agren oxides

Upload: teka-kam

Post on 14-Apr-2018

248 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Agren Oxides

    1/51

    John gren

    Dept. of Matls. Sci. & Engg.Royal Institute of TechnologyStockholm, 100 44 Sweden

    Acknowledgement: Reza Naraghi, Samuel Hallstrm, Lars Hglund andMalin Selleby

    Diffusion in metal oxides and high-

    temperature oxidation of metals

  • 7/27/2019 Agren Oxides

    2/51

    TC users group meetingAccess 6-7 Sept 2012

    MGI

    ICME

    3D-MS

    New Research directionsin Materials science and Engineering:

  • 7/27/2019 Agren Oxides

    3/51

    TC users group meetingAccess 6-7 Sept 2012

    Content

    1. Aim of work

    2. Defects and diffusion - Wagners theory3. Krger-Vink method and sublatticeformalism

    4. Generalization of Wagners theory using

    the sublattice formalism5. Growth of external oxide layers6. Metal diffusion in the iron oxides7. Oxygen diffusion in the iron oxides

    8. Divergence of oxygen flux and Kirkendalleffect

  • 7/27/2019 Agren Oxides

    4/51

    TC users group meetingAccess 6-7 Sept 2012

    Predict oxidation:- Sharp-interface methods DICTRA- Diffuse-interface methods phase-field

    For example:

    - Oxidation of steels- Degradation of superalloy coatingsWe need:

    - Mathematical expressions for oxidation rate interms of diffusional flux as function of gradientsin composition or chemical potentials.

    - Parameters that characterize a given material

    1. Aim of work

  • 7/27/2019 Agren Oxides

    5/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Issues in modelling of oxidation

    Predict: Rate of oxidation

    - External (growth of external layers)- Internal (internal oxide particles)

    - Grain boundaries in metal and in oxides What oxides form? Porosity

    - Kirkendall effect

    Jonsson etal. 2006

    Giggins andPettit 1971

    Internal oxidation of Mn, Si, Cretc during carburization (Holmet al. 2010)

  • 7/27/2019 Agren Oxides

    6/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Combination of CALPHAD thermodynamics anddiffusion kinetics based on atomic mobilities hasbecome a powerful tool to simulate diffusional

    transformations in multicomponent metallic alloys e.g.- Ni-base super alloys- Complex steels- Cemented carbides

    Allows simulation of , e.g.- Diffusional interactions in joints of dissimilar materials- Homogenization- Precipitation reactions

    The method has been extended to cover quitecomplex phases such as stoichiometric phases andphases with ordering reactions, e.g. B2-NiAl.

    Now it is being extended to cover oxides.

  • 7/27/2019 Agren Oxides

    7/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    cLD

    x

    cD

    x

    c

    cL

    xLJ

    :Flux

    Kinetic parametersfrom defects

    Darkens thermodynamic factor,e.g. from Calphad analysis

    Vacancy mechanism!Defects more complicated in oxides.

    General approach:

  • 7/27/2019 Agren Oxides

    8/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    2. Defects and diffusion - Wagnerstheory

    In metallic systems the major mechanism for diffusionis atoms jumping to adjacent vacant lattice sites lattice defects are important.

    For oxides Wagner postulated different kind of defectswhere the vacancies are of special importance.

    Even for a stoichiometric oxides there will be defects;- Schottky- Frenckel

    '

    ...

    Diffusion by vacancy mechanism:

    k k Va k k

    k k k

    J c y M FF

  • 7/27/2019 Agren Oxides

    9/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Diffusion in oxides type M1-xO

    Stoichiometric MO (x=0)

    MnO, FeO, CoO and NiO: O-2 FCC lattice with cations onoctahedral interstices. For stoichiometric MO only smallamounts of vacancies due to Schottky defects:

    Slow diffusion, similar fo M and O.Frenckel defects

    Much slower diffusion for O than M.

