aero-elastic optimization of a 10 mw wind turbine · aero-elastic optimization of a 10 mw wind...

33
Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jos´ e Pedro Albergaria Amaral Blasques Wind Energy Department Technical University of Denmark Wind Energy Systems Engineering Workshop 14-15 January 2015 Boulder, CO, USA

Upload: others

Post on 02-Dec-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Aero-Elastic Optimization of a 10 MW Wind Turbine

Frederik Zahle, Carlo TibaldiDavid Verelst, Christian Bak

Robert Bitsche, Jose Pedro Albergaria Amaral Blasques

Wind Energy Department

Technical University of Denmark

Wind Energy Systems Engineering Workshop14-15 January 2015Boulder, CO, USA

Page 2: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

IntroductionAnalysis and Design Wind Turbines

� Analysis codes for predicting the performance of wind turbines are wellestablished both in the research community and industry, e.g:

� Aero-elastic codes based on BEM methods and finite beam element models,

� Panel codes, 2D/3D CFD for the prediction of aerodynamic performance,

� 2D/3D FEM for prediction of cross-sectional/full blade structuralperformance,

� While these tools are all used stand-alone to design turbines, their use in

combination with a multidisciplinary optimization (MDO) framework is not

widely spread neither in research or industry.

� Pioneered in the aerospace industry, multidisciplinary optimization

(MDO) has been shown to be effective for systematically exploring the

design space and tailor designs according to very specific requirements,

e.g. load mitigation using material and geometric couplings.

2 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 3: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

IntroductionThis Talk

This talk will discuss the efforts currently in progress towards realizing an

Integrated Framework For Optimization of Wind Turbines at DTU Wind

Energy and its application to the design of a 10 MW wind turbine rotor.

3 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 4: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

IntroductionThis Talk

This talk will discuss the efforts currently in progress towards realizing an

Integrated Framework For Optimization of Wind Turbines at DTU Wind

Energy and its application to the design of a 10 MW wind turbine rotor.

Reseach Question

What are the multidisciplinary trade-offs between rotor mass and AEP for a

10 MW rotor mounted on the DTU 10MW RWT platform?

3 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 5: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

IntroductionThis Talk

This talk will discuss the efforts currently in progress towards realizing an

Integrated Framework For Optimization of Wind Turbines at DTU Wind

Energy and its application to the design of a 10 MW wind turbine rotor.

Reseach Question

What are the multidisciplinary trade-offs between rotor mass and AEP for a

10 MW rotor mounted on the DTU 10MW RWT platform?

� DTU 10MW Reference Wind Turbine,

� Overview of the optimization framework,

� Optimization cases:

� Structural optimization of the rotor,

� Aero-structural optimization of the rotor,

� Fatigue constrained aero-structural optimization of the rotor,

� Frequency constrained aero-structural optimization of the rotor.

� Conclusions.

3 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 6: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Previous WorkThe DTU 10MW Reference Wind Turbine

� Fully open source, available at

http://dtu-10mw-

rwt.vindenergi.dtu.dk,

� Detailed geometry,

� Aeroelastic model,

� 3D rotor CFD mesh,

� Detailed structural description,

ABAQUS model,

� 300+ users,

� Used as reference turbine in the

EU projects INNWIND.eu,

MarWint, and IRPWIND, among

others.

4 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 7: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Previous WorkThe DTU 10MW Reference Wind Turbine

Parameter Value

Wind Regime IEC Class 1A

Rotor Orientation Clockwise rotation - Upwind

Control Variable Speed

Collective Pitch

Cut in wind speed 4 m/sCut out wind speed 25 m/s

Rated wind speed 11.4 m/s

Rated power 10 MW

Number of blades 3

Rotor Diameter 178.3 mHub Diameter 5.6 m

Hub Height 119.0 m

Drivetrain Medium Speed, Multiple-Stage Gearbox

Minimum Rotor Speed 6.0 rpm

Maximum Rotor Speed 9.6 rpmMaximum Generator Speed 480.0 rpm

Gearbox Ratio 50

Maximum Tip Speed 90.0 m/s

Hub Overhang 7.1 m

Shaft Tilt Angle 5.0 deg.

Rotor Precone Angle -2.5 deg.Blade Prebend 3.332 m

Rotor Mass 227,962 kg

Nacelle Mass 446,036 kg

Tower Mass 628,442 kg

Airfoils FFA-W3

Table: Key parameters of the DTU 10 MW Reference Wind Turbine.

5 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 8: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Software DesignNew Framework for Multi-Disciplinary Analysis andOptimization

Based on previous rotor optimization codes and the design process of the

DTU 10MW RWT, development of a new more versatile software for rotor

optimization was started.

