advances in peptide coupling

25
1. The role of DMAP 2. Amide formations i. Carbodiimides ii. Mixed anhydrides of carbon iii. Acyl azides & cyanides iv. Mixed anhydrides of phosphorus v. Pentafluorophenyl esters vi. Phosphonium & aminium reagents vii. Acid fluorides viii. Obscurities 3. The coupling of hindered amino acids 4. Complex peptide synthesis: i. Didemnin ii. Microcystin LA Overview OH O activation coupling Advances in Peptide Coupling Evans Group Seminar Jeff Katz 12/15/98 Lead References: L. Carpino Methods in Enzymology 1997, 289, 104 K. Devries, Evans group Friday seminar, 4/9/91 R PHN X O R PHN NHR' O R PHN

Upload: clariqmc

Post on 18-Jul-2016

16 views

Category:

Documents


0 download

DESCRIPTION

reações peptídicas

TRANSCRIPT

Page 1: Advances in Peptide Coupling

1. The role of DMAP

2. Amide formations

i. Carbodiimides

ii. Mixed anhydrides of carbon

iii. Acyl azides & cyanides

iv. Mixed anhydrides of phosphorus

v. Pentafluorophenyl esters

vi. Phosphonium & aminium reagents

vii. Acid fluorides

viii. Obscurities

3. The coupling of hindered amino acids

4. Complex peptide synthesis:

i. Didemnin

ii. Microcystin LA

Overview

OH

Oactivation coupling

Advances in Peptide Coupling

Evans Group Seminar

Jeff Katz

12/15/98

Lead References:

L. Carpino Methods in Enzymology 1997, 289, 104

K. Devries, Evans group Friday seminar, 4/9/91

R

PHNX

O

R

PHNNHR'

O

R

PHN

Page 2: Advances in Peptide Coupling

Pentaflurorophenyl Esters

i-Bu NH

NHBoc

HN

O Me

OH

O

NHZ

O

OPFP

Oi-Pr

O

HN

O

NH

i-Bu

BocHN

OHOi-Pr

OBocHN

OH

HNO

i-Bu

ZHNOH

OHO

NH

HN

O OMe

i-Bu

NHZ

Schmidt Chem. Commun. 1994, 1003

Joullie Tet. Lett. 1998, 39, 7211

1. PFPOH, EDC, DMAP, 97%

2. Pd black, γ-terpinene, 4-PPYdioxane/t-BuOH, reflux, 49%

1. HCl, dioxane, 20 °C

2. NaHCO3/CHCl3 room temp

72%, 2 steps

N

N

4-PPY

Pentafluorophenyl Esters

O

O

F

F F

F

F

OH

O DCC/PFPOH

Stable, isolable active ester

H2NR'

Preactivation method:

or

PFP-Trifluoroacetatepyr.

Green Tet. Lett. 1990, 31, 5851

R

HN

O

R"O

R

HN

O

R"O NHR'

O

R

HN

O

R"O

Page 3: Advances in Peptide Coupling

Pentafluorophenyl Esters

O

HN

O

HN

O

OMeOMe

MeO

HO2C

O

HN

O

HN

O

OMeOMe

MeO

NH

ONHZ

1. PFPOH, DCC, DMAP

2. 4-PPY, Pd/C, 90 °C, 5h

30% yield, 2:1 ratio of epimers

O

HN

O

HN

O

OMeOMe

MeO

HO2C

NH2

Br

triazine

NHBoc

Cl

HO

BnO

O

HN

O

HN

O

OMeOMe

MeO

NH

O

triazine

Br

NHBoc

Cl

HO

BnO

FDPP, i-Pr2NEt, DMF, 25 °C

12h, 52% yield, no epimers

K. C. Nicolaou Chem. Commun. 1997, 1899

K. C. Nicolaou Angew. Chem. Int. Ed. 1998, 37, 2708

2:1

F

F

FF

O

F

PPh2

O

FDPP

Xu Tet. Lett. 1991, 32, 6711

R OH

O FDPP, DIEA, H2NR'