    '''

    22 ),)(,(

    VaVa yy

    VaOVaM

    where

    2

    2 2 2

    ' ''

    ( , )( , )( )

    where Va M

    M Va Va M O

    y y

  • 7/27/2019 Agren Oxides

    10/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    With sublattice formalism

    Content of Schottky defects:

    2

    2

    ( 2 ) ( )

    2 (1 ) ln((1 ) ln

    / (1 )0

    10

    (1 )

    ( )exp

    2 ( ) (

    m MO Va MVa VaMa MO Va VaVa MVa VaM

    E

    Va Va Va Va m

    m Va

    Va

    mm

    Va Va

    MVa VaMa MO

    Va

    Va VaVa MVa VaM Va VaVa MVa

    G G y G G G y G G G

    RT y y y y G

    d G y

    dy

    dGG

    dy y

    G G Gy

    y G G G y G G

    / 2

    )VaM

    RTG

  • 7/27/2019 Agren Oxides

    11/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    3. Krger-Vink method and sublatticeformalismNon stoichiometric M1-xO (metal deficit oxide)

    ))(,,( 232 OVaMM 2/3 MVa yy:neutralityElectro

    * ''

    2

    1( ) 2

    2Krger-Vink:

    One electron is missing on an site, i.e. there

    is a "positive hole". Increased diffusivity for M.

    * same charge as normal occupancy

    ' 1 negative charge relative no

    O MO g O Va h

    M

    rmal occupancy

    '' 2 negative charges relative normal occupancy

    1 positive ...

    2 positive ...

  • 7/27/2019 Agren Oxides

    12/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    2 2

    2

    2' 2

    '

    ' 0

    '

    /

    Diffusion by vacancy mechanism:

    MM M

    h h h

    O

    e e e

    i i Va i m

    J L

    J L

    J

    J L

    L x y M V

    Electricpotentialgradient

    (Nernst field)

  • 7/27/2019 Agren Oxides

    13/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    2 2

    2 22 3

    2 12

    2

    2 3

    2

    2

    2 * 2 1

    12

    2

    12

    14

    2 3

    2

    '

    '

    ' 0

    '

    2 2 0

    Yields:

    MO M O

    M O h M O

    O O e

    M MOM

    h h M O MO

    O

    e e O

    M h O e

    J L

    J L

    J

    J L

    J J J J

    Neutral combinations

    No net flow of charge:

  • 7/27/2019 Agren Oxides

    14/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    2

    2

    * ''

    2

    '' 2 1/2

    ''

    '' 1/3 1/6

    1( ) 2

    2

    [ ][ ]

    [ ] 2[ ][ ] ( / 4)

    Concentration of vacancies: O M

    M O

    M

    M O

    O g O Va h

    Va h kP

    h VaVa k P

  • 7/27/2019 Agren Oxides

    15/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Sublattice formalism M1-xO

    2 3

    2 2 3 3

    3

    2 3

    2

    2 3

    2 3 2

    1

    2

    ln ln ln

    2 2

    1 1 3

    (2 3 )(1 3 ) ln(1 3 ) 2 ln 2 ln

    (1 )

    ln (2

    m M M Va VaM M

    E

    Va Va mM M M M

    Va

    VaM

    VaM M

    m M M M Va

    E

    m

    mO m

    ref

    O O O

    G y G y G y G

    RT y y y y y y Gy x

    y y x

    y y y x

    G G x G G GRT x x x x x x G

    dG G x

    dx

    RT P

    2

    3

    3 2 2

    1/3 1/6

    3 2

    4

    2 ) ln (1 3 )

    0

    4 exp (2 2 ) /

    ref

    M M Va O

    ref

    M M Va O O

    x

    G G G RT x

    x

    x G G G RT P

  • 7/27/2019 Agren Oxides

    16/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    2 2

    3 3

    2

    2

    3

    ' 2

    ' 3

    ' 0

    '

    /

    Diffusion by vacancy mechanism:

    MM M

    MM M

    O

    e e e

    i i Va i m

    J L

    J L

    J

    J L

    L x y M V

    Electricpotentialgradient

    (Nernst field)

    4. Generalization of Wagners theoryusing the sublattice formalism

  • 7/27/2019 Agren Oxides

    17/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    2 2

    3 22 3

    2 12

    2

    3 2 3

    2

    2

    2 3 2 1

    12

    2

    1

    32

    14

    2 3

    2

    '

    '' 0

    '

    2 3 2 0

    Yields:

    MO M O

    M O M O

    O O e

    M MOM

    M M OM

    O

    e e O

    M M O e

    J L

    J L J

    J L

    J J J J

    Neutral combinations

    No net flow of charge:

  • 7/27/2019 Agren Oxides

    18/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Extreme cases

    Fully ionic conductor Le >L

    OOMMMOMe LLL 2

    1/)

    2

    132(

    3232

    0 e

  • 7/27/2019 Agren Oxides

    19/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    ).(etemperaturVerwey

    theabovemetalhalf

    almostisMagnetite:Example

    LL

    OFe

    e

    43

    FeFeFe 32

    OOO

    FeFeFe

    LJ

    LJ

    '

    '

    2

    O

    Fe

    O

    Fe

    O

    Fe

    LL

    JJ

    00

    ''

  • 7/27/2019 Agren Oxides

    20/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    5. Growth of external oxide layers

    Metal a

    Oxide b

    Atmosphere with O2Oxygen content

    Distance

    xx

  • 7/27/2019 Agren Oxides

    21/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Flux balances

    In lattice-fixed frame of reference, a = metal,b = oxide.

    1/

    1/

    aaaa

    bbbb

    MeMeOO

    OOMeMe

    uxxu

    uxxu

    and:metalin

    and:oxidein

    variablesionConcentrat

    0',0',1,0

    ''

    ''

    /

    /

    //

    //

    aaaa

    aba

    a

    bab

    b

    ab

    aba

    a

    bab

    b

    ab

    aaa

    bbb

    ba

    FeOFeO

    FeFeFe

    s

    Fe

    s

    OOO

    s

    O

    s

    Mems

    Oms

    JJuu

    JJuV

    vu

    V

    v

    JJuV

    vu

    V

    v

    xVV

    xVV

    :interfacephase/At

    volumesMolar

  • 7/27/2019 Agren Oxides

    22/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    )ofgrowth(Outward

    :interface

    :ofShrinkage

    ofgrowthInward

    :interface

    b

    b

    a

    b

    ba

    bb

    b

    b

    b

    bbb

    a

    ba

    b

    b

    ab

    '

    1,0,0'

    /

    ''

    '

    /

    /

    /

    /

    MeMe

    s

    gas

    O

    gas

    Me

    ga s

    Me

    MeOMe

    s

    O

    s

    JuV

    v

    uuJ

    gas

    uJJV

    v

    JV

    v

  • 7/27/2019 Agren Oxides

    23/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Pfeil (1929) If, on the other hand, diffusionoutwards continued for a prolonged period ... ahollow space would form between the scale and the

    inner core.

    HRTEM of Hollow nano crystalsof CoO formed by oxidation ofCo nano-particles.Yadong Yin, et al. Science(2004)

  • 7/27/2019 Agren Oxides

    24/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    (Fe+2,Fe+3)1 (Fe+2,Fe+3,Va)2 (Va,Fe+2)2 (O-2)4

    Thermodynamic model (Sundman 1991):

    Extracctahedral

    VaExtraoctahedral

    Fe+2

    octahedral

    fcctetrahedral

    Interstitial sites

    1/8*8 sites 4 sites

    6. Metal diffusion in the iron oxides

  • 7/27/2019 Agren Oxides

    25/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Fe diffusion in magnetite

    As Le>>L we may neglect the difference between Fe-ions when considering diffusion:

    422 ),(),( OFeVaVaFeFe

  • 7/27/2019 Agren Oxides

    26/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    '' '' '' ''' ''' '''12

    1'

    Absolute reaction rate arguments:

    Fe Va Fe FeVa Fe Va FeVa Fe

    s

    J y y M y y M V

    Fe diffusion in lattice-fixed frame ofreference

    Normal octahedral extra octahedralsites sites

    )/exp(2 RTGvRTM kk

    FeL

  • 7/27/2019 Agren Oxides

    27/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Experimental information on Fe

    tracer diffusion Dieckmann & Schmalzried 900-1400C Peterson et. al. 1200C Aggarwal & Dieckmann 1200C Becker et. al. 1200-1400C

