advanced financial models

81
Advanced Financial Models under construc2on

Upload: david-keck

Post on 06-Dec-2014

371 views

Category:

Technology


3 download

DESCRIPTION

This slide set is a work in progress and is embedded in my Principles of Finance course, which is also a work in progress, that I teach to computer scientists and engineers http://financefortechies.weebly.com/

TRANSCRIPT

Page 1: Advanced financial models

     Advanced  Financial  Models    under  construc2on          

Page 2: Advanced financial models

Learning  Objec-ves    

¨  Lognormal  Distribu-ons    ¨  Rela-ons  between    

¤  Normal  &  lognormal  n  Pdfs  n  Sta-s-cs  

¤  Simple  and  natural  log  rates    

2

Page 3: Advanced financial models

Hypotheses  and  Models    

¨  Explana-ons  of  phenomenon  ¤  Hypothesis  

n  A  proposed  explana-on  for  a  phenomena  

¤  Law  n  Statement  of  a  cause  and  effect    

without  explana-on  n  Newton’s  law  of  gravity    

¤  Theory  n  A  well-­‐established  explana-on  for  

a  phenomenon  n  Einstein’s  theory  of  gravity  

¨  A  model  is  a  mathema-cal  or  physical  representa-on  of  a  phenomenon  ¤  The  “Bohr  atomic  model”    ¤  Newton’s  inverse  square  law  of  

gravity      

¤  Einstein’s  Theory  of  General  Rela-vity        

3

221

rmmGF ⋅

⋅=

Page 4: Advanced financial models

SPX  Daily  Ln  Rate  Histogram:  Zoom  4

Page 5: Advanced financial models

SPX  Daily  Ln  Rate  Histogram:    More  Zoom  5

Again this histogram includes daily return rates from 1950 <-4.5% should happen less than once in a thousand years, but there have been 31 such days since 1950 or about once every two years -22.9% day should not have happened (Oct 19, 1987)

Page 6: Advanced financial models

SPX  Daily  Ln  Rate:  August  –  December  2008  6

Page 7: Advanced financial models

SPX  Daily  Ln  Rate:  Mean  7

-­‐350%

-­‐250%

-­‐150%

-­‐50%

50%

150%

250%

1/5/51 11/9/57 9/13/64 7/19/71 5/23/78 3/27/85 1/30/92 12/4/98 10/8/05

Annualized  mean  22  day  annualized  tailing  mean  252  day  annualized  tailing  mean  Long  term  annualized  tailing  mean  

Page 8: Advanced financial models

SPX  Daily  Ln  Rate:  Mean  8

-­‐80%

-­‐60%

-­‐40%

-­‐20%

0%

20%

40%

60%

80%

1/2/90 3/12/92 5/21/94 7/29/96 10/7/98 12/15/00 2/23/03 5/3/05 7/12/07 9/19/09

Zoom  in  on  Annualized  mean  252  day  annualized  tailing  mean  Long  term  annualized  tailing  mean  

Page 9: Advanced financial models

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1/3/1950 3/22/1958 6/8/1966 8/25/1974 11/11/1982 1/28/1991 4/16/1999 7/3/2007

SPX  Daily  Ln  Rate:  Standard  Devia-on    9

Annualized  standard  devia-ons  (‘vola-lity’)  22  day  annualized  trailing  vola-lity  252  day  annualized  trailing  vola-lity  Long  term  annualized  trailing  vola-lity    

Page 10: Advanced financial models

0%

5%

10%

15%

20%

25%

30%

1/2/1990 9/28/1992 6/25/1995 3/21/1998 12/15/2000 9/11/2003 6/7/2006

SPX  Daily  Ln  Rate:  Standard  Devia-on    10

Zoom  in  on  Annualized  standard  devia-ons  (‘vola-lity’)  252  day  annualized  trailing  vola-lity  Long  term  annualized  trailing  vola-lity    