Requirements

� Think beyond optimization: A unified analysis tool can help break

disciplinary barriers.

� Simple interfaces: We wanted to create simple to use interfaces to

potentially very complex codes.

� Changing workflows: We wanted to be able to change around how

codes are wired together to adapt to different usage scenarios.

� User extensibility : The user community should be able to extend the

framework with their own tools.

6 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 9: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Software DesignFUSED-Wind - Framework for Unified Systems Engineeringand Design of Wind Turbine Plants (fusedwind.org)

Collaboration with NREL

� NREL is working towards many ofthe same goals as we are, and alsochose to use OpenMDAO.

� This has led to a close collaborationaround a jointly developed opensource framework calledFUSED-Wind.

� The framework includes pre-definedinterfaces, workflows and I/Odefinitions that enables easyswapping of codes into the sameworkflow.

� Each organisation will releaseseparate software bundles thattarget specific usages, i.e. airfoil,turbine, and wind farm optimization.

7 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 10: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Software DesignFUSED-Wind - Framework for Unified Systems Engineeringand Design of Wind Turbine Plants (fusedwind.org)

8 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 11: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Software DesignFUSED-Wind - Framework for Unified Systems Engineeringand Design of Wind Turbine Plants (fusedwind.org)

8 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 12: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Software DesignHawtOpt2: Aero-Servo-Elastic Optimization of WindTurbines

Fully Coupled Aero-structural Optimization

� Simultaneous optimization of lofted blade shape and the composite

structural design.

� Enables exploration of the many often conflicting objecting and

constraints in a rotor design.

� Detailed tailoring of aerodynamic and structural properties.

� Constraints on specific fatigue damage loads.

� Placement of natural frequencies and damping ratios.

9 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 13: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Software DesignAero-Elastic Solver: HAWCStab2

� Structural model: geometrically

non-linear Timoshenko finite

beam element model.

� Aerodynamic model: unsteady

BEM including effects of shed

vorticity and dynamic stall and

dynamic inflow.

� Analytic linearization around an

aero-structural steady state

ignoring gravitational forces.

� Fatigue damage calculated in

frequency domain based on the

linear model computed by

HAWCStab2.Image from: Sønderby and Hansen, Wind Energy, 2014

10 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 14: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Software DesignStructural Solver: BECAS (BEam Cross section AnalysisSoftware)

� Finite element based tool for

analysis of the stiffness and

mass properties of beam

cross sections.

� Correctly predicts effects

stemming from material

anisotropy and inhomogeneity

in sections of arbitrary

geometry (e.g., all coupling

terms).

� Detailed stress analysis

based on extreme loads from

a time-domain aeroelastic

solver.

11 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 15: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Software DesignOptimizer Workflow Diagram

12 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 16: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Software DesignFree-form Deformation (FFD) Design Variable Splines

TRIAX

UNIAX

TRIAX

UNIAXs=−1

s=0.

s=1

DP3

DP5

DP7

DP8DP9

DP10

DP13

DP0

DP4

DP6UNIAX

TRIAX

TRIAX

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

c/R [-]

Chord

Original

New

FFD CPs

FFD spline

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Thickness [m]

Spar cap uniax thickness

Original

New

FFD CPs

FFD spline

13 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 17: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 1: Pure Structural Optimization with Fixed OuterShape

Minimise (Case 1a) −Mblade−ref

Mblade

Minimise (Case 1b) −Mmomblade−ref

Mmomblade

with respect to x = {tmat ,DPcaps} (47 dvs)

subject to Constraints on:Tip deflection at rated power,Tip torsion at rated,Ultimate strength,Basic spar cap buckling: tcap/wcap > 0.08,

PmekPmek−ref

> 1.Tmax

Tmax−ref< 1.

� HAWCStab2 load cases: 7 operational cases, 1 extreme 70 m/s 15 deg yaw error

� 5 pre-computed extreme load cases for stress analysis.

14 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 18: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 1: Mass Distribution

� Minimization of either mass or mass moment results in drastically

different designs.

� Mass minimization: 17% reduction in mass, 0.6% increase in mass

moment,

� Mass moment minimization: 9% reduction in mass, 13% reduction in

mass moment.

� Mass minimization tends to remove mass primarily from the inner 50%

span.

� Mass moment minimization removes mass more evenly, which will

contribute to a reduction in fatigue.