DMF, room temp. R NHR'

O

Page 4: Advances in Peptide Coupling

HNO

HNO

NHONHAc

O

NHO2C

Ar

Bn

NH2

OHR

EDC/HOBt

DPPA

DEPC

PFP ester

FDPP*

16

8

12

8

57

Coupling agent

Coupling agent

% Yield

*FDPP, i-Pr2NEt, DMF, r.t. 14hShioiri Tet. Lett. 1996, 37, 2261

O

NH

O

MeN

OBn

HO2C

i-Bu

O O

i-BuO

NH2

i-Bu

DPPA

FDPP

HATU

PFP ester*

Coupling agent % Yield

low

60

5085

*CHCl3-NaHCO3, room temp. 5h

Coupling agent

Ulrich Schmidt Chem. Commun. 1994, 2381

Pentafluorophenyl Esters

Page 5: Advances in Peptide Coupling

Phosphonium Reagents

OP

N3+

N

NN

X

PF6-

OP

(NMe2)3+

N

NN

X

PF6-

X = C: BOPX = N: AOP

X = C: PyBOPX = N: PyAOP

Highly active coupling reagents with "built-in" additive:

R OH

O

R OP+(NR2)3

O

R O

O

N

NN

X

reagent

active species

-OBt

DIEA

Castro Tet. Lett. 1975, 1219; Tet. Lett. 1990, 31, 205

Carpino Chem. Commun. 1994, 201

• HOAt derivatives invariably preform better than the corresponding HOBt derivatives

• Pyrollidine derivatives generally preform better than the corresponding dimethylamino derivatives

Pentafluorophenyl Esters

The "first" In situ activation method:

PF6-

N N

OPFP

N N

O

Me

MeMe

Me

PFPPF6

-

PfPyU PfTU

Habermann J. Prakt. Chem. 1998, 340, 233

FmocHN

HN

NH

HN

NH

HN

NH

HN CO2H

t-BuO

O

O

O

O

O

O

OOSugar

C(O)NHTrt

CO2t-Bu

Me

i-Pr

CO2t-Bu

Synthesized in 13 steps on solid phase (tentagel) in an overall yield of 76% (98%/step):(Hunig's base, collidine, PfPyU, NMP)

Page 6: Advances in Peptide Coupling

Aminium Salt Couplings — Effects of the Amine Base

Aminium Salt DIEA NMM Pyridine collidine

HBPyU

HATU

HAPyU

5.7 0.610.7 7.7

2.7 0.1

2.3 1.7 6.2 0.1

% Racemization for

Z-Phe-Val-Ala-OMe in DMF

lutidine

0.6

DMAP

10.4

HBPyU 26.6 13.7

HATU 6.5 1.7

HAPyU 6.3 5.9 2.30.1

2+1 segment coupling of

Carpino J. Org. Chem. 1994, 59, 695

HAPyU

12.2

3.3

NMM (2 equiv)AdditiveAminium Salt

noneHAPyU

Carpino J. Org. Chem. 1996, 61, 2460

% Racemization for

Z-Phe-Val-Pro-Ot-Bu in DMF

HOAt

• Added HOAt/HOBt is shown to have a deliterious effect for solid phase coupling reactions

2+1 segment coupling of

2+1 segment coupling of% Racemization for

Z-Phe-Val-Pro-NH2 in DMF

Aminium Reagents

R OH

O

ORN

NN

X

OAminium reagent

amine base

fast

H2NR'

R NHR'

O

• Higher reactivity than carbodiimide reagents

• Added base is necessary

• HOAt derivatives invariably preform better than the corresponding HOBt derivatives

• Pyrollidine derivatives generally preform better than the corresponding dimethylamino derivatives