    Fe

    FeVaVaFeFeVaFeVaFe uMyyMyyRTD

    1'''''''''''''''21

    *

    s.sublatticecontaining-irondifferentthe

    betweenrandomlycompletelysdistributetracerThe

  • 7/27/2019 Agren Oxides

    28/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Optimization of Fe mobilities(Hallstrm et al 2011)

  • 7/27/2019 Agren Oxides

    29/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Tpfer et.al. 1995

    Alloy elements in magnetite lattice fixedframe of reference

    Tpfer et.al. 1995

    CrCrVaVaCrCrVaCrVaCr

    Cr

    s

    CrVaVaCrCrVaCrVaCr

    uMyyMyyRTD

    zVMyyMyyJ

    /

    1

    '

    '''''''''''''''

    '''''''''''''''

    *

    Cr content of inwardgrowing spinel will inheritCr content of alloy.

  • 7/27/2019 Agren Oxides

    30/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Chemical diffusivity (diffusion in a

    gradient)

    Fe

    FeFeFe

    cRTLD

    ~

  • 7/27/2019 Agren Oxides

    31/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    m2/s

    Mole fraction Fe

    Calculated chemical diffusivity in spinel

    Red line shows stablecomposition range ofspinel.

    Triangles show measured

    chemical diffusivities at1508K. Blue dots show where the

    triangles should be. Values are high, but still

    in reasonable agreement

    with experiments.

  • 7/27/2019 Agren Oxides

    32/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Diffusion in corundum structure- Fe2O3

    -24

    -22

    -20

    -18

    -16

    -14

    -12

    log(DFe

    )(m2/s)

    6 7 8 9 10 11

    104/T (1/K)

    95010501150125014001550T

    Chang &Wagner 1 atm

    Hoshino & Peterson 1 atm

    Atkinson & Taylor 1 atm

    Himmel et. al. 1 atm

    Hoshino & Peterson 1 atm

    Sabioni 1atm

    Amami et. al. 0.6 atm

    Lindner 0.2 atm

  • 7/27/2019 Agren Oxides

    33/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    - Cr2O3

    Q estimated fromdiffusion of Fe inhematite(isostructural).

    Lowest values shouldcorrespond to the mostpure material.

    Values from Sabioni andTsai (recalculated totracer) used inoptimization.

  • 7/27/2019 Agren Oxides

    34/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Defect structures for oxygen diffusion and resultsWstite (Halite)

    2 3 2

    1 1( , , ) ( )

    Sundman's model:

    Fe Fe Va O

    ' "

    * ' "

    1

    1

    i OO Va O OVa

    m

    i

    O Va O OVa

    O

    J y y M

    V z

    D y y Mn

    Yamagochi et al. 1982 found that oxygen diffusion rateincreases with oxygen potential. Thus oxygen vacancies

    cannot be the dominating mechanism. We thuspostulate that oxygen diffuses on interstitial (cation )sites:

    7. Oxygen diffusion in the iron oxides

  • 7/27/2019 Agren Oxides

    35/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Oxygen tracer diffusion in Wstite.

    Experiments fromYamaguchi et al 1982

  • 7/27/2019 Agren Oxides

    36/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Defect structures for oxygen diffusion and resultsMagnetite (Spinel)

    O tracer diffusion in spinel (lattice-fixed frameof reference)

    T= 1150C

    Millot and Niu 1996

  • 7/27/2019 Agren Oxides

    37/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    At low oxygen potentials it seems reasonable thatoxygen diffusion is assisted by anion vacancies.The lower the oxygen potential, the higher fractionof vacancies and rate of diffusion.

    (Fe+2,Fe+3)1 (Fe+2,Fe+3,Va)2 (Va,Fe+2)2 (O-2, Va)4

    Modification of Sundmans thermodynamic model:

    octahedralfcc

    tetrahedral

    Interstitial sites

    1/8*8 sites 4 sites

  • 7/27/2019 Agren Oxides

    38/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    (Fe+2,Fe+3)1 (Fe+2,Fe+3,Va)2 (Va,Fe+2,O-2)2 (O-2,Va)4

    Modification of Sundmans thermodynamic model:

    octahedraltetrahedral

    Interstitial sites

    1/8*8 sites 4 sites

    Alternativ 1

    At high oxygen potentials this model predicts verylow vacancy fractions . The higher the oxygen

    potential, the lower fraction of vacancies and rateof diffusion. This is not in agreement withexperiments!

    fcc

    Thi k b t i t t i i

  • 7/27/2019 Agren Oxides

    39/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    1a a a i i i OO Va O OVa O Va OVa

    m

    J y y M y y M

    V z

    This may work but gives too a strong increase invacancy content at high oxygen potentials.It also requires a complete re-assessment of Fe-O!