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0

200

400

600

800

1000

1200

1400

dm [kg

/m]

Blade mass

Mass

Mass moment

DTU 10MW RWT

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Spar cap uniax thickness [m]

DTU 10MW RWT

Mass

Mass moment

15 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 19: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 2: Shape and structural Optimization for Mass andAEP

Minimise −(

wpow ∗ AEPAEPref

+ (1 − wpow) ∗Mblade−ref

Mblade

)

For cases wpow = [0.8, 0.85, 0.9, 0.925, 0.95, 0.975]

with respect to x = {c, θ, tblade, tmat ,DPcaps} (56 dvs)

subject to Constraints on:Tip deflection at rated power,Extreme wind tip deflection,Ultimate strength,Basic spar cap buckling: tcap/wcap > 0.08,Trated < Trated−ref ,Textreme < Textreme−ref ,Extreme blade flapwise load < ref valueExtreme blade edgewise load < ref value

� HAWCStab2 load cases: 7 operational cases, 1 extreme 70 m/s 15 deg yaw error

� 5 pre-computed extreme load cases for stress analysis.

16 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 20: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 2: Pareto Optimal Designs

0.995 1.000 1.005 1.010 1.015 1.020AEP ratio [-]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20Mass ratio [-] DTU 10MW RWT

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

Figure: Pareto optimal designs for the massAEP cases.

17 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 21: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 2: Blade Planform

� All designs tend towards a more

slender chord distribution, and a

significant reduction in root

diameter.

� Maximum chord constraint is

active.

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

No

rma

lize

d C

ho

rd [

-]

DTU 10MW RWT

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

−20

−15

−10

−5

0

5

Twist [deg]

DTU 10MW RWT

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

18 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 22: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 2: Blade Planform

� All designs tend towards a more

slender chord distribution, and a

significant reduction in root

diameter.

� Maximum chord constraint is

active.

� Significant increases in relative

thickness mid-span in particular

for the mass-biased designs.

� Absolute thickness lower in root

and higher midspan.

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Relative thickness [-]

DTU 10MW RWT

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

No

rma

lize

d a

bso

lute

th

ickn

ess

[-]

DTU 10MW RWT

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

18 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 23: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 2: Aerodynamic Performance at 10 m/s

� Mass biased designs tend

towards unloading the tip.

� Slender design requires higher

operational lift coefficients

� Cl − max constraint active for

all designs.

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0

2000

4000

6000

8000

10000

Norm

al fo

rce [N/m

]

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

DTU 10MW RWT

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Lift Coefficient [-]

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

DTU 10MW RWT

19 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 24: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 2: Aerodynamic Performance at 10 m/s

� Mass biased designs tend

towards unloading the tip.

� Slender design requires higher

operational lift coefficients

� Cl − max constraint active for

all designs.

� Increase in thickness

compromises performance

mid-span.

� Increase in performance on

inner part of blade due to

reduction in thickness.

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

−200

0

200

400

600

800

1000

Tangential force [N/ ]

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

DTU 10MW RWT

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0

20

40

60

80

100

120

Lift to d

rag ratio [-]

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

DTU 10MW RWT

19 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 25: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 2: Structural Characteristics

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

EIx/EIx0 [-]

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0.0

0.5

1.0

1.5

2.0

2.5

EIy/EIy0 [-]

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

GK/GK0 [-]

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

0.0 0.2 0.4 0.6 0.8 1.0r/R [-]

0

200

400

600

800

1000

1200

1400

dm [kg

]

Mass per meter

AEP0.8

AEP0.85

AEP0.9

AEP0.925

AEP0.95

AEP0.975

DTU 10MW RWT

20 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 26: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 3: Shape and structural Optimization with FatigueConstraints

Minimise −(

wpow ∗ AEPAEPref

+ (1 − wpow) ∗Mblade−ref

Mblade

)

with wpow = 0.9

with respect to x = {c, θ, tblade, tmat ,DPcaps} (56 dvs)

subject to Constraints on:Tip deflection at rated power,Tip torsion at rated,Extreme wind tip deflection,Ultimate strength,Basic spar cap buckling: tcap/wcap > 0.08,Trated < Trated−ref ,Textreme < Textreme−ref ,Extreme blade flapwise load < ref valueExtreme blade edgewise load < ref valueTower bottom long. fatigue < [5%, 10%]Blade rotor speed fatigue < ref value

� HAWCStab2 load cases: 7 operational cases, 1 extreme 70 m/s 15 deg yaw error

� 5 pre-computed extreme load cases for stress analysis.

21 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 27: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 3: Pareto Front

� Fatigue constrained designs lie inside the pareto front of the massAEP

designs.

� Both the 5% and 10% fatigue constraint almost met.

� Optimizations not fully converged.