ON

NN

X

PF6-

X = C: HBTUX = N: HATU X = C: HBPyU

X = N: HAPyU

CN

ON

NN

X

PF6-

C(NMe2)2

2

Knorr Tet. Lett. 1989, 1927Carpino J. Am. Chem. Soc. 1993, 115, 4397

R OC+(NR2)3

O -OXt

Page 7: Advances in Peptide Coupling

Amino Acid Fluorides — In Situ GenerationMe2N

Me2NF

PF6-

TFFH

PHN

R

O

OHPHN

HN CO2Me

R

O R'

H2N CO2Me

R'

TFFH/DIEA

For segment condensations, HOAt is needed to suppress racemization:

Z-Phe-Val-OH

H-Ala-OMe Base, DMFZ-Phe-Val-Ala-OMe TFFH

TFFH/HOAt

i-Pr2NEt NMM collidine

25 23 6

2 <0.1

% Racemization:

Carpino J. Am. Chem. Soc. 1995, 117, 540

orBTFHH/DIEA

N C

PF6-

2F

BTFFH

Carpino Chem. Lett. 1998, 671

NH

Bn

O

OH

O

Bn

"segment-like"

N

O

O

Bn

Bn

NH

Bn

O

HN

O

BnCO2Me

Me

1:1

TFFH/DIEA Ala-OMe

only isolable product

Coupling agent

Amino Acid Fluorides

PHN

R

O

FPHN

HN CO2Me

R

O R'

H2N CO2Me

R'

PHN

R

O

OHPHN

R

O

F

N

N

N

F

FF

CH2Cl2, pyridine

DAST, CH2Cl2

Carpino Acc. Chem. Res. 1996, 29, 268

Acid Fluoride Formation:

or

• Bench stable compounds for most Fmoc-protected amino acids

• Do not form oxazolone intermediates in the presence of tertiary amines

• Relatively unreactive to neutral oxygen nucleophiles

• Sillicon protecting groups are problematic

• React readily with anionic oxygen nucleophiles and neutral amines

DIEA

DMF

Page 8: Advances in Peptide Coupling

ZHN

Ph

F

O

preformed

HN

CO2R

ZHN

Ph

N

O CO2R

Solvent, base

Solvent base

DMF DIEA

DMF collidine

CH2Cl2 collidine <0.1

19.0

11.6

% epimer

Acid Fluorides — Racemizaton

Wenschuh, Carpino J. Org. Chem. 1995, 60, 405

• Highly racemization-prone amino acids still require carefully controlled conditions

Amino Acid Fluorides

PHN

R

O

XPHN

HN CO2Me

R

O R'

H2N CO2Me

R'

DIEA

X equiv of DIEA % Conversion

F 0

F

Cl

Cl

1

0

1

50

100*

100

100

* Reaction rate is only slightly retarded

Carpino Chem. Commun. 1995, 669

• No-base approach has been shown to be general for both solid- and solution-phase couplings

• No epimerization is observed

Page 9: Advances in Peptide Coupling

Obscurities — Couplings with kinetic resolution

Kaminski Synthetic Communications 1998, 28, 2689

N

N

N

Cl

ClCl

i-Pr

OH

Me

i-Pr

O

Me

N

NN

Cl

Cl

collidine

OH

O

ZHN

R

one residue is racemic

OMe

O

H2N

R' OMe

OHN

R'

PHN

O

R

1

THF

Z-Gly-OH + D,L-Ala-OEt (1:2)

Z-D,L-Ala-OH + Gly-OEt (2:1)

Z-D,L-Ala-OH + L-Leu-OMe (2:1)

Z-D,L-Ala-OH + L-Phe-OEt (2:1)

Coupling partners (substrate ratio) % Yield

87

86

72

75

ee or de

93 (L)

100 (L)

100 (L,L)

100 (L,L)

1, conditions?