Page 11: Advanced financial models

SPX  Daily  Ln  Rate:  Autocorrela-on  Cluster  11

Page 12: Advanced financial models

SPX  Daily  Ln  Rate:  Autocorrelogram    12

Natural  log  daily  return  rates  for  SPX,  v    1950  –  2011  15471  days    Rates  do  look  rather  uncorrelated      

Page 13: Advanced financial models

SPX  Daily  Ln  Rate:  Autocorrelogram    13

Natural  log  daily  de-­‐trended  squares  of  return  rates  (variance)    for  SPX,  (v-­‐u)2  1950  –  2011    15471  days    There  is  some  posi-ve  autocorrela-on  (persistence)    Might  even  be  greater  persistence  over  shorter  periods  

Page 14: Advanced financial models

SPX  Daily  Ln  Rate:  Histogram  of  Annualized  Daily  Variance  

14

Histogram  of  Annualized  Daily  Variance  

Page 15: Advanced financial models

SPX:  Annual  Accumula-on  of  Daily  Returns  15

10,000  annual  sums  of  252  day  (1  year)  con-guous  return  rates  randomly  selected  from  1950  to  2011    This  histogram  doesn’t  look  normal  at  all  as  the  addi-ve  CLT  would  indicate    So  the  rates  are  not  IID/  FV  

Page 16: Advanced financial models

SPX:  Ln  Rate  Q-­‐Q  Plot  16

A  Q-­‐Q  plot  compares  the  measured  rates  to  ideal  normal  rates  from  measured  mean  and  variance  

Page 17: Advanced financial models

Natural  Log  Rate  –  More  Tests  

¨  Jarque  Bera  normality  test    ¤  JB  is  a  Chi  Squared  sta-s-c  with  2  dof    ¤  Normality  via  chi  squared  considera-on  of  s  

skew,  S,  and  kurtosis,  K,  the  3rd  and  4th    moments  of  distribu-on  which  measure    asymmetry    

17

440,657          4

3)(29.06001.056216

15471          

43)(KS

6nJB

22

22

=

⎟⎟⎠

⎞⎜⎜⎝

⎛ −+−=

⎟⎟⎠

⎞⎜⎜⎝

⎛ −+=

JB                      (χ2  

statistic)  

If  normality  is  rejected,  what  is  the  probability  of  a  rejection  error  

0.0000 100.00%4.6051 10.00%5.9914 5.00%9.2103 1.00%10.0000 0.67%15.0000 0.06%20.0000 0.00%25.0000 0.00%30.0000 0.00%35.0000 0.00%40.0000 0.00%45.0000 0.00%50.0000 0.00%

So  there  is  ~0%  probability  of  incorrectly  rejec-ng  the  normal  hypothesis  

Page 18: Advanced financial models

Natural  Log  Rate  –  Tests  For  Normality    18

Page 19: Advanced financial models

Stock  Return  Rate  Summary  

¨  Historical  stock  return  rates,  r  and  v,  are  characterized  by    ¤  Leptokurtosis  

n  Fat  or  heavy  tails:  more  extreme  events  than  ‘normal’  n  More  return  rates  near  the  mean  than  ‘normal’  

¤  Nega-ve  skew  n  More  extreme  downside  events  than  upside    

¨  Dependence  in  return  rate  vola-lity    ¤  Rate  vola-lity  clustering,  short  term  persistence  then  reversion  to  mean  

¨  Less  frequent  sampling  e.g.,  weekly  and  monthly  would  show  some  smoothing,  but  s-ll  not  normal    ¤  However,  quarterly  or  annual  sampling  would  ignore  important  rate  of  

return  informa-on    

19

Page 20: Advanced financial models

Lognormal  Pdf  20

The  lognormal  pdf  is  asymmetric,  is  not  nega-ve,  over  -me  the  mean,  mode,  and  median  drii  further  apart,  and  the  distribu-on  skews  more  posi-vely.          