1.000 1.002 1.004 1.006 1.008 1.010

AEP ratio [-]

0.80

0.85

0.90

0.95

1.00

Mas

sra

tio

[-]

AEP0.925

Fatigue 5%

Fatigue 10%

Pareto front

a) AEP and blade mass in the Pareto front.

0 5 10 15 20 25 30

Iteration number

91

92

93

94

95

96

97

98

99

100

Lo

ng

itu

din

alto

wer

bas

efa

tig

ue

dam

age

var

iati

on

[%] Fatigue 5%

Fatigue 10%

b) Tower base longitudinal bending

moment fatigue damage variation.

22 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 28: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 3: Validation of Results With Time DomainSimulations

� Fatigue damage equivalent load reduction of tower base longitudinal

bending moment and rotor speed with respect to the reference design.

� Values evaluated with nonlinear time domain simulations.

� Dashed vertical lines indicate the wind speed where the constraint is

present in the optimization.

10 12 14 16 18 20 22 24 26

Wind speed [m/s]

−2

0

2

4

6

8

Lo

ng

itu

din

alto

wer

bas

eb

end

ing

mo

men

tfa

tig

ue

dam

age

red

uct

ion

[%]

AEP0.925

Fatigue 5%

Fatigue 10%

10 12 14 16 18 20 22 24 26

Wind speed [m/s]

−15

−10

−5

0

5

10

Ro

tor

spee

dfa

tig

ue

dam

age

red

uct

ion

[%]

AEP0.925

Fatigue 5%

Fatigue 10%

23 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 29: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 4: Shape and structural Optimization with FrequencyConstraint

Minimise −(

wpow ∗ AEPAEPref

+ (1 − wpow) ∗Mblade−ref

Mblade

)

with wpow = 0.9

with respect to x = {c, θ, tblade, tmat ,DPcaps} (56 dvs)

subject to Constraints on:Tip deflection at rated power,Tip torsion at rated,Extreme wind tip deflection,Ultimate strength,Basic spar cap buckling: tcap/wcap > 0.08,Trated < Trated−ref ,Textreme < Textreme−ref ,Extreme blade flapwise load < ref valueExtreme blade edgewise load < ref valueabs((Edgewise FW mode frequency)/6P) > 7%min(Edgewise BW mode damping) > 1%

� HAWCStab2 load cases: 7 operational cases, 1 extreme 70 m/s 15 deg yaw error

� 5 pre-computed extreme load cases for stress analysis.

24 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 30: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 4: Pareto Front

� The frequency constrained design lies significantly inside the pareto

front of the massAEP designs.

0.998 1.000 1.002 1.004 1.006 1.008 1.010

AEP ratio [-]

0.80

0.85

0.90

0.95

1.00

Mas

sra

tio

[-]

AEP0.8

AEP0.925

Freq. constr.

Pareto front

Figure: Iterations of Test case 4 optimizations.

25 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 31: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

ResultsCase 4: Aeroelastic Frequencies

� All aeroelastic frequencies of the optimized designs are reduced.

� The FW edgewise mode of the AEP0.8 design overlaps the 6P

frequency, while the AEP0.925 is sufficiently below.

� The frequency constrained design hits the upper frequency constraint at

25 m/s.

0 5 10 15 20 25

Wind speed [m/s]

0.6

0.7

0.8

0.9

1.0

1.1

Aer

oel

asti

cfr

equ

ency

[Hz]

BW flap

Coll. flap

FW flap

BW edge

FW edge

6P

9P

6P constraint

DTU 10MW RWT

AEP0.8

AEP0.925 Freq. constr.

26 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 32: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Conclusions� OpenMDAO is used as the backbone for a new framework for

multidisciplinary analysis and optimization of wind turbines.

� The HawtOpt2 framework is built around the state-of-the-art software

developed by DTU Wind Energy.

� Multi-disciplinary trade-offs between mass reduction and AEP

successfully captured by the fully coupled MDO approach,

� Significant reductions in mass and increase in AEP, depending on the

weighting of the cost function.

� New frequency based model for fatigue showed promising results with

up to 8% reduction in tower bottom longitudinal fatigue.

� Frequency placement was demonstrated, although the constraint

formulation resulted in less improvements in the design than the

unconstrained designs.

27 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine

Page 33: Aero-Elastic Optimization of a 10 MW Wind Turbine · Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, Jose

Conclusions

Aero-Elastic Optimization of a 10 MW Wind Turbine

Frederik Zahle, Carlo Tibaldi,

David R. Verelst, Robert Bitche, and Christian Bak

33rd ASME Wind Energy Symposium, January 2015

28 of 27F Zahle et al.Wind Energy Department · DTU Aero-Elastic Optimization of a 10 MW Wind Turbine