• %ee measured by rotation only

Z-Phe-Val-Pro-NH2 via 2+1 segment coupling in DMF

EDC/HOAt

EDC/HOBt

EDC/HODhbt

EDC•HCl/HOAt

EDC•HCl/HOBt

HATU

HATU/HOAt

HBTU

HAPyU

BOP

HAPyU/HOAt

85 4.7

89 7.3

87 18.9

TMP (1)

TMP (1)

TMP (2)

89 5.3

87 19.9

83 5.3

HATU DIEA (2) 86 13.9

HATU/HOAt

HATU/HOAt

TMP (2)

TMP (3)

DIEA (2) 76 10.9

72 2.4

87 4.5

TMP (2) 81 14.2

TMP (2) 81 13.9

TMP (2) 87 3.5

TMP (2)

HAPyU/HOAt

HAPyU/HOAt

HAPyU/HOAt

TMP (3)

DIEA (2)

DIEA (3)

76 1.6

89 2.3

77 3.2

90 12.1

HATU/HOAt DIEA (3) 88 15.8

Reagent Base (equiv) % Yield % epimer

Segment Couplings

Carpino J. Org. Chem. 1995, 60, 3561

Reagent Base (equiv) % Yield % epimer

Page 10: Advances in Peptide Coupling

Secondary Amine Coupling

More Powerful activation is needed for Secondary Amines:

NH

R

O

OHNH

CO2Me

R'P Me

PyBroPPyBOP

Z-MeVal-Val-OMe 85 (1)90 (1)

Z-Val-MeVal-OMe 70 (1)11 (1)

Fmoc-Val-MeVal-OMe 84 (3)30 (24)

Boc-Val-MeVal-OMe 44 (3)45 (24)

% Yield (hours)

NH

PMeN

R

O R'

CO2Me

BrP

N3+

PF6-

PyBroP

Sequence

Coupling agent

Coste J. Org. Chem. 1994, 59, 2437

BrP

(NMe2)2+

PF6-

BroP

CH2Cl2, DIEA, room temp.

Obscurities — Polymer-bound coupling reagents

Caputo et. al. Synthesis 1995, 141

PPh2ResinI2

imidazole, CH2Cl2

25 °C, 2 hr, 90-99%

P-Xxx-OH H-Yyy-OR

Fmoc Ala Leu Allyl

Cbz Met Ala Me

Boc Leu Phe t-Bu

Fmoc Val Val Allyl

Fmoc Cys(Trt) Cys(Trt) Me

Boc Trp Leu Me

P Xxx Yyy R

99

98

95

95

99

94

% Yield

P-Xxx-Yyy-OR

• Authors propose an acyl iodide as the active species

Page 11: Advances in Peptide Coupling

Secondary Amine Coupling: Side-product Pathways

N

O

MeR

O

Ot-Bu

N

O

HR

O

Ot-Bu

N

O

R'R

O

Ot-BuO O

N

R

O

XR'

R' = H

R' = Me

slow

fast

N-carbonic anhydride

Coste Tet. Lett. 1992, 33, 2815

NH

PMeN

R

O R'

CO2Me

NH

R

O

OPN

N N

NH

R

O

OPP

N3+

NH

CO2Me

R'

Me

slow

fast

N

O

O

R'O

R

NH

R

O

OP

2

For PyBroP, The "active ester" is a mixture of species:

NH

R

O

OPP

N3+

+ +

Phosphonium Reagents — Active Coupling Species

PyBOP

PyBroP

Page 12: Advances in Peptide Coupling

OH

O

PHN

Me Me

Aminoisobutyric acid (Aib)

OR'H2N

R

Ocarbodiimides or

α,α-Dialkylamino Acids

Z-Aib-Gly-OEt 92 87 89 87

Z-Aib-Val-OMe 88 87 84

Z-Aib-Pro-Ot-Bu 82 84 95

Z-Aib-Aib-OMe 89 77

Boc-Aib-Aib-OMe

inconsistent results, low yields

BOP PyBOP BroP PyBroP

80 86 25 2576* 77* * With added DMAP

Coste Tetrahedron 1991, 47, 259

Sequence

% Yield for Phosphonium-based Aib couplings (CH2Cl2, room temp.)

• Aib-Aib coupling is still sluggish — reaction times are 16 to 24 hours

• While good yields can be obtained, sluggish and varied reaction conditions make this unsuitable for solid phase

mixed anhydrides

An electron-poor HOBt additive can increase reactivity:

NN

NO

CF3

NO2

PN

2

CF3-NO2-PyBOP

Secondary Amine Couplings

Z-Val-Val-OMe

Z-Val-MeVal-OMe

Fmoc-Val-MeVal-OMe

Boc-Val-MeVal-OMe

% Yield

Sequence

Z-MeVal-MeVal-OMe

Boc-MeLeu-MeLeu-OMe

PyBroP CF3-NO2-PyBOP

89 98

49 76

57 85

25 62

47 87

22 71

CH2Cl2, DIEA, room temp., 1 hr

Bloemhoff Tet. Lett., 1995, 36, 4643

Page 13: Advances in Peptide Coupling

O

DMAPN

N

OMe

X-

+Me X

O

PyridineN

OMe

+Me X

X- • Undetectable in non-polar solvents, buthas been detected in H2O by UV

X % Pyridinium in solution

Cl

OAc

>95

5-10

CDCl3, room temperature

DMAP — Equilibrium Concentrations

OH

Me

OAc

Me

Ac2O, base

CDCl3, 27 °CDMAP

pyridine

1:1 pyridine:NEt3

Ac2O

t 1/2 (min)

7

1000

20

1000

DMAP

Base Acylation Reagent

Ac2O

Ac2O

DMAP Acylation Catalysis

N

N

OMe

+

O

Me-O

OR

H

General Base Acceleration:

Steglich ACIEE 1978, 17, 569

AcCl

Page 14: Advances in Peptide Coupling

Ac-Aib-Pro-Aib-Ala-Aib-Ala-Gln-Aib-Val-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-Glu-Gln-Pheol

alamethicin F-30

Ac-Aib-Ala-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Aib-Aib-Pro-Leu-Aib-Iva-Gln-Valol

trichotoxin A-50

Synthesized on solid phase via Fmoc-amino acid fluorides in 78% purity

Synthesized on solid phase via Fmoc-amino acid fluorides in 60% purity

Wenschuh, Carpino J. Org. Chem. 1995, 60, 405

Peptaibols

• Bioactive linear peptide sequences

• Sequences are approx. 20 residues and contain unusually high amounts of α,α-dialkylamino acids• Aib-Pro linkages are acid-sensitive (cleaved by TFA)

α,α-Dialkylamino Acids

H-Tyr-Aib-Aib-Phe-Leu-NH2

H-D-Ala-MeLeu-MeLeu-MeVal-Phe-Val-OH

Carpino Chem. Commun. 1994, 201

Aminium salts and acid fluorides for solid-phase α,α-dialkyl and N-methylamino acid synthesis:

Reagent sequence purity

HATU

TFFH

HBTU

94%

92%

43%

Reagent sequence purity

HATU

HBTU

85%

8%

7 min. activation, 30 min. coupling in DMF

7 min. activation, 30 min. coupling in DMF

Page 15: Advances in Peptide Coupling

NHROO

Oi-Pr

O

O NH

i-BuN

O

O

O

NH

MeO Me

N

i-Bu

MeEt

Me

ONMe

O Ar

R'