Page 21: Advanced financial models

Lognormal  Pdf  21  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Mode      Median      Mean  (expected)    

Page 22: Advanced financial models

22

( )

( )

∞>>⋅⋅

=

−−

   x      0

eπ2σx

1σ  μ,  |x  f

1s,uNL~r

                     σ2μ)(lnx

x

2

2

2

( )

( )

∞>>∞⋅

= ⋅

−−

x    -­‐

eπ2σ

1σ  μ,  |x  f

s,uN~v

                     σ2μ)(x

x

2

2

2

u  is  mean,  median,  and  mode    The  parameters  is  the  normal  pdf  above  are  also  the  sta-s-cs  –  the  mean  and    variance  

The  mean,  mode,  and  median  are  all  different      The  parameters  is  the  lognormal  pdf  are  the  same  as  for  the  normal  pdf,  but  they  are  not  the  sta-s-cs,  not  the  mean  or  variance    

Page 23: Advanced financial models

   

¨  Why  simple  returns  can’t  really  be  normal  ¤  Simple  returns  are  compounded  over  -me  increments,  but  normal  random  variables  are  mul-plied  

¤  (1+r)n  ¤  u·∙n  

23

( )r1lnv +=

 ...3r

2rr)r1ln(v

)1x(                                                ...3x

2xx)x1ln(

32

32

−+−=+=

−≠−+−=+

Page 24: Advanced financial models

Variance  of  Simple  and  Log  Returns  24

[ ] [ ][ ] [ ]

( )

( )

( )

[ ]( ) ( )                                                                                                                                          

1er1E                      

1ee                        

1ee                          

1ee                        

ee                        

ee                      

xExE                      

dr1VarrVar

2

2

2

2

2

22

22

222

s2

s

2

2su

s2su2

ssu2

s2us2u2

2

2su

2s2u2

22

2

−⋅+=

−⋅⎟⎟⎟

⎜⎜⎜

⎛=

−⋅=

−=

−=

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

−=

=+=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

⎟⎟⎠

⎞⎜⎜⎝

⎛+⋅

+⋅

+⋅+⋅

+⋅

+⋅

[ ]( ) ( )( ) ( )

( )( )

( )

1)s      1,(a                                  sd

1ed

d1e

d1lns

1)(a                          1    a1

a1d1lns

1ea1              

1er1E    d  

22

s2

2s

22

2

2

22

s2

s22

2

2

2

2

<<<<≈≈

−≈

+≈

+≈

<<≈+

⎟⎟⎠

⎞⎜⎜⎝

++=

−⋅+=

−⋅+=

( )[ ]

[ ]

[ ][ ] 2

2

22

s2u22

2su

2skukk

2

v

e        xE

e            xE

                 e    xE  

su,NL~        

             er1X

⋅+⋅

+

⋅+⋅

=

=

=

=+=

Page 25: Advanced financial models

Variance  of  Simple  and  Log  Returns  25

Future  Value  Factor:  1+r  =  ev

[ ] ( )  1eer1var22 ssu2 −⋅=+ +⋅

[ ] *

2

u2s

ueer1E ≡=+

+

[ ] uer1M =+

Page 26: Advanced financial models

26

( ) ( )

[ ]

[ ] [ ][ ] ( )[ ]

[ ] ondistributi  normal  log  for  Median                            er1MM[x]

         ondistributi  lognormal  for  moment  2        er1E  xE

ondistributi  normal  log  for  (mean)  moment  1                          er1E  xE

ondistributi  normal  log  for  moment  k                                            exE  

       su,NL~        er1

u

nds2u222

st2s

u

th2sk

ukk

2v

2

2

22

=+=

=+=

=+=

=

=+

⋅+⋅

+

⋅+⋅

Page 27: Advanced financial models

Central  Limit  Theorem    27

( )

( )2n

n

n

1ii

n

1ii0n

s,uN~ny

uny

n

v

vSln)Sln()Sln(

→=

=Δ=−

=

=( )

1)x,x(NL~r

g1f)r(1

fr1SS

n1

n

n1

n

1ii

n

n

1ii

0

n

+→=⎥⎦

⎤⎢⎣

⎡+

≡+=

=

=

Assume  that  n  is  large  and  r  and  v  are  IID/FV    

Page 28: Advanced financial models

28  

( ) ( )

( )

∑∏

∑∏

∑∏

==

==

==

=⎥⎦

⎤⎢⎣

+=⎥⎦

⎤⎢⎣

+=⎥⎦

⎤⎢⎣

⎡+

n

1ii

n

1i

v

n

1ii

n

1i

v

n

1ii

n

1ii

veln

r1lneln

r1lnr1ln

i

i

n21

i

vvv0

n

1i

v0n

n210

n

1ii0n

e  ...e  e  S              

eS    S

)r(1....)r(1)r(1  S            

)r(1S    S

⋅⋅⋅⋅=

⋅=

+⋅⋅+⋅+⋅=

+⋅=

=

=

( ) ( )

( )

( ) ( )

( ) n210

n

1ii0n

n210

n

1ii0n

v...vvSln                    

vSln    Sln

)rln(1....)rln(1)rln(1Sln                      

)rln(1Sln    Sln

++++=

+=

+++++++=

++=

=

=

Page 29: Advanced financial models

Mean  Natural  Log  Return  Rates  29

Example:  v  is  distributed  uniformly  from  -­‐10%  to  +20%    Average  of  sums  of  vi  are  normal  (sum  of  n  rates)        

( )2n

1ii

s,uN~n

v∑=

Page 30: Advanced financial models

Simple  Future  Value  Factors    30

Example:  r  is  distributed  uniformly  from  -­‐10%  to  +20%  

)x,x(NL~)r(1fn1

n

1ii

n1

n ⎥⎦

⎤⎢⎣

⎡+= ∏

=

Page 31: Advanced financial models

Simple  Future  Value  Factors    31

( ) )x,x(NL~r1fn

1iin ∏

=

+=

Example:  r  is  distributed  uniformly  from  -­‐10%  to  +20%    f  is  distributed  lognormal  

Page 32: Advanced financial models

We  did  plot  a  histogram  of  natural  return  rates,  v,  for  the  SPX.    It  did  have  the  general  appearance  of  normality.    But  a  Levy  stable  seems  like  a  bemer  fit,  but  has  disadvantages.      However,  the  typical  assump-on  in  finance  is  that  v  is  normally  distributed  which  has  a  number  of  advantages.        One  advantage  is  that  the  loca-on  sta-s-cs  are  iden-cal  –  mode,  median,  and  mean  –  it’s  a  symmetric    

32

 v)r1(ln                      e)r1(

 v)r1(ln                    e)r1(v

iiv

ii

=+=+

=+=+

For  stocks  or  other  financial  assets,  so  far  there  has  been  no  assump-on  on  the  distribu-ons  of  v  and  r  other  than  being  IID/FV    But  the  rela-onship  between  r  and  v  has  been  defined  as    

( ) ( )2s,uN~r1lnv +=

Page 33: Advanced financial models

33

( ) ( )( ) ( ) ( )

( ) ( ) 1s,uNL1e~r

s,uNLe~r1

s,uN~r1lnv

2s,uN

2s,uN

2

2

2

−≡−

≡+

+=

Another  advantage  is  the  normal  distribu-on  scale  linearly  in  -me.    The  mean  driis  to  the  right  while  the  variance  increases.    

( )2sn,unN~vn ⋅⋅⋅

Another  advantage  is  the  normal  distribu-on  scale  linearly  in  -me.    The  mean  driis  to  the  right  while  the  variance  increases.      Yet  another  advantage  is  the  rela-on  between  the  normal  and  lognormal  distribu-ons  is  similar  to  the  rela-on  between  the  na-ral  log  rate  and  simple  rate    

Therefore  the  simple  rate,  r,  is  lognormal  under  assump-on  that  the  natural  log  rate  is  lognormal  

Page 34: Advanced financial models

34  

Page 35: Advanced financial models

35  

Page 36: Advanced financial models

Natural  Log  Rate  Autocorrelogram    36

Natural  log  daily  absolute  return  rates  for  SPX,  |v|  Daily  range      1950  –  2011  15471  days  

Page 37: Advanced financial models

Common  PDFs  in  Finance    

¨  Gaussian  /  Normal  ¤  IID  /  FV,  two  parameters    ¤  CLT  for  sums  of  IID/FV  random  

variables  ¤  Special  case  Levy  stable  and  ellip-c  

distribu-ons      

¨  Ellip-c    ¤  IID  /  FV,  two  parameters    ¤  unimodal,  no  skew,  no  kurtosis  other  

than  Gaussian  case  ¤  Linear  correla-on  defines  linear  

dependence  ¤  Used  in  MPT  and  CAPM  ¤  Includes    Gauss,  Cauchy,  t-­‐distr,  

Laplace,  symmetric  Levy  Stable    

¨  Lognormal  ¤  IID  /  FV  ¤  CLT  for  products  of  IID/FV  random  

variables  ¤  Posi-ve    ¤  Mode,  median,  mean  non-­‐coincident  

 

¨  Levy  stable  ¤  IID,  not  generally  FV,  4  parameters    

¤  Unimodal,  skew,  kurtosis  other  than  Gaussian  case  

¤  Central  limit  theorem  for  IID  and  stable  but  not  FV  random  variables  converges  to  a  Levy  stable  distribu-on    

¤  Includes  Gaussian,  Cauchy,  Levy  

37

Page 38: Advanced financial models

More  on  Covar  &  Corre  38

[ ] [ ] [ ] [ ]                                                    

yExEyxEy,xCov ⋅−⋅=

Page 39: Advanced financial models

Monthly  Idealized  PDFs  From  SPX  History    39

ln(1+r)  =  v  Normally  distributed    N(u,s2)        u  and  s2  are  normal  pdf  parameters  and  sta-s-cs  -­‐  mean  and  variance    

(1+r)=  ev    Lognormally  distributed      NL(u,s2)  

   Same  pdf  parameters,  but  different  mean  and  

variance        

Page 40: Advanced financial models

Monthly  Idealized  PDFs  From  SPX  History    40

Future  value  factor,  (1+r)  =  ev  lei  shiied  by  -­‐1,  r      

Page 41: Advanced financial models

Return  Rate  PDFs:    Sta-s-cs  Increase  With  Time  41  

-­‐75% -­‐50% -­‐25% 0% 25% 50% 75% 100% 125% 150% 175% 200% 225% 250% 275% 300%

Natural  log  rates  (v)  are  assumed  normal.    The  mean  and  variance  of  a  normal  distribu-on  scale  linear  in  -me    

The  future  value  factors  (1+r)  are  assumed  log  normally  distributed.    The  mean  and  variance  do  not  scale  linearly  in  -me.  

Page 42: Advanced financial models

42  

Future  Value  Factor:  1+r  =  ev

[ ] ( )  1eer1var22 ssu2 −⋅=+ +⋅

[ ] *

2

u2s

ueer1E ≡=+

+

[ ] uer1M =+

Page 43: Advanced financial models

43  

[ ] [ ] [ ] [ ]

( )

( )

( )

[ ]( ) ( )                                                                                                                                            

1er1E                      

1ee                        

1ee                          

ondistributi  normal  logof    Variance        1ee                        

ee                        

ee                      

xExEr1VarrVar

2

2

2

2

2

22

22

222

s2

s

2

2s

u

s2s

u2

ssu2

s2us2u2

2

2s

u2s2

u2

22

−⋅+=

−⋅⎟⎟⎟

⎜⎜⎜

⎛=

−⋅=

−=

−=

⎟⎟

⎜⎜

⎛−=

−=+=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

⎟⎟⎠

⎞⎜⎜⎝

⎛+⋅

+⋅

+⋅+⋅

+⋅

+⋅

Page 44: Advanced financial models

44

Page 45: Advanced financial models

-­‐1.25 -­‐1.00 -­‐0.75 -­‐0.50 -­‐0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Idealized  PDFs  for  36  Months    45  

Forecast  36  month  natural  log  rate  of  return    normally  distributed    N(36·∙u,  36·∙s2)      

Forecast  36  month  future  value  factor    lognormally  distributed    

Forecast  36  month  simple  rate  of  return      lognormally  distributed    

Page 46: Advanced financial models

Lognormal  Distribu-on  46

( ) ( )

[ ]

[ ] [ ][ ] ( )[ ]

[ ] ondistributi  normal  log  for  Median                            er1MM[x]

         ondistributi  lognormal  for  moment  2        er1E  xE

ondistributi  normal  log  for  (mean)  moment  1                          er1E  xE

ondistributi  normal  log  for  moment  k                                            exE  

       su,NL~        er1

u

nds2u222

st2s

u

th2sk

ukk

2v

2

2

22

=+=

=+=

=+=

=

=+

⋅+⋅

+

⋅+⋅

( ) ( )

( )

( ) ( )

( ) n210

n

1ii0n

n210

n

1ii0n

v...vvSln                    

vSln    Sln

)rln(1....)rln(1)rln(1Sln                      

)rln(1Sln    Sln

++++=

+=

+++++++=

++=

=

=

   SSS

r

)r1(SS

rate  return  Simple

1i

1iii

i1ii

−=

+⋅=

( ) ( )

)r1ln(          

SlnSlnSS

lnv

eSS

rate  return  log  Natural

i

1ii1i

ii

v1ii

i

+=

−=⎟⎟⎠

⎞⎜⎜⎝

⎛=

⋅=

−−

Page 47: Advanced financial models

Lognormal  Distribu-on  47

( ) ( )

[ ]

[ ] [ ][ ] ( )[ ]

[ ] ondistributi  normal  log  for  Median                            er1MM[x]

         ondistributi  lognormal  for  moment  2        er1E  xE

ondistributi  normal  log  for  (mean)  moment  1                          er1E  xE

ondistributi  normal  log  for  moment  k                                            exE  

       su,NL~        er1

u

nds2u222

st2s

u

th2sk

ukk

2v

2

2

22

=+=

=+=

=+=

=

=+

⋅+⋅

+

⋅+⋅

Page 48: Advanced financial models

GARCH  Time  Series    

¨  Similar  to  historic  vola-lity    ¤  Simple  condi-onal  dependence  in  the  second  moment  (vola-lity)    

n  Vola-lity  clustering    or  persistence    

¨  The  GARCH  vola-lity  has  three  contribu-ons  ¤  Long  term  average  vola-lity,  s2,  so  there’s  a  reversion  of  the  mean  ¤  Short  term  dependence  on  recent  square  of  return  rate,  v2      ¤  Short  term  dependence  on  recent  Garch  vola-lity,  h  

¨  To  Do  n  Is  there  a  probability  distribu-on?  Maybe  not      n  Plot  the  resul-ng  rates  and  look  for  fat  tails    n  So  it  looks  good  historically,  but  how  can  it  be  used  in  decision  making  ?    

48

Page 49: Advanced financial models

GARCH  Time  Series  

¨  The  GARCH(1,1)  vola-lity  model  with  the  natural  log  rate  process  model  vola-lity  has  three  contribu-ons  

49

( )

0βλ,α,1βαγ

β  ,α  ,γ      :weights

hβvαsβα1        

hβvαsγh

zh  uv  

1i21i

2

1i21i

2i

iii

>

=++

⋅+⋅+⋅−−=

⋅+⋅+⋅=

⋅+=

−−

−−

The    Gaussian  rate  process  is    vi  =  u  +  s  ·∙zi    s  is  the  (tradi-onal)  long  term  average  standard  devia-on  z  is  the  standard  normal  random  variable  h  is  the  Garch  variance    v  is  the  nat  log  return  rates      Example:  α = .85 , β = .1 , γ = .05

Page 50: Advanced financial models

GARCH  Time  Series  50

Single  simulated  GARCH(1,1)  vola-lity  for  15,461  days    

Page 51: Advanced financial models

GARCH  Time  Series  51

Page 52: Advanced financial models

GARCH  Time  Series  52

Page 53: Advanced financial models

Adendum:  Nat  Log  &  Exp  53  

( ) ( ) ( )

y+xyxyxyx

32

32

x

)xln(

e  =  e  e                    )(e  =  e

   ...31x

21x1x)xln(

)1x(                                                ...3x

2xx)x1ln(

x1)xln(

dxd

)yln()xln(yxln

)yln()xln()yxln(x)eln(

)0x(                                                                                                              xe

−−

+−

−−=

−≠−+−=+

=

−=⎟⎟⎠

⎞⎜⎜⎝

+=⋅

=

>=

Page 54: Advanced financial models

Addendum  54  

RatePeriodic  mean  

Annual  mean

Periodic  standard  deviation

Annual  standard  deviation

a α

g γ

vi u µ s σ

d  =  Var(r)  =  Var(1+r)

ri d δ

Page 55: Advanced financial models

Addendum  55  

       dwσdt2σμ              dln(S)2

* ⋅+⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−=( )

( )Tσ

Tσ.5rKSln

d

Tσ.5rKSln

d

2*0

2

2*0

1

⋅⋅−+⎟⎠⎞

⎜⎝⎛

=

⋅⋅++⎟⎠⎞

⎜⎝⎛

=

[ ] ( )  1eer1var22 ssu22 −⋅=+=δ +⋅

[ ] *

2

u2s

ueer1E ≡=+

+

( ) ( )[ ]

[ ]

tsz1ii

s,0N

1i

i

v1ii

2i

i1i-­‐i

eSS

e~SS

eSS

s,0N~v

 vSln    Sln

2

i

Δ⋅⋅−

⋅=

⋅=

+=

tszi

itsz

i1ii

i)rln(1v

ii

ii

i

ii

er

)r(1e

)r(1SS)r(1ee

tszv

)rln(1        v  

Δ⋅⋅

Δ⋅⋅

+

=

+=

+⋅=

+==

Δ⋅⋅=

+=

Page 56: Advanced financial models

Addendum    56  

( )[ ] [ ]

( )

( ) ( )

−+−=+

+Δ⋅⋅

+Δ⋅⋅

+Δ⋅⋅+==

−+−=+

++++=

=⋅δ⋅+

=+≡δ

⋅δ⋅+⋅=

⋅δ⋅==

Δ⋅⋅

Δ⋅⋅

3r

2rr)r1ln(

...6

tsz2

tsztsz1ee

3x

2xx)x1ln(

6x

2xx1e

e  ΔtZ1

rSDr)(1SD

 ΔtZ1SS

ΔtZ?r

3i

2i

ii

3

i

2

ii

tszv

32

32x

tszi

itt

ii

ii

1-­‐ii

Not  yet  ready  to  related  normal  and  lognormal  distribu-ons.    Need  lognormal  sta-s-cs  and  Ito’s  Lemma  Normal  

 Natural  log  rates    Natural  log  prices  

Lognormal    Simple  rates    Future  value  factors    Prices  

Page 57: Advanced financial models

Levy  Stable  Distribu-on  

¤  Bemer  fits  historical  rates  of  return  n  Can  model  Leptokurtosis  and  skew  

n  Constant  parameters  

n  Generalized  Central  Limit  Theorem    n  Normal  distribu-on  is  a  special  case    n  Problems  included  

n  Infinite  variance    n  Variance  cant  be  used  as  a  measure  of  risk  or  vola-lity    n  CAPM,  MPT,  B-­‐S    n  PDF  models  not  applicable    

n  Generally  no  analy-c  representa-on    ¤  To  Do    

n  Fit  data  to  a  distribu-on  and  graph    n  Why  does  FMH  without  IID  invoke  this  model    n  How  does  it  relate  to  power  law  model  (Has  an  α  >  2  ?)    

57

Page 58: Advanced financial models

Levy  Stable  Distribu-ons    58

[ ]( )( ) parameter  location  ,μ

parameter  scale  0,cparameter  skewness  1,1β

parameter  stability  (0,2]αParameters

∞∞−∈

∞∈

−∈

undefined  otherwise2,α  when  0  :kurtosis  excessundefined  otherwise2,α  when  0:skew

infinite  otherwise2,α  when  c2    :variance

undefined  otherwise  1,α  whenμ      :mean2

=

=

=⋅

>

Page 59: Advanced financial models

Levy  Stable  Distribu-ons    

¨  DJIA:  α  =  1.5958  β  =  -­‐.0995  µ  =  .0002  σ  =  .0056    ¤  (5/26/1896  –  1/16/2004  daily)  

¨  SPX  =  α  =  1.6735  β  =  .1064  µ  =  -­‐.0002  σ  =  .0049      ¤  (3/1/1950  –  5/27.2005  daily)  

         

¨  Only  three  sets  of  parameters  result  in  closed  form      ¤  Gaussian  

n  Actually  two  of  the  four  parameters  are  zero  (?)  or  reduced  to  different  2  ?    n  Finite  variance    

¤  Levy  ¤  Cauchy  

59

[ ]( )( ) parameter  location  ,μ

parameter  scale  0,cparameter  skewness  1,1β

parameter  stability  (0,2]αParameters

∞∞−∈

∞∈

−∈

Page 60: Advanced financial models

Power  Law    60

Page 61: Advanced financial models

Power  Law  Method  

¨  Coopera-on,  herding,  cri-cality    ¤  How  Nature  Works  –  Bak  ¤  Ubiquity  –  Buchanan    

¨  The  ubiquity  of  scale-­‐free  behavior  and  self-­‐organiza-on  in  Nature  led  Bak,  Tang  and  Wiesenfeld  (BTW)  to  coin  the  term  Self-­‐Organized  Cri-cality  (SOC)  to  explain  the  emergence  of  complexity  in  dynamical  systems  with  many  interac-ng  degrees  of  freedom  without  the  presence  of  any  external  agent  ;  SOC  was  devised  to  be  a  sort  of  supergeneral  theory  of  complexity.  

61

Page 62: Advanced financial models

Power  Law    

¨  Confusion  based  on  Fractal  Market  Hypothesis:    Is  it  stable  or  power  law??  ¨  Hurst  soiware  shows  a  random  series  to  be  persistent  ??    

¨  Hurst  exponent  ¤  0.5  is  Brownian    t1/2        √t  

¤  0  <  H  <  0.5  :  an--­‐persistent,  mean  rever-ng    ¤  .5  <  H  ≤  1.0    :  persistent    

¨  Stability  parameter  ¤  α  =  1  /  H,    example  Gaussian:  α =  2,  H  =  .5  

¨  Correla-on  (?)    C  =  22H-­‐1  –  1    

¨  Example  ¤  SPX:  3/1/1950  –  5/27/2005  daily  

n     α  =  1.6735  β  =  .1064  µ  =  -­‐.0002  σ  =  .0049    n   H  =  .5976        C=  .1448  

¤  SPX:    1/3/1950  –  6/24/2011    daily    n  H=  .562    α=  1.779        C=  .090  

62

Page 63: Advanced financial models

Reference:  Nat  Log  &  Exp  63  

)1x(  ...3x

2xx)x1ln(

x1)xln(

dxