airah vic presentation · pdf file · 2016-09-17airah ( vic ) presentation to...

32
AIRAH ( VIC ) presentation AIRAH ( VIC ) presentation To efficiency and beyond Introductory Concepts: Design load vs Annual load Chiller rating tools COP & IPLV Bin weather data & NPLV Johnson Controls Proprietary & Confidential

Upload: lymien

Post on 08-Mar-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

AIRAH ( VIC ) presentationAIRAH ( VIC ) presentationTo efficiency and beyond

Introductory Concepts:Design load vs Annual loadChiller rating tools ‐ COP & IPLVBin weather data & NPLV

Johnson Controls ‐ Proprietary & Confidential

Chiller58% Chiller

33%Fans43%

Fans Tower

Design Performance

Tower5%

24%Pumps

13%

Annual Energy Usage

Pumps22%

Tower2%

A historical focus on chiller full load efficiency [COP/EER]Increased focus today on‐y1. Chiller part load efficiency [IPLV]2. Reduction of air and water ‘transport’ energy

Johnson Controls ‐ Proprietary & Confidential

Tools used to identify appropriate chiller technology 

Constant condenser vs AHRI relief (IPLV)Load % time entering condenser water temperature

IPLV without  AHRI relief with AHRI relief

100% 1 29 5 29 5100% 1 29.5 29.5

75% 42 29.5 23.9

50% 45 29.5 18.3

25% 12 29.5 18.3

h h b b lConstant high ambient wb climates Seasonal climates

What is the weather data and load profile for the jobsite location ? => NPLV

Johnson Controls ‐ Proprietary & Confidential

YorkCalc BIN WEATHER DATA – Melbourne AUSTRALIA

temperature bin canberra melbourne adelaide perth sydney brisbane cairnsdeg F deg C HRS WB HRS WB HRS WB HRS WB HRS WB HRS WB HRS WB105-109 40.6- 42.8 6 21.7100-104 37.8- 40 1 20 1 21.7 27 21.1 2 22.2 4 22.2 3 23.3 3 2595 99 35 37 2 17 19 4 12 21 1 55 20 17 21 1 6 21 1 15 22 2 14 25 695-99 35- 37.2 17 19.4 12 21.1 55 20 17 21.1 6 21.1 15 22.2 14 25.690-94 32.2- 34.4 50 18.9 22 20.6 116 19.4 42 21.1 18 20.6 131 23.3 94 25.685-89 29.4- 31.7 112 17.8 50 20 215 18.3 14 20.6 40 21.1 643 21.7 781 2580-84 26.7-28.9 193 17.2 96 18.9 313 17.8 37 21.1 158 20.6 1374 20.6 1620 23.375-79 23.9- 26.1 332 16.1 160 18.3 477 16.7 151 20.6 618 20.1 1744 18.9 2513 22.270-74 21.1-23.3 480 15.6 276 17.2 696 15.6 612 20.1 1493 18.3 1814 16.7 1984 20.165-69 18.3- 20.6 725 14.4 485 16.7 1013 14.4 1478 18.3 1975 16.1 1307 14.4 1163 17.860-64 15.6- 17.8 1096 13.3 958 15.1 1495 12.8 1966 16.1 1772 13.9 913 12.2 344 15.655-59 12.8- 15 1316 11.1 1650 13.3 1852 11.1 1764 13.9 1383 11.1 484 9.4 107 12.850 54 10 12 2 1307 8 9 1938 11 1 1522 9 4 1384 11 1 852 8 9 223 7 2 23 10 150-54 10- 12.2 1307 8.9 1938 11.1 1522 9.4 1384 11.1 852 8.9 223 7.2 23 10.145-49 7.2- 9.4 1160 6.7 1776 8.9 702 7.8 853 8.9 397 6.7 65 5.1 2 7.840-44 4.4-6.7 859 4.4 930 7.2 218 5.6 396 6.7 38 5.1 11 2.835-39 1.7- 3.9 547 2.2 277 5.1 38 2.8 38 5.1 1 1.1 0.630-34 (1.1) - 1.1 307 0.1 50 2.8 1 0.6 1( )25-29 (3.9)-(1.7) 137 -2.8 420-24 (6.7)-(4.4) 27 -5.1 0.615-19 (9.4)-(7.2) 1 -7.2 14% annual operating hours > 16.7 C wb (AHRI )

52% annual operating hours = 16 7 C ‐ 11 1 C wbIntegrated economizer mode 52% annual operating hours   16.7 C  11.1 C wb

34% annual operating hours <11.1 C wb

Integrated economizer mode

Johnson Controls ‐ Proprietary & Confidential

ReviewReview• Variable speed drives are widely applied today to motors used in HVAC 

plant applications as a cost effective means to reduce energy use.

• Chilled water plants typically operate only 1% of the time at full load, design conditions.

• IPLV (integrated part load value) is a useful tool to evaluate chillers, but is based on a single chiller plant using standard AHRI water temperatures and average US weather data.

• NPLV (non‐standard part load value) can be used where the standard AHRI chilled and condenser water temperatures, load profile, and weather data do not apply.

• Melbourne bin weather data indicates there is opportunity for significant chiller operating hours at < 18.3 deg C entering condenser water.

Johnson Controls ‐ Proprietary & Confidential

Chiller full load efficiency trends

( 0)COP=7

COP=6

COP 5

(6.50)(>7.0)Chiller COP trend

COP=5

COP=4

1970 1980 1990 2000 2010

Recent gains through cycle efficiency

Since 1980, average chiller efficiency has improved  over 35%, despite using less efficient refrigerants.

Johnson Controls ‐ Proprietary & Confidential

• Significant gains in full load efficiency through advances in h h d l ffi i iheat exchanger, compressor, motor, and cycle efficiencies.

• The biggest single gain however has been in part load efficiency with the adoption of the variable speed drive.

MR ifi DC

Supply

L1

L2

L3

Motor

M3

U1

V1

W

Rectifier InverterDCL

C UV1    V3    V5

V4   V6    V2

Monitoring ControlControl electronics

Control, monitor, and communication

Johnson Controls ‐ Proprietary & Confidential

Over 30 years of VSD technology development for chillers

Generation 5 (2010s)

Generation 4 (2000s)

Generation 3 (1990s)

Generation 2 (1986)

Generation 1 (1979)Significant innovation in 

VSD technology since 1979

Johnson Controls ‐ Proprietary & Confidential

Real World Energy @ Lower LiftCapitalizing on ‘off‐design’ conditions –99% of the timeCapitalizing on  off design  conditions  99% of the time

LoweringLowering Condenser Water Condenser Water TemperatureTemperaturePressure

L th LiftL th Liftd Lowers the LiftLowers the Lift

Compressor

Condenser

Lift  Expansion

Reduces Compressor WorkReduces Compressor WorkEvaporator

Reduces Energy Reduces Energy ConsumptionConsumption

Enthalpy

Direct Indirect

Johnson Controls ‐ Proprietary & Confidential

How does LIFT impact efficiency ?Chiller Energy Usage Analogy ‐ Constant Speed Driven Chillers 

100% Condenser Temp.85°F (29.5°C) ECWT

gy g gy p

 Lift

RGY  

Design

Lift

(height of mountain)

ENER Load

(weight of rock)

0% Evaporator Temp.44°F (6.7°C) LCHWT

Johnson Controls ‐ Proprietary & Confidential

How does LIFT impact efficiency ? Chiller Energy Usage Analogy ‐ Constant Speed Driven Chillers 

85°F (29.5°C) ECWTCondenser Temp.

gy g gy p

70%

55°F (12.8°C) ECWT

RGY  

n Lift

ENER

Off‐D

esign

Load

(weight of rock)

0%44°F (6.7°C) LCHWTEvaporator Temp.

Johnson Controls ‐ Proprietary & Confidential

How does LIFT impact efficiency ? Chiller Energy Usage Analogy ‐ Variable Speed Driven Chillers 

Condenser Temp.85°F (29.5°C) ECWT

gy g gy p

VariableVariableSpeedSpeed

50%

RGY  

n Lift

55°F (12.8°C) ECWTDrive Drive 

ENER

Off‐D

esign

Load

(weight of rock)

0% Evaporator Temp.44°F (6.7°C) LCHWT

Johnson Controls ‐ Proprietary & Confidential

How Can You Save Energy in an HVAC Central Plant ?

YK Chiller with VSD Performance

Loading has little effect on efficiency4.7

COP

on efficiency

[~ 10%]

6.6

5.5

4.7

11

8.3

33

17

29.5 C24.0 C

18.3 C12.8 C

Entering condenser water

13Johnson Controls ‐ Proprietary & Confidential

YK Chiller with VSD Performance

How Can You Save Energy in an HVAC Central Plant ?

YK Chiller with VSD Performance

Loading has little effect on efficiency4.7

COP

Lift has significant

[~ 10%]

6.6

5.5

Lift has significant effect on efficiency

[~ 50%]11

8.3

33

17

29.5 C24.0 C

18.3 C12.8 C

Entering condenser water

14Johnson Controls ‐ Proprietary & Confidential

Variable Speed Drives save energy and reduce noise

Constant Speed

Variable Speed

15 Johnson Controls ‐ Proprietary & Confidential

Variable Speed DrivesLow Voltage Liquid Cooled Unit Mounted VSDg q

²YMC²Magnetic VSD Centrifugal

YVAAVSD Screw air cooled

YKOpen VSD Centrifugal

YVWAVSD Screw water cooled

415V

16 Johnson Controls ‐ Proprietary & Confidential

Variable Speed DrivesMedium Voltage (MV) VSDg ( )

YK

3.3 kV & 6.6 kV

VSD Open Centrifugal

YK ‐EP11 kVVSD Open Centrifugal with Economizer

17 Johnson Controls ‐ Proprietary & Confidential

The Purpose of Variable Speed Drives

Starts & stops the motor

Significantly reduces inrush current to < than full load amps

Corrects power factor close to unity

Reduces utility demand charge

Regulates compressor speed to provide the most efficient chiller operation, reducing part load energy consumption

18 Johnson Controls ‐ Proprietary & Confidential

Low inrush current with VSD < 100% FLA 

Johnson Controls ‐ Proprietary & Confidential

Superior power factor

0.98 power factor VSD with active IEEE electronic filter0.95 power factor  (std VSD)

power factor non VSD (fixed speed)  

Johnson Controls ‐ Proprietary & Confidential

100 KW

59 KVARPF = 0.86

actual work

Consumed energy to i fi ld59 KVAR

116 KVAgenerate magnetic fieldtotal energy 

provided from supply

100 KW

33 KVAR PF = 0.95total energyConsumed energy to 

actual work

33 KVAR105 KVA

PF   0.95total energy provided from supply

generate magnetic field

100 KW20 KVAR PF = 0.98total energy 

Consumed energy to generate magnetic field

actual work

what power factor means

102 KVAPF   0.98

provided from supply

p

Johnson Controls ‐ Proprietary & Confidential

Comparison at AHRI condenser ‘relief’

Why VSD ? ‐ Comparative Energy Performance

VSDVSD

Comparison at AHRI condenser  relief

No VSDNo VSD% Load ECWT %SAVEDCOP COPLWT% Load ECWT100 29.590        27.2

%SAVED‐1.02.2

COP6.176.73

COP6.116.89

LWT6.76.7

80 25.070 22.860 20.6

8.716.225.9

7.147.427.59

7.828.8610.24

6.76.76.7

50 18.340 18.3 30 18 3

33.036.438 5

7.657.116 36

11.4211.1710 34

6.76.76.76 730          18.3 

20         18.3 15 18.3 

38.544.145.0

6.365.174.41

10.349.268.01

6.76.76.7

Significant savings ….and with more possibleJohnson Controls ‐ Proprietary & Confidential

Unit Mounted Low Voltage Solid State Starter

Unit Mounted Low Voltage Variable Speed 

Drive Johnson Controls ‐ Proprietary & Confidential

Fixed speed (conventional) staging Variable speed staging

100%

90%

100%

90%

80%

70%

60%

80%

70%

60%60%

50%

40%

60%

50%

40%A hill l d

30%

20%

30%

20%

Average chiller load1 chiller = 57%2 chiller = 67%3 chiller = 75%4 chiller = 83%

10%

0%

min% 33% 67% 100%

10%

0%

min% 26% 52% 100%

5 chiller = 88%

min%  33% 67% 100% min%     26%         52% 100%

Building load Building loadJohnson Controls ‐ Proprietary & Confidential

All variable speed plant ‐ key CPO functions

1. Energy based staging algorithms

2 Condenser water set point reset2. Condenser water set‐point reset 

3. Chilled water set‐point reset Reduce chiller lift

4. Series / Series counter‐flow chillers

5. Variable chilled water flow (VPF) with large delta T

6 System differential pressure set point reset Reduce pump energy6. System  differential pressure set‐point reset

7. Variable condenser water flow

Reduce  pump energy

Johnson Controls ‐ Proprietary & Confidential

Survey :160 respondents

Johnson Controls ‐ Proprietary & Confidential

Chiller COP=16.9 !Metasys screenshot of YK VSD chiller installed on jobsite

27Johnson Controls ‐ Proprietary & Confidential

Cooling load 516 kWrMetasys screenshot of tower at same chiller load

Total fan energy 3.8 kWJohnson Controls ‐ Proprietary & Confidential

8.6 An instantaneous delivered plant COP of 8.6 !!

Chiller Input 30 kWChiller Input  30 kWChw Pumps  8.5 kWCondenser Pump  18 kWTower Fans   3.8 kW

/Plant COP =  516/ 60.3 = 8.6

Johnson Controls ‐ Proprietary & Confidential

Efficiency breakthrough – low lift magnetic VSD chillers

+   8% COP+ 13% IPLV

Johnson Controls ‐ Proprietary & Confidential

Air-Cooled�Variable Speed Screw�ChillerYVAA Series % load Ambient COP

YVAA 0345EXV50 (1175 kWr)

100908070

35.031.728.325 0

3.23.64.24 870

605040

25.021.718.315.0

4.85.46.37.6

3020

12.812.8

9.37.6

YVAA Key Technology Elements

Hybrid Falling Film Evaporator

Variable SpeedDrive

Variable SpeedScrew Compressor

Micro‐channel Condenser Coils 

Variable Speed Fans

VSD technology offers huge efficiency 

Johnson Controls ‐ Proprietary & Confidential

gy g ygains with air cooled chillers

High EfficiencyVSD chillers

Minimize LIFT

Design to minimize‘transport’ energy

System level control optimizationoptimization

Johnson Controls ‐ Proprietary & Confidential