O

TIPSOO

Oi-Pr

OMOM

CO2HNHZ

i-Pr

N

O

O

O

NHBoc

Me

MeEt

Me

O

i-Bu

NMe

O

Didemnin

1. PFPOH, DCC, DMAP

2. Pd/C, 4-PPY, 95 °C

• FDPP, BOP and HBTU were unsuccessful

72%

cyclized product

Joullie Bioorg. Med. Chem. Lett. 1996, 6, 2713

Didemnin

cyclized product

Joullie J. Org. Chem. 1994, 59, 5192

NH

MeOO

Oi-Pr

OMOM

CO2HNH2

i-Bu

N

O

O

O

NHBoc

Me

Me

ONMe

O Ar

FDPP, 30%

HBTU, 50%

or

Joullie J. Org. Chem. 1996, 61, 1655

cyclized product

NH

TIPSOO

Oi-Pr

OMOM

CO2HNH2

i-Pr

N

O

O

O

NHBoc

Me

MeEt

Me

ONMe

O Ar

DPPA, 0 °C, 72h, 42%or

FDPP, room temp. 4h, 68%

Page 16: Advances in Peptide Coupling

Giralt J. Org. Chem. 1997, 62, 354

NH

ORO

Oi-Pr

O

O NH

i-Bu

N

O

O

O

NH

MeO

MeN

i-Bu

MeEt

Me

ONMe

O Ar

R

HBTU/HOBt

HBTU/HOBt - Stepwise coupling

BOP/HOBt - Stepwise coupling

DCC/DMAP - Stepwise coupling

DIC/DMAP/DMAP•CF3COOH

HATU/HOAt - Macrolactamizaton

Segment coupling

Stepwise coupling

(DIC/DMAP fails)

NH

ORO

Oi-Pr

O

NH

i-Bu

N

O

O

O

NHR'

Me

Me

OHN

CO2H Ar

Et

R = TBS, R' = Boc-(R)-N(Me)-Leu-OH: 28% yield

HATU, HOAt

R = H, R' = H: 76% yield

cyclized product, 1 isomerO Me

Didemnin

TBTUstepwise coupling

Page 17: Advances in Peptide Coupling

HN

HN

OH2OC

Me

OMe

O

NH

Me

Me

HN

O

MeN

CO2H

O

O

NH

OMe

i-Bu

OMe

Ph

Microcystin LA

HN

HATU/DIEA - stepwise coupling

DCC/HOBt - stepwise coupling

DCC/HOBt - stepwise coupling

HATU/DIEA (88%)or

DCC/DMAP (71%)

HATU/collidine - segment coupling

HATU/collidine

1. DCC/PFPOH2. CHCl3-pH 9.5 buffer

(DCC/HOBt and BOP fail)

stepwise coupling

macrolactamization

Richard Chamberlin J. Am. Chem. Soc. 1996, 118, 11759

56%

Overview

Stepwise couplings:

Standard amino acids — EDC/HOBt. DEPC, or BOP are also good choices

Racemization-prone amino acids — If EDC/HOBt is insufficient, try EDC/HOAt or HATU/collidine

Segment couplings:

Phosphonium or aminium salts are good choices, HOAt/pyrollidine derivatives for the difficult cases

Macrolactamizations:

FDPP/PFP esters, DPPA and HAPyU/collidine are good bets

Hidered couplings:

Acid fluorides and HAPyU/collidine are good choices. PyBroP and BOP-Cl work for solution phase.

Page 18: Advances in Peptide Coupling

OH

Me

OAc

Me

Ac2O, base

CDCl3, 27 °CDMAP

pyridine

1:1 pyridine:NEt3

Ac2O

t 1/2 (min)

7

1000

20

1000

DMAP

Base Acylation Reagent

Ac2O

Ac2O

• Rate of pyridinium-acylations is tied to:

• Tightness of ion pair

• Concentration/solubility• Identity of counterion

DMAP Acylation Catalysis

AcCl

N

N

OMe

+ N

N

OMe

+

N

N

OMe

+

+

-

N

OMe

+

A1 (X=Cl) B' B"

X-

X-X- X-

B1 and B2 are observable by 1H NMR in CDCl3 or CD2Cl2 at low temperature

A2 (X=OAc)

B1 (X=Cl)

B2 (X=OAc)

N

N

OMe

+

+

-

B"

X-

HαHα

Hβ Hβ

4 distinct resonances

DMAP Acylation Catalysis

Page 19: Advances in Peptide Coupling

1. The role of DMAP

2. Amide formations

i. Carbodiimides

ii. Mixed anhydrides of carbon

iii. Acyl azides & cyanides

iv. Mixed anhydrides of phosphorus

v. Pentafluorophenyl esters

vi. Phosphonium & aminium reagents

vii. Acid fluorides

viii. Obscurities

3. The coupling of hindered amino acids

4. Complex peptide synthesis:

i. Didemnin

ii. Microcystin LA

Overview

N

N

OMe

+

N

OMe

+

Cl-

Cl-

• Rate of pyridinium-acylations is tied to:

pH 5.5 buffer

H2O

pH 5.5 buffer

H2O

Hydrolysis Rate

2000

1

A Reactivity Reversal:

DMAP Acylation Catalysis

• Tightness of ion pair• Concentration/solubility• Identity of counterion

Page 20: Advances in Peptide Coupling

Carbodiimides — Reaction Pathways

NH

C

N

Cy

Cy

O

O

NH

C

N

Cy

O

Cy

O

NH

R

NHP

R

NO

OR'

RO

O

O

PHN

R

O

NHP

R

NHR"

O

PHN

R

O

O

PHN

R

N

N N

HON

N N

HOBt

HOBt

oxazolone

increased racemization

symmetrical anhydride

N-acyl urea

O-acyl urea

stabilized active ester

O

R'O

Carbodiimide Activation

N C N N C N N C NEtN

Me

MeCl

DCC DIC EDC•HCl

NH

C N CyCy

NH

C

N

Cy

Cy

OR

O

N C N CyCyR O

O

H2NR'

R NHR'

O

NH

NH

O

Cy Cy

Sheehan J. Am. Chem. Soc. 1955, 77, 1067

Rebek J. Am. Chem. Soc. 1973, 95, 4052

• Gives a water-soluble urea by-product

R OH

O

Page 21: Advances in Peptide Coupling

Modern Advances in Coupling Additives

N

NN

HONN

NN

HO

HOBt HOAt

X

O

PHN

R

O

O

PHN

R

N

N N

Higher reactivityIncreased racemization

More side-reactionsMoisture-sensitive

Lower reactivityDecreased racemizaton

resistant to side-reactions

Less water sensitive

additive

NN

N

O

OH

HODhbt

Most common coupling additives:

O

O

PHN

R

N

N N

N

HR'HN

NHR'

O

PHN

R

• HOAt has the advantage of internal base acceleration

EDC/HOAt

EDC/HOBt

EDC/HODhbt

81

80

82

7

25

10

Reagent % Yield % epimer

Z-Phg-Pro-NH2 formation in DMF:

Carpino J. Org. Chem. 1995, 60, 3561

• Decreased racemization vs. HOBt but moreside-reactions

Konig Chem. Ber. 1970, 103, 2024,2034

*

NO

OR'

RO

X*

OHN

R

R'O

O

*

NO

OR'

RO

X*

OHN

R

R'O

O

Racemization Pathways

• Carbamate-protected amines help supress oxazolone formation and deprotonation

• Amide "amino-protection" is the main reason for increased racemization in segment couplings

oxazolone

increased risk of racemization

• Direct deprotonation of active esters does occur, but oxazolone formation is the major racemization pathway

active ester

Page 22: Advances in Peptide Coupling

Mixed Anhydrides of Carbon

N

O OR"

OR" N

O

O

OR"O R

R" = Et

R" = i-Bu

EEDQ:

IIDQ:

R OH

O

O OR"

O

R

O

In situ generation (no preactivation) of mixed anhydrides:

• No additional base is necessary

Yajima Chem. Commun. 1972, 942

Belleau J. Am. Chem. Soc. 1968, 90, 1651

Mixed Anhydrides of Carbon

R OH Cl OR'

O O

O OR'

O

R

O

R NHR"

Oamine base NH2R"

Amine equiv % Yield % epimer

NMe3

NEt3

NMM

1

21

1

2

12

82 8

59 16

90 0

<5 68

12

94 085 392

93

0

0

3 0.2

Anderson J. Am. Chem. Soc. 1967, 89, 5012

• The solvents of choice are ethyl acetate and THF. Acetonitrile, CH2Cl2, NMP and DMF should be avoided.

