaircraftmustbecapableofoperationfromanaircraftcarrier:Acatapultacceleratestheaircrafttoflyingspeedinaveryshortdistance.Catapultsaresteamoperated,andcanproduceamaximumforceontheaircraftdependingonthesteampressure.Therefore,alightaircraftcanbeacceleratedtoahigherspeedbythecatapultthanaheavyone.

    21.1)(

    21 max2 offtakeL

    thrustwodendofftake

    cVVV

    SW

    catapult windoverdeck engine

  • LandingDistanceLandinggroundroll is theactualdistance theaircraft travels from the timewheels firsttouchtothetimetheaircraftcomestoacompletestop.Landingfieldlengthincludesclearinga50ft(15.24m)obstaclewhiletheaircraftisstillatapproachspeedandontheapproachglidepath(normally30).Landingdistanceislargelydeterminedby(W/S).

    stallapproach VV 3.1Civilaircraft:Militaryaircraft: stallapproach VV 2.1

    )(180max

    ftScS

    WS aL

    landing

    )(15max

    mScS

    WS aL

    landing

    Obstacleclearencedistance

    Sa

    Airlinertype,30glideslope 1000ft[305m]

    Generalaviationtype,poweroffapproach

    600ft[183m]

    STOL,70glideslope 450ft[137m]

    Areasonablefirstguessofthetotallandingdistance:

    ][)(3.0 2 knotsVapproach

    Withthrustreverser:Commercialaircraftrequiredsafetymargin:

    landingS66.0

    landingS67.1

  • ArrestedLandingAircraft that landonNavyaircraftcarriersare stoppedbyacableandbrakearrangementcalledarresteinggear.Oneofseveralcablesstrungacrosstheflightdeckiscaughtbyahookattachedtotherearoftheaircraft.Thecableisattachedatbothendstodrummechanismswhichexertadraguponthecableasitispulledbytheaircraft,thusstoppingitinaveryshortdistance.Forcarrierbasedaircraft,theapproachspeedis1.2Vstall.Carrierpilotsdonotflareandslowdownforlanding.Instead,theyaretaughttoflytheaircraftrightintothedeck,relyinguponthe arresting gear tomake the landing.By using this technique, the aircraft has enoughspeedtogoaroundifthecablesaremissed.

    Thefigurecanbeusedtodeterminetheallowableapproachspeedbaseduponafirstguessofthelandingweight.Theapproachspeeddividedby1.15definesthestallspeed,whichcanthenbeusedtoestimatethewingloading.

  • WingLoadingforCruise

    ?0Dc

    Jetaircraft0.015Cleanpropelleraircraft0.02Dirty,fixedgearpropelleraircraft0.03

    Zeroliftdragcoefficient

    ?eFighteraircraft0.60.8Otheraircraft0.8Oswaldefficiencyfactor

    (measureofdragduetoliftefficiency)

    Tomaximizerangeduringcruise(W/S)shouldbeselected toprovideahigh(L/D)atthecruiseconditions.

  • Cruiseflight

    Jet Propeller

    0.866(L/D)max (L/D)max2/1

    0

    kc

    cc DLL mEpropellerBR

    2/1

    30

    kc

    c DL jetBR

    0WLCruiseflightqScWL L

    qSWcL/

    0DAecq

    SW Maximumpropellerrange

    3/0D

    AecqSW Maximumjetrange

    Aek

    1

    Cruiseflightfuelburnedweightreduces(W/S)Thiscanbeeqalizedq 2

    21 Vq

    V h; cruiseclimbflight

    Airtrafficcontroldoesnotlikeaircrafttokeepgraduallyclimb:Aircraftsometimesallowedtoperformstepclimbduringcruisewithhof600mor1200m.

  • WingLoadingforLoiterEndurance

    Loiterflight

    Jet Propeller

    (L/D)max 0.866(L/D)max2/1

    0

    kc

    cc DLL mEjetBR

    2/1

    30

    kc

    c DL propellerBR

    0DAecq

    SW

    Maximumpropellerloiter

    3/0D

    AecqSW

    Maximumjetloiter

    20minutesofloiterbeforelanding

    Iftheloiteraltitudeisnotspecified: cJetaircraft:h=3000040000ft[10000m]Pistonpropeller:h=limitaltitudeforturbocharger h=sealevelfornonturbocharger

    4/12/1

    0

    max

    )/(2

    DSL

    tloiter ckSWVV

    Forinitialdesignpurposes:Loitervelocity:150200knots[325km/h]forturbopropsandjets80120knots[180km/h]forpistonprops

    Formostaircraft,thwingloadingwillbeselectedforbest cruise or other requiremenys and the loitercapabilitieswillbeasecondaryconsideration.