    Schematic diagram

    2

    12

    ln / lnaVa Od y d P

    2

    12

    ln / lniO Od y d P

    216ln / lnO Od D d P

    (Millot and Niu 1996)

    2

    12

    ln / lnO Od D d P

    (Millot and Niu 1996)

  • 7/27/2019 Agren Oxides

    40/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Modification of Sundmans thermodynamic model:

    Alternativ 2

    (Fe+2,Fe+3)1

    (Fe+2,Fe+3,Va)2

    (Va,Fe+2)2

    (O-2

    , Va)4

    octahedral fcctetrahedral

    Interstitial sites

    1/8*8 sites 4 sites

    Could the vacancy formation energy be chosen such that:

    log aVay

  • 7/27/2019 Agren Oxides

    41/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    1073 K 1423 K

    "

    * "

    1

    1

    a a a i OO O Va OVa Va OVa

    m

    a a a i

    O O Va OVa Va OVaO

    J y y M y M

    V z

    D y RT y M y Mn

    At present we have

    (Millot and Niu 1996) (Millot and Niu 1996)

  • 7/27/2019 Agren Oxides

    42/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Defect structures for oxygen diffusion and resultsHematite (Corundum)

    3 2 3 2

    2 1 3( , ) ( , ) ( , )

    Kjellqvist et al. 2008

    Fe Fe Va Fe O Va

    End members andplane of electro neutrality

  • 7/27/2019 Agren Oxides

    43/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    *

    1

    1

    a a a OO Va O OVa

    m

    a a a

    O Va O OVa

    O

    J y y M

    V z

    D y y Mn

    3 2 3 2

    2 1 3( , ) ( , ) ( , )Fe Fe Va Fe O Va

    We postulate

  • 7/27/2019 Agren Oxides

    44/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Experiments: Amami et al. 1999

    8 Divergence of oxygen flux and

  • 7/27/2019 Agren Oxides

    45/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    2 2

    2

    ' /

    1/

    1

    ( )

    Oxygen is substitutional and divergence of

    oxygen flux gives Kirkendall effect:

    molar volume/mole of atoms

    Rate of density ( ) change:

    No porosity Strain

    mO Om

    m

    m

    m

    vJ J x V

    V

    V

    V JV

    div

    11 22 33

    2

    1( )

    ( )(1 )

    rate:

    Only porosity (volume fraction ):

    m m

    m

    p

    p

    m

    p

    V V J V

    f

    fV J

    f

    div

    div

    8. Divergence of oxygen flux andKirkendall effect

  • 7/27/2019 Agren Oxides

    46/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Maruyama et al. 2004

    Voids form as a consequence of a divergence in theoxygen flux.

  • 7/27/2019 Agren Oxides

    47/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Schematics of Kirkendall effectin magnetite

    Fe

    z

    Fe

    Distance Distance

  • 7/27/2019 Agren Oxides

    48/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    Oxygenmob

    ility

    Distance

    Oxygen

    flux

    Distance

  • 7/27/2019 Agren Oxides

    49/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    zJty OVa //

    Distance

    Pores Pores

  • 7/27/2019 Agren Oxides

    50/51

    TC users group meetingAccess 6-7 Sept 2012 Excellence Relevance - Availability

    T. Jonsson et al. 2008

    FeO

    Fe3 O4

    Fe2O

    3

  • 7/27/2019 Agren Oxides

    51/51

    Summary

    DICTRA can now handle diffusion in oxides allowingprediction of oxidation.

    Data base now contains diffusional mobilities ofWstite (Halite): Fe and OMagnetite (spinel): Fe Cr OHematite (Corundum): Fe, Cr, O

    Oxygen diffusion may cause Kirkendall effect and porosity.