i-Pr2NEt

i-Pr2NMe

Z-Gly-Phe-Gly-OEt synthesis in THF at -15 °C,

Cl OEt

O

NMe3

NEt3

i-Pr2NMe

NMM

Cl Oi-Bu

O

Common chloroformates

Jouin Tetrahedron 1989, 45, 5039

• Side reactions: disproportionation to symetrical anhydride, attack at undesired carbonyl

12 min activation with i-BuOC(O)Cl

preactivation

Page 23: Advances in Peptide Coupling

NH

HN

O

NH

NH

HNO

O

CO2H

CO2Me

Me

NH2

Ph

Method % Yield

DCC, HOBt

714931

Pritchard Tetrahedron 1992, 48, 8471

DPPABOP

Conditions NH

HN

O

NH

NH

HNO

OCO2Me

Me

NH

Ph

O

DPPA

DPPA and DEPC

R OH

ODPPA

DEPC

R O

O

P

O

(OPh)2

R CN

O

R N3

O

R OH

O

R O

O

P

O

(OEt)2

N3-

CN-

• Curtius rearrangement is slow relative to coupling

• Acyl azide relatively unreactive to non-amine nucleophiles

active species

active species

Yamada J. Am. Chem. Soc. 1972, 94, 6203

Yamada Tet. Lett. 1973, 1595

• Tends to be used for macrocylizations • Tends to be used for stepwise couplings

(PhO)2P

N3

O

DPPA

(EtO)2P

CN

O

DEPC

Page 24: Advances in Peptide Coupling

OMe

OMe

NH

O

Me

OTBS

Me Me

MeO

OMe

MeO

MeMeOMe

OMe

NH2

HO2C

Me

OTBS

Me Me

MeO

OMe

MeO

MeMe

BOP-Cl, DIEA, 15h

Baker Chem. Commun. 1989, 378

BOP-Cl Macrolactamization

DCC, DEPC, DPPA fail

85 °C, 85%

NO

O

PN

O

O

O

Cl

BOP-Cl

R OH

OR O

O

P

ON

N

O

O

O

O

Active acylating species

R NHR'

OH2NR' (or HOR')

• Mixed anhydride intermediate is very reactive and will form both esters and amides

Daniel Rich J. Am. Chem. Soc. 1985, 107, 4342

Daniel Rich J. Org. Chem. 1986, 51, 3350

A. Palomo-Coll Synthesis 1980, 547

BOP-Cl Activation

BOP-ClDIEA

CH2Cl2

• Less prone to side-reactions than chloroformate-based anhyrides

• Active enough to couple N-alkyl amino acids, but requires long reaction times

Page 25: Advances in Peptide Coupling

Me2N

Me2NF

PF6-

TFFH

N C

PF6-

2F

BTFFH

N

NN

HO

NN

NN

HO

HOBt

HOAt

NN

N

O

OH

HODhbt

N

O OR"

OR"

R" = Et

R" = i-Bu

EEDQ:

IIDQ:

NO

O

PN

O

O

O

Cl

BOP-Cl

N C N

N C N

N C NEtN

Me

MeCl

DCC

DIC

EDC•HCl

(PhO)2P

N3

O

DPPA

(EtO)2P

CN

O

DEPC

NMe

MeN

Cl

PF6-

CIP

PF6-

N N

OPFP

N N

O

Me

MeMe

Me

PFPPF6

-

PfPyU

PfTU

F

F

FF

O

F

PPh2

O

FDPP

OP

N3+

N

NN

X

PF6-

OP

(NMe2)3+

N

NN

X

PF6-

X = C: BOPX = N: AOP

X = C: PyBOPX = N: PyAOP

NN

NO

CF3

NO2

PN

2

CF3-NO2-PyBOP

ON

NN

X

PF6-

X = C: HBTUX = N: HATU

X = C: HBPyUX = N: HAPyU

CN

ON

NN

X

PF6-

C(NMe)2

2

BrP

N3+

PF6-

PyBroP

BrP

(NMe)2+

PF6-

BroP