    Intheabsenceofbetterinformation,thisratiocanbeassumedtobeabout0.85

  • 2/12

    22

    )1n(gV

    tangVVr

    Vng

    Vg 2/12 )1(tan

    n,Vrmtr

    TurningFlight

  • 2/1

    LSLturning,stall

    maxc

    )S/W(n2V

    Cornerspeed:

    2/1

    LSL

    maxcorner

    maxc

    )S/W(n2V

    corner

    2/12max

    V)1n(g

    2/12max

    2corner

    corner )1n(gV

    r

  • 2/12/1

    2m

    2

    DSL ])W/T[E(n11

    cS/TV

    0

    VnT

  • InstantaneousTurn/InstantaneousTurnRatewhereaplanepullsmaxG's(near6rightbeforeblackout)toturnquicklyforashortperiodoftime,turnratevarieswithspeed,usuallybestedatthecornerspeed/cornervelocityofagivenaircraft.Aturnthatquicklyexpelsspeedandpossiblyalt,whileaninstantaneousturnisbydefinitionunsustainable,mosttimestobenomorethana180degreeturnorchangeindirection.Whileusuallybestedatthecornerspeedofthegivenaircraft,thisturncanbeperformedathigherorlowerspeedswithlessbenefit.SustainedTurn/SustainedTurnRatewhereaplanemaximizesitssmallestturnradius,gload,andspeedtoacquirethebestpossibleturnrateandcontinuouslysustainstheturnforlongperiodsoftime,withoutgivingupalt,speed,ordegreesofturn.

    Astheabovedefinitionshavedefined,thedifferencebetweenthetwoistheperiodoftimeyou'reabletomaintaintherateofturn.WhileyoucanachieveahighinstantaneousGloadbypullingbackhardonthestick,youwillnotbeabletomaintainthathighrateofturnforverylongbecausethathighGloadwillincreasedragandslowtheaircraft,inreturnthiswillreducethemaximumGobtainable.Conversely,alowerGloadproduceslessdrag.Eventuallyyou'llreachapointwherethrustwillbesufficienttoovercomethedragbeingproduced.ThiswillallowyoutomaintainthecurrentGloadandspeed.Thisiscalledsustainedturnrate.

  • InstantaneousTurnAnaircraftdesignedforairtoairdogfightingmustbecapableofhighturnrate.

    dtd

    Whenairtoairmissilesare inuse,thefirstaircrafttoturntowrdstheother aircraft enough to launch amisslewillprobablywin.Inagunsonlydogfight,theaircraftwith the higher turn rate will beabletomaneuverbehindtheother.

    Aturnratesuperiorityof20/sisconsideredsignificant.

    Sustained turn rate is turn rate atwhich the thrust of the aircraft is just sufficient tomaintainvelocityandaltitudeintheturn.

    0DTInstantaneousturnrateisthehighestturnratepossible.Iftheaircraftturnsataquickerrate,thadragbecomesgreaterthantheavailablethrust,sotheaircraftbeginstoslowdownorlosealtitude.

    DT LoadFactororgloadingduringaturnistheaccelarationduetoliftexpressedasamultipleofthestandardaccelerationduetogravity.

    ][gWLn

  • SWqcn L/

    VgWL sin

    WL cos Vng

    Vg 2/12 )1(tan

    cosWL cos

    1WLn

    1

    n12 n 1tan 2 n

    Instantaneousturnrateislimitedonlybythrusablemaximumlift,uptothespeedatwhichthemaximumliftexceedstheloadcarryingcapabilityofthewindstructure.Afighteraircraft:nmaxis7.33g,fornewerfightersnmaxis89g

    Thespeedatwhich themaximum liftavailableexactlyequals theallowable load factor iscalled hte corner speed and provides the maximum turn rate for that aircraft at thataltitude. Inadogflight,pilots try toget tocorner speedasquicklyaspossible itprovidesbestturnrate.Amodernfighteraircraft:cornerspeedis300350knots[550650km/h]

  • nqc

    SW Lmax

    allowablenVn

    12

    Designspecifications:

    Therequired(W/S)canbesolvedas:

    ?atcombatconditionsnotforlanding

    Machnumbereffectwhichreducesmaximumliftathigherspeeds.Buffetingorcontrollabilityconsiderations.

    Afighteraircraftwithonlyasimpletrailingedgeflapforcombat: 8.06.0max

    LcAfighteraircraftwithcomplexsystemofleadingandtrailingedgeflapswhichcanbedeployedduringcombat:

    5.10.1max

    LcTheresultingwingloadingmustbedividedbytheratioofcombatweighttotakeoffweighttoobtaintherequiredtakeoffwing loading.Usuallythecombatweight isspecifiedastheaircraftdesigntakeoffweightwithanyexternalfueltanksdroppedand50%ofthe internalfuelgone.Thisisapproximately0.85xWtakeoffformostfighters.Theresultingwingloadingisthemaximumwhichwillallowtherequiredinstantaneousturn.

  • SustainedTurnThe sustained turn rate isalso important for success in combat. It twoaircraftpasseachotherinoppositedirections,itwilltakethemabout10secondstocomplete1800turnbacktowardstheother.Theaircraftwillprobablynotbeabletomaintainspeedwhileturningatthe maximum instantaneous rate. If one of the aircraft slow down below corner speedduringthistimeitwillbeataturnratedisadvantagetotheother,whichcouldprovefatal.Sustainedturnrateisusuallyexpressedintermsofthemaximumloadfactoratsomeflightconditionthattheaircraftcansustainwithoutslowingorlosingaltitude.Forexample:Theabilityforsustaining4or5gat0.9Mat30000ft[9144m]Ifthespeedistobemaintained: 0DT

    DL

    WT

    WLn

    Loadfactorinasustainedturnismaximizedby:

    DL

    WT ,

    2/1

    0

    kc

    c DL mE

    0DAec

    nq

    SW

    qSnW

    qSLcL Aek

    1 withregardlessofthrustavailable.

  • AeqSWnqSc

    AecqSqScT DLD

    222

    00

    Aeqn

    SW

    SWqSc

    WT D

    2

    /0

    Aeqn

    AecnWTWTSW D

    /2/4//

    2

    220

    Aec

    nWT D

    02

    Thewingloadingtoexactlyattainarequiredsustainedloadfactorusingalloftheavailablethrustcanbedetermined: qScDT D

    (T/W)atcombatconditions

    offtakecombat

    cruise

    offtake

    offtake TT

    WW

    WT

    0/4/0

    22 AecnWT D nosolution availablesolution

    ,...)(efSW )( Lcfe Athighangleofattacktheeffectiveevaluemaybe

    reducedby30%ormore.Becareful!!!

  • ClimbandGlide

    ThesespecifyrateofclimbEngineoutLandinggearpositionFlapsettings sinV

    dtdh

    ClimbgradientXhG

    WDTGsinWDT

    cosWL G

    WT

    WD

    AeqS

    WSW

    qcW

    AecqSqScWD DLD

    1

    //

    00

    2

    Aeq

    AecGWTGWTSW D

    /2/4)/()/(

    0

    2 Aec

    GWT D

    02

    availablesolution

    hX

    TherearenumerousclimbrequirementsforFARormilitaryaircraft.

  • MaximumCeiling

    LqcSW

    0DAecq

    SW

    canbeusedtocalculatethewingloadingtoattainsomemaximumceiling,giventheT/Watthose conditions.The climbgradientG canbe set to zero to represent level flightat thedesiredaltitude.

    Aeq

    AecGWTGWTSW D

    /2/4)/()/(

    0

    2

    forminimumpower

    Thismaysuggestawing loadingso lowas tobe impractical,andsoshouldbecomparedwiththewingloadingrequiredtoflyatagivenliftcoefficient:

    Forefficiencyduringhighaltitudecruise,the liftcoefficientshouldbeneartheairfoildesignliftcoefficient.

    Typicalairfoil:cLis0.5Highaltitudeaircraft,newhighliftairfoils:cLis0.951.0

  • SelectionofThrusttoWeightandWingLoading

    FromtheW/Sestimatedabove,thelowestvalueshouldbeselectedtoensurethatthewingislargeenoughforallflightconditions.Dontforgettoconvertallwingloadingstotakeoffconditionspriortocomparisons.AlowW/Swillalwaysincreaseaircraftweightandcost.IfaverylowW/Sisdrivenbyonlyoneoftherequirements,achangeindesignassumptions(suchasabetterhighliftsystem)mayallowahigherW/S.When thebest compromise forW/Shasbeen selected, theT/W shouldbe rechecked toensurethatallrequirementsarestillmet.Theequations in the lastsectionwhichuseT/Wshouldbe recalculatedwith theselectedW/SandT/W.

  • InInternationalSystem F15K F15C Mig29K Mig29B JF17 J10 F35A F35B F35C F22

    Engine(s)ThrustMaximum(kgf) 26,456(2) 21,274(2) 18,000(2) 16,600(2) 08,300(1) 12,500(1) 18,098(1) 18,098(1) 18098(1) 31,764(2)

    AircraftWeightEmpty(kg) 17,010 14,379 12,723 10,900 06,586 09,250 13,290 14,515 15,785 19,673

    AircraftWeightFullfuel(kg) 23,143 20,671 17,963 14,405 08,886 13,044 21,672 20,867 24,403 27,836

    AircraftWeightMaxTakeoffload(kg) 36,741 30,845 22,400 18,500 12,700 19,277 31,752 27,216 31,752 37,869

    Totalfuelweight(kg) 06,133 06,292 05,240 03,505 02,300 03,794 08,382 06,352 08,618 08,163

    T/Wratio(Thrust/ACweightfullfuel) 1.14 1.03 1.00 1.15 0.93 0.96 0.84 0.87 0.74 1.14

    AircraftType

    TakeOffWeightlbs

    WingLoadinglbs/ftsq

    ThrusttoWeightMilitary

    ThrusttoWeightAfterburner

    FirstFlightYear

    CF105 68,602 56 0.56 0.76 1958

    CF18A 35,800 90 0.60 0.89 1978

    F16C 26,536 88 0.57 0.94 1974

    MirageF1 25,530 94 0.44 0.63 1966

    MiG23 38,000 117 0.46 0.67 1967

    MiG29 35,000 88 0.64 1.05 1977