air conditioning with solar energy

Upload: ipman99

Post on 02-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Air Conditioning With Solar Energy

    1/56

    FraunhoferInstitutSolare Energiesysteme

    page 1barcelona_english

    SERVITEC

    Barcelona, Oct ober 3, 2000

    Air Conditioning with Solar Energy

    Dr. Hans-Martin Henning

    Fraunhofer-Institut fr Solare Energiesysteme ISE, Freiburg

  • 7/27/2019 Air Conditioning With Solar Energy

    2/56

    FraunhoferInstitutSolare Energiesysteme

    page 2barcelona_english

    1 Fundamentals1.1 Thermodynamics1.2 Climatic conditions

    1.3 Definition of air conditioning2 Systems & Components2.1 Chillers

    2.2.1 Absorption chillers2.2.2 Adsorption chillers2.2 Open cycles - desiccant cooling2.3 Solar collectors3 Solar air conditioning systems

    3.1 Comparative study of solar assisted systems3.1.1 Compared systems

    3.1.2 Required collector area3.1.3 Primary energy saving

    3.1.4 Pay back time3.2 Autonomous systems4 Built examples

    5 Summary & outlook

    Contents

    F

  • 7/27/2019 Air Conditioning With Solar Energy

    3/56

    FraunhoferInstitutSolare Energiesysteme

    page 3barcelona_english

    photovoltaic-

    peltier-system

    photovoltaik-

    compression

    system

    electricsystems

    solid sorbents

    (rotary wheels,

    fix bed process)

    liquid

    sorbents

    opencycles

    liquid

    sorbents

    adsorption chemical

    reaction

    solid

    sorbents

    closedcycles

    heat transformation

    systems

    rankine-process/compression

    Veulleumier-cycle

    thermomechanical

    processes

    thermal drivensystems

    solar cooling

    processes

    Fundamental

    Solar cooling processes

  • 7/27/2019 Air Conditioning With Solar Energy

    4/56

    FraunhoferInstitutSolare Energiesysteme

    page 4barcelona_english

    Thermal

    driven coolingprocess

    heat

    chilledwater

    conditionedair

    Fundamental

    Solar thermal air conditioning systems

  • 7/27/2019 Air Conditioning With Solar Energy

    5/56

    FraunhoferInstitutSolare Energiesysteme

    page 5barcelona_english

    Fundamental

    mechanicalpower P

    driving heatTheat

    waste heatTwaste

    cooling powerTcold

    heatengine

    vapourcompressionmachine

    wasteheat

    T

    waste

    driving heatTheat

    cooling powerTcold

    thermal drivencooling machine

    wasteheat

    Twaste

    Thermodynamic process

  • 7/27/2019 Air Conditioning With Solar Energy

    6/56

    FraunhoferInstitutSolare Energiesysteme

    page 6barcelona_english

    60 80 100 120 140 160 180 200

    driving temperature[C]

    0

    0,5

    1

    1,5

    2

    2,5

    3

    3,5

    4

    4,5

    5reversible COP [-]

    evaporator temperature

    0C 5C 10C 15C

    maximum COP of coolingmachines

    Fundamental

    COP (Coefficient ofPerformance) =

    produced cold___required driving heat

  • 7/27/2019 Air Conditioning With Solar Energy

    7/56

    FraunhoferInstitutSolare Energiesysteme

    page 7barcelona_english

    35 50 65 80 95 110 125 140 155 170 185 200 215 230 245

    fluid average temperature [C]

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1 collector efficiency [-]radiation

    200 W/m^2

    400 W/m^2

    600 W/m^2

    800 W/m^2

    1000 W/m^2

    tpyical solar collectorefficiency curves

    Fundamental

  • 7/27/2019 Air Conditioning With Solar Energy

    8/56

    FraunhoferInstitutSolare Energiesysteme

    page 8barcelona_english

    maximum COP of coolingmachines

    Fundamental

    35 55 75 95 115 135 155 175 195 215 235

    driving temperature [C]

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1collector efficiency, COPsol [-]

    0

    0,3

    0,6

    0,9

    1,2

    1,5

    1,8

    2,1

    2,4

    2,7

    3COP [-]

    collector

    efficiency

    COPsol

    COP

    COPsol =

    COP * collector

  • 7/27/2019 Air Conditioning With Solar Energy

    9/56

    FraunhoferInstitutSolare Energiesysteme

    page 9barcelona_english

    35 50 65 80 95 110 125 140 155 170 185 200 215 230 245

    fluid average temperature[C]

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7COPsol [-]

    radiation200 W/m^2

    400 W/m^2

    600 W/m^2

    800 W/m^2

    1000 W/m^2

    COPsol for differentcollector radiation values

    Fundamental

  • 7/27/2019 Air Conditioning With Solar Energy

    10/56

    FraunhoferInstitutSolare Energiesysteme

    page 10barcelona_english

    200 300 400 500 600 700 800 900 1000

    radiation [W/m^2]

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7COPsol [-]

    65

    80

    95

    110

    125

    140

    155

    170temperature [C]

    maximum COPsol andrespective temperatureas function of radiationon collector

    Fundamental

  • 7/27/2019 Air Conditioning With Solar Energy

    11/56

    FraunhoferInstitutSolare Energiesysteme

    page 11barcelona_english

    definition of airconditioning

    Fundamental

    n air conditioning: control of indoor airtemperature and humidity according tocomfort demands

    n main loads are:

    conditioning of ventilation air (supplyof fresh air)

    sensible internal loads: persons,equipment, artificial lighting

    latent internal loads: persons, plants,others (e.g. kitchen)

    solar loads (windows, glazings)

    conduction loads (walls, windows)

    conditioning of

    ventilation air

    solar

    loads

    internal

    loads

    supplyair

    return

    air

  • 7/27/2019 Air Conditioning With Solar Energy

    12/56

    FraunhoferInstitutSolare Energiesysteme

    page 12barcelona_english

    specific cooling load ofconditioning ofventilation air inkWh per m3/h per year

    supply air temperature:18C

    supply air humidity:8 g/kg

    requirements forconditioning of ventilationair at different sites

    Fundamental

    Copenhagen Freiburg Trapani Bangkok0

    10

    2030

    40

    50

    60

    70

    8090

    100cooling load of ventilation air

    sensiblelatent

    total

    sensible 0,57 1,95 5,93 28,48

    latent 1,43 2,88 17,59 69,33

    total 2 4,84 23,52 97,81

  • 7/27/2019 Air Conditioning With Solar Energy

    13/56

    FraunhoferInstitutSolare Energiesysteme

    page 13barcelona_english

    1 Fundamentals1.1 Thermodynamics

    1.2 Climatic conditions1.3 Definition of air conditioning

    2 Systems & Components2.1 Chillers

    2.2.1 Absorption chillers2.2.2 Adsorption chillers2.2 Open cycles - desiccant cooling2.3 Solar collectors3 Solar air conditioning systems

    3.1 Comparative study of solar assisted systems3.1.1 Compared systems

    3.1.2 Required collector area3.1.3 Primary energy saving

    3.1.4 Pay back time3.2 Autonomous systems4 Built examples5 Summary & outlook

    Contents

    F

  • 7/27/2019 Air Conditioning With Solar Energy

    14/56

    FraunhoferInstitutSolare Energiesysteme

    page 14barcelona_english

    method closed cycle open cyclerefrigerant cycle closed refrigerant cycle refrigerant (water) is in contact to the

    atmosphereprinciple chilled water dehumidification of air and evaporative

    cooling

    phase of sorbent solid liquid solid liquid

    typical materialpairs

    water - silica gel,ammonia - salt 1

    water - water/lithiumbromide,

    ammonia/water

    water - silica gel,water -

    lithiumchloride

    water - calciumchloride, water -

    lithium chloridemarket availabletechnology

    adsorption chiller absorption chiller desiccant cooling -

    typical coolingcapacity [kW cold]

    adsorption chiller:50-430 kW

    absorption chiller:20 kW - 5 MW

    20 kW - 350 kW(per Module)

    -

    typical COP 0.3-0.7 0.6-0.75 (singleeffect))

    0.5->1 >1

    driving temperature 60-90C 80-110C 45-95C 45-70Csolar collectors vacuum tubes, flat

    plate collectorsvacuum tubes flat plate collectors,

    solar air collectorsflat plate collectors,solar air collectors

    1) still under development

    Systems & Components

    processoverview

    S &C

  • 7/27/2019 Air Conditioning With Solar Energy

    15/56

    FraunhoferInstitutSolare Energiesysteme

    page 15barcelona_english

    Systems & Components

    systemoverview

    backupheater

    chiller

    heat supply system chilled water

    conditioned airbuilding/room

    returnair

    supplyair ambientair

    exhaustair

    bufferstorage

    desiccant

    wheel

    heatreco

    very

    wheel

    S t &C t

  • 7/27/2019 Air Conditioning With Solar Energy

    16/56

    FraunhoferInstitutSolare Energiesysteme

    page 16barcelona_english

    liquid

    refrig

    eran

    t

    lowconcentra

    tion

    high

    concentratio

    n

    .Q

    C

    .Q

    G

    .Q

    A

    .Q

    Ev

    single-effectabsorption cycle(e.g. water -lithiumbromide)

    Systems & Components

    S stems&Components

  • 7/27/2019 Air Conditioning With Solar Energy

    17/56

    FraunhoferInstitutSolare Energiesysteme

    page 17barcelona_english

    n absorption chillers are market availablecomponents, mainly employed in combined heat-

    power-cold systemsn chilled water can be used for conditioning of air

    (dehumidification, temperature decrease) or for coldsupply in the rooms (fan coils, chilled ceilings,...)

    n many products available in the high capacity range(tpyically > 200 kW); only few products with small

    capacitiesn driving temperature of single effect machines at

    > 85C with COP of 0.6-0.7

    n driving temperature of double-effect machines at> 150C with COP of 1.2

    status of absorptionchillers

    Systems & Components

    Systems&Components

  • 7/27/2019 Air Conditioning With Solar Energy

    18/56

    FraunhoferInstitutSolare Energiesysteme

    page 18barcelona_english

    adsorption chiller cycle

    Systems & Components

    adsor-

    ber 1

    adsor-

    ber 2

    condenser

    evaporator

    adsor-

    ber 1

    adsor-

    ber 2

    condenser

    evaporator

    condenser

    evaporator

    adsor-

    ber 2

    adsor-

    ber 1

    condenser

    evaporator

    adsor-ber 2

    adsor-ber 1

    phase 1

    phase 2

    phase 3

    phase 4

    Systems&Components

  • 7/27/2019 Air Conditioning With Solar Energy

    19/56

    FraunhoferInstitutSolare Energiesysteme

    page 19barcelona_english

    status of adsorptionchillers

    Systems & Components

    n adsorption chillers are market available from

    to Japanese companiesn chilled water can be used for conditioning of

    air (dehumidification, temperature decrease)or for cold supply in the rooms (fan coils,chilled ceilings,...)

    ncooling capacity range 70 kW - 400 kW

    n driving temperature starting at 55C

    n COP at design conditions 0.65

    Systems&Components

  • 7/27/2019 Air Conditioning With Solar Energy

    20/56

    FraunhoferInstitutSolare Energiesysteme

    page 20barcelona_english

    principles of opencooling cycles (desiccantcooling cycles)

    Systems & Components

    n open cooling cycles use the effect of

    evaporative cooling

    n production of conditioned air (no chilledwater)

    n potential for application of evaporativecooling is increased by dehumidification of

    fresh air

    n thermal energy required for regeneration ofthe sorbent (desiccant)

    n separation of cooling and conditioning ofventilation air

    Systems&Components

  • 7/27/2019 Air Conditioning With Solar Energy

    21/56

    FraunhoferInstitutSolare Energiesysteme

    page 21barcelona_english

    status of desiccantcooling systems

    Systems & Components

    n system components and complete systemsmarket available and employed since many

    years

    n about 5 producers of wheels worldwide(Japan, US, Sweden, Germany)

    n driving temperatures for regeneration usabledown to about 45C

    n technology raised attention due to CFC-problem during past 10 years

    n adiabatic dehumidificationprocess

    Systems&Components

  • 7/27/2019 Air Conditioning With Solar Energy

    22/56

    FraunhoferInstitutSolare Energiesysteme

    page 22barcelona_english

    bypass

    humidifiers

    supplyair

    returnair

    dehumidifier heat recovery

    1 2 3 4 5 6

    78

    10

    11

    heat heat

    9

    freshair

    exhaustair

    standard desiccantcooling cycle

    Systems & Components

    6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

    humidity ratio [g/kg]

    1015202530354045505560657075

    temperature [C]

    1

    2

    35

    67

    8

    9

    10

    11

    10 %

    20 %

    30 %

    40 %50 %

    70 %

    100 %

    Systems&Components

  • 7/27/2019 Air Conditioning With Solar Energy

    23/56

    FraunhoferInstitutSolare Energiesysteme

    page 23barcelona_english

    5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35humidity ratio [g/kg]

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75temperature [C]

    1

    2

    3

    56

    7

    8

    9

    10

    11

    10 %

    20 %

    30 %

    40 %

    50 %

    70 %

    100 %

    4

    bypass

    humidifier

    supplyair

    returnair

    dehumidifier heat recovery

    heat

    freshair

    exhaustair

    chilled

    water

    chilled

    water

    1 2 3 4 5 6

    7811 910

    desiccant coolingcycle for humidclimates

    Systems & Components

    Systems & Components

  • 7/27/2019 Air Conditioning With Solar Energy

    24/56

    FraunhoferInstitutSolare Energiesysteme

    page 24barcelona_english

    WINDOWS design tool

    y p

  • 7/27/2019 Air Conditioning With Solar Energy

    25/56

    FraunhoferInstitutSolare Energiesysteme

    page 25barcelona_english

    20 m2 Flachkollektoren (GreenOneTec/Sonnenkraft)

    20 m2 Solarluftkollektoren (Grammer)

    2,0 m3 Pufferspeicher (Solvis)

    Vermessung von Sorptionsrdern

    vielfltige Verschaltungsvarianten

    Entwicklung & Optimierung von Regelungsstrategien

    begleitende Systemsimulationen

    Systems & Components

  • 7/27/2019 Air Conditioning With Solar Energy

    26/56

    FraunhoferInstitutSolare Energiesysteme

    page 26barcelona_english

    modelling of sorptiondehumidifier

    y p

    0 1 2 3 4 5 6 7 8 9 10

    calculated dehumidification [g/kg]

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10measured dehumidification [g/kg]

    1980 m3/h

    2790 m3/h

    3670 m3/h

    manufacturer

    Systems & Components

  • 7/27/2019 Air Conditioning With Solar Energy

    27/56

    FraunhoferInstitutSolare Energiesysteme

    page 27barcelona_english

    solar collectors forthermal driven cooling

    25 50 75 100 125 150 175

    fluid average temperature [C]

    0

    0,2

    0,4

    0,6

    0,8

    1collector efficiency [-]

    flat plate collector

    evacuated tube collectorsolar air collector

    desiccantcooling

    adsorption

    single effectabsorption

    double effect

    absorption

    ambient temperature25C

    collector radiation800 W/m2

  • 7/27/2019 Air Conditioning With Solar Energy

    28/56

    FraunhoferInstitutSolare Energiesysteme

    page 28barcelona_english

    1 Fundamentals1.1 Thermodynamics

    1.2 Climatic conditions1.3 Definition of air conditioning

    2 Systems & Components2.1 Chillers

    2.2.1 Absorption chillers2.2.2 Adsorption chillers2.2 Open cycles - desiccant cooling

    2.3 Solar collectors

    3 Solar air conditioning systems

    3.1 Comparative study of solar assisted systems3.1.1 Compared systems

    3.1.2 Required collector area3.1.3 Primary energy saving

    3.1.4 Pay back time3.2 Autonomous systems4 Built examples5 Summary & outlook

    Contents

    F

    Solar air conditioning system

  • 7/27/2019 Air Conditioning With Solar Energy

    29/56

    FraunhoferInstitutSolare Energiesysteme

    page 29barcelona_english

    solar assistedsystems

    n solar collector system covers a

    certain fraction of regeneration

    heat

    n obtainable indoor air conditionsnot limited by solar gains

    n system design: solar fraction

    solar autonomoussystems

    n solar collector system deliversregenaration heat completely

    n obtainable indoor air conditionslimited by available solar energy

    n system design: probability function ofindoor air temperature and humidity

    Air conditioning withsolar energy

    Solar air conditioning system

  • 7/27/2019 Air Conditioning With Solar Energy

    30/56

    FraunhoferInstitutSolare Energiesysteme

    page 30barcelona_english

    BuildingSimulation

    (TRNSYS)

    buildingdata

    meteorologicaldata

    simulation ofAC system

    (CONVCOOL,SGKCOOL)

    simulation ofsolar system(SOLCOOL)

    cooling /heating loadtime series

    driving energy

    time series

    economicanalysis(EXCEL)

    solar fractionfor cooling/

    heating

    energy

    balance,costs

    study on solar assisted airconditioning

    Solar air conditioning system

  • 7/27/2019 Air Conditioning With Solar Energy

    31/56

    FraunhoferInstitutSolare Energiesysteme

    page 31barcelona_english

    climatic and load dataparameter Copenhagen Freiburg Trapani

    latitude [ north] 55.8 48.0 37.9

    annual average temperature [C] 8.09 10.42 17.53

    annual average rel. humidity [%] 82.92 73.36 76.32

    annual average humidity ratio [g/kg] 5.81 6.04 9.99

    annual radiation sum on collector [kWh/m2] 1127.3 1195.7 1919.5

    annual average cooling load [W/m2] 42.8 52.7 108.9

    Jan Feb Mar Apr May Jun Jul Aug Sept Okt Nov Dec

    0

    3

    6

    9

    12

    15

    18cooling load [kWh/m 2]

    Copenhagen

    Freiburg

    Trapani

    Solar air conditioning system

  • 7/27/2019 Air Conditioning With Solar Energy

    32/56

    FraunhoferInstitutSolare Energiesysteme

    page 32barcelona_english

    building

    indoor conditions

    investion costs

    energy costs

    climatic data

    reference office building with south orientedglazed facades (glazing fraction about 60 %), floorarea 400 m2

    according to german standard DIN 1946/II

    10 % of investion costs

    according to values on german market (1998)(electricity: 0.08 US$/kWh, 171 US$/kWpeakgas: 0.023 US$/kWh, 4.5 US$/kWpeak)

    Copenhagen/Denmark, Freiburg/Germany,Trapani/Sicila

    assumptions for the comparative study

  • 7/27/2019 Air Conditioning With Solar Energy

    33/56

    FraunhoferInstitutSolare Energiesysteme

    page 33barcelona_english

    heat recoveryCCh = compression chillerHT = heater (gas burner)

    cooling

    loads

    cold, dry

    warm, humid

    CCh HT

    reference system with adiabatic cooling in return air

  • 7/27/2019 Air Conditioning With Solar Energy

    34/56

    FraunhoferInstitutSolare Energiesysteme

    page 34barcelona_english

    CT

    heat recovery

    CT = cooling towerAbCh = abs. chiller

    AdCh = ads. chillerHF = humidifier

    coolingloads

    cold, dry

    warm, humid

    AbChAdCh

    aux.heater

    HF

    system with thermal driven chillers

    Solar air conditioning system

  • 7/27/2019 Air Conditioning With Solar Energy

    35/56

    FraunhoferInstitutSolare Energiesysteme

    page 35barcelona_english

    humidifierscoolingloads

    cool,dry

    auxiliaryheater

    warm,humid

    dehumidifier heat recovery

    1 2 3 4 5 6

    7891011

    solar assisted desiccant cooling system (Copenhagen, Freiburg)

    l i d

    Solar air conditioning system

  • 7/27/2019 Air Conditioning With Solar Energy

    36/56

    FraunhoferInstitutSolare Energiesysteme

    page 36barcelona_english

    humidifiers

    desiccantwheel

    heat recovery

    cooling

    loadscold,dry

    warm,humid

    auxiliaryheat

    VPCCTVPC = vapour compr. chillerCT = cooling tower

    solar assisteddesiccant coolingsystem (Trapani)

    Solar air conditioning system

    d fi iti

  • 7/27/2019 Air Conditioning With Solar Energy

    37/56

    FraunhoferInstitutSolare Energiesysteme

    page 37barcelona_english

    definitions

    solar fraction forcooling (SFC)

    specific collectorarea (m2/m2)

    fraction of the total heat required for cooling (airconditioning) which is supplied by the solar system

    collector (absorber) area per floor area ofconditioned space

    Solar air conditioning system

    d t

  • 7/27/2019 Air Conditioning With Solar Energy

    38/56

    FraunhoferInstitutSolare Energiesysteme

    page 38barcelona_english

    compared systems

    ABV

    ADV

    ADF

    DCF

    DCSA

    absorption chiller system with evacuated tube

    collector

    adsorption chiller system with evacuated tubecollector

    adsorption chiller system with selective flat plate

    collector

    desiccant cooling system with selective flat platecollector

    desiccant cooling system with solar air collector

  • 7/27/2019 Air Conditioning With Solar Energy

    39/56

    primaryenergybalance

    Solar air conditioning system

    normalized primary energy demand [%] FREIBURG

  • 7/27/2019 Air Conditioning With Solar Energy

    40/56

    FraunhoferInstitutSolare Energiesysteme

    page 40barcelona_english

    primary energy balance

    ABV ADV ADF DCF DCSA0

    25

    50

    75

    100

    125

    150

    175

    200normalized primary energy demand [%]

    solar fraction cooling

    0 0,3 0,5 0,7 0,85

    COPENHAGEN

    reference

    ABV ADV ADF DCF DCSA0

    25

    50

    75

    100

    125

    150

    175

    200normalized primary energy demand [%]

    solar fraction cooling

    0 0,3 0,5 0,7 0,85

    FREIBURG

    reference

    ABV ADV ADF DCF DCSA0

    25

    50

    75

    100

    125

    150

    175

    200normalized primary energy demand [%]

    solar fraction cooling

    0 0,3 0,5 0,7 0,85

    TRAPANI

    reference

    electricpeakloaddueto

    Solar air conditioning system

  • 7/27/2019 Air Conditioning With Solar Energy

    41/56

    FraunhoferInstitutSolare Energiesysteme

    page 41barcelona_english

    electric peak load due toair conditioning

    absorption/adsorption desiccant cooling0

    25

    50

    75

    100normalized maximum electric power [%]

    Copenhagen Freiburg Trapani100 % = reference system

    simplepaybacktime

    Solar air conditioning system

    80simple payback time [a] TRAPANI

  • 7/27/2019 Air Conditioning With Solar Energy

    42/56

    FraunhoferInstitutSolare Energiesysteme

    page 42barcelona_english

    simple pay back time

    ABV ADV ADF DCF DCSA0

    10

    20

    30

    40

    50

    60

    70

    80simple payback time [a]

    solar fraction cooling

    0 0,3 0,5 0,7 0,85

    COPENHAGEN

    ABV ADV ADF DCF DCSA0

    10

    20

    30

    40

    50

    60

    70

    80simple payback time [a]

    solar fraction cooling

    0 0,3 0,5 0,7 0,85

    FREIBURG

    ABV ADV ADF DCF DCSA0

    10

    20

    30

    40

    50

    60

    70

    80solar fraction cooling

    0 0,3 0,5 0,7 0,85

    Solarautonomousdesiccantcoolingsystemsemployingsolarair

    Solar air conditioning system

  • 7/27/2019 Air Conditioning With Solar Energy

    43/56

    FraunhoferInstitutSolare Energiesysteme

    page 43barcelona_english

    Solar autonomous desiccant cooling systems employing solar aircollectors

    system integrated collector regeneration with ambient air

    desiccantwheel

    heat recovery

    wheel

    coolin

    loadscold,dry

    warm,humid

    humidifier

    humidifiercooling

    loads

    cold, dry

    warm, humid

    desiccantwheel

    heat recovery

    wheel

    results fora lectureroominFreiburg

    Solar air conditioning system

  • 7/27/2019 Air Conditioning With Solar Energy

    44/56

    FraunhoferInstitutSolare Energiesysteme

    page 44barcelona_english

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 0,005 0,01 0,015 0,02 0,025

    Feuchtegehalt X [ kg/kg ]

    Temperatur[C]

    T_operativ

    T_luft

    DIN 1946 T2

    = 1,0

    = 0,7

    = 0,6 = 0,5 = 0,3 = 0,4

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 0,005 0,01 0,015 0,02 0,025

    Feuchtegehalt X [ kg/kg ]

    T

    emperatur[C]

    T_operativ

    T_luft

    DIN 1946 T2

    = 1,0

    = 0,7

    = 0,6 = 0,5 = 0,3 = 0,4

    results for a lecture room in Freiburg

    specific collector area 0.22 m2 per m2 of room area

    n operative room temperaturen room air temperaturenDIN 1946 part 2

    Contents

  • 7/27/2019 Air Conditioning With Solar Energy

    45/56

    FraunhoferInstitutSolare Energiesysteme

    page 45barcelona_english

    1 Fundamentals1.1 Thermodynamics

    1.2 Climatic conditions1.3 Definition of air conditioning

    2 Systems & Components2.1 Chillers

    2.2.1 Absorption chillers2.2.2 Adsorption chillers2.2 Open cycles - desiccant cooling

    2.3 Solar collectors3 Solar air conditioning systems

    3.1 Comparative study of solar assisted systems

    3.1.1 Compared systems3.1.2 Required collector area3.1.3 Primary energy saving

    3.1.4 Pay back time3.2 Autonomous systems

    4 Built examples5 Summary & outlook

    Contents

    F

    built example

    solarassisteddesiccantcooling systeminSintra /Portugal

  • 7/27/2019 Air Conditioning With Solar Energy

    46/56

    FraunhoferInstitutSolare Energiesysteme

    page 46barcelona_english

    solar assisted desiccant cooling system in Sintra / Portugal

    n air conditioning of theoffice from companyATECNIC

    n desiccant system fromrobatherm

    n solar collector fromSETSOL/Portugal

    n commissioned Dec. 99

    n funded by the EU(THERMIE-program)

    n coordination andscientific evaluation:

    Fraunhofer ISE

    INETI / Lissabon

    desiccantcoolingmachine inSintra /Portugal (manufacturer:

    built example

  • 7/27/2019 Air Conditioning With Solar Energy

    47/56

    FraunhoferInstitutSolare Energiesysteme

    page 47barcelona_english

    desiccant cooling machine in Sintra / Portugal (manufacturer:robatherm)

    technical data of the systemin Sintra / Portugal

    built example

  • 7/27/2019 Air Conditioning With Solar Energy

    48/56

    FraunhoferInstitutSolare Energiesysteme

    page 48barcelona_english

    technical data of the system in Sintra / Portugal

    DEC system: variable volume flow system with nozzle type air humidifiers in supplyand return air, heat recovery wheel and desiccant wheel (silica gel), bypass alongdesiccant wheel in supply air stream and bypass along regeneration air heatexchanger and desiccant wheel

    maximaum air volume flow 9600 m3/h

    maximum cooling power 75 kW

    maximum electric load 15 kW

    COP at design conditions(cooling capacity/regenerationheat)

    0.78

    solar collector system: CPC-collector with low optical concentration ratio (CPC =compound parabolic concentrator) filled with anti-freezing fluid; connected tobuffer storage (water) with plate heat exchanger

    buffer storage volume 3 m3

    collector area 72 m2

    expected solar fraction for cooling(regeneration heat)

    70 %

    expected solar fraction for heating 70 %

    solar assisted air conditioning of a laboratory building in

    built example

  • 7/27/2019 Air Conditioning With Solar Energy

    49/56

    FraunhoferInstitutSolare Energiesysteme

    page 49barcelona_english

    g y gFreiburg (university hospital) with adsorption cooling technology

    schematic of the

    built example

  • 7/27/2019 Air Conditioning With Solar Energy

    50/56

    FraunhoferInstitutSolare Energiesysteme

    page 50barcelona_english

    system in Freiburg

    Contents

  • 7/27/2019 Air Conditioning With Solar Energy

    51/56

    FraunhoferInstitutSolare Energiesysteme

    page 51barcelona_english

    1 Fundamentals1.1 Thermodynamics

    1.2 Climatic conditions1.3 Definition of air conditioning

    2 Systems & Components2.1 Chillers

    2.2.1 Absorption chillers2.2.2 Adsorption chillers2.2 Open cycles - desiccant cooling

    2.3 Solar collectors3 Solar air conditioning systems

    3.1 Comparative study of solar assisted systems

    3.1.1 Compared systems3.1.2 Required collector area3.1.3 Primary energy saving

    3.1.4 Pay back time3.2 Autonomous systems4 Built examples

    5 Summary & outlookF

    general results

    summary & outloo

  • 7/27/2019 Air Conditioning With Solar Energy

    52/56

    FraunhoferInstitutSolare Energiesysteme

    page 52barcelona_english

    g

    0.2-0.4 m2

    per m2

    of floor area of conditioned spac for asolar fraction of 70-80 %

    70-80 % required in order to achieve relevant primaryenergy saving

    possible if the user does not request strict indoor air

    conditions (solar comfort improvement)

    system design required which takes specific climaticconditions into consideration

    typcial value of requiredcollector area (office)

    required solar fraction withsolar assisted systems

    solar autonomous systems

    system design

    general results (continued)

    summary & outloo

  • 7/27/2019 Air Conditioning With Solar Energy

    53/56

    FraunhoferInstitutSolare Energiesysteme

    page 53barcelona_english

    n evacuated tube collectors for absorptions systemsand adsorption systems

    n flat plat collectors for desiccant cooling systems andeventually adsorption

    n solar air collectors for desiccant cooling (e.g.autonomous systems)

    collector technology

    economic feasibility n payback time depends on technology and climate

    n lowest pay back time found for desiccant cooling inTrapani (with conventional chiller backup) (less than10 years)

    n payback time in general in the same range as forsolar domestic hot water systems or below

    lessons learned from pilot systems

    summary & outloo

  • 7/27/2019 Air Conditioning With Solar Energy

    54/56

    FraunhoferInstitutSolare Energiesysteme

    page 54barcelona_english

    n solar heat source is not constant (time dependance

    of power and temperature)n system control is more complex than for systems

    with standard heating system (gas or oil burner)

    n optimized control has a strong influence on systemperformance

    control issues

    no standardized system design guidelines or toolsavailable

    important to control operation in order to identifymistakes in control and/or design

    system design

    operation experiences

    To emp loy solar act ive equipm ent makes on ly sense ifneeds for an

    summary & outloo

  • 7/27/2019 Air Conditioning With Solar Energy

    55/56

    FraunhoferInstitutSolare Energiesysteme

    page 55barcelona_english

    To emp loy solar act ive equipm ent makes on ly sense if

    pot entials of energy saving and reduction of coo l ing

    loads have been explo it ed

    Building

    n reduction of internal loads (equipm., lighting)

    n advanced shading & daylighting concepts

    n reduction of conduction loads

    n reduction of leakages

    A/C system

    n separation of ventilation (handling of latentloads) and cooling (handling of sensible loads)

    n employing heat (or enthalpy) recovery systems

    n employing high efficiency chillers

    integrad approach

  • 7/27/2019 Air Conditioning With Solar Energy

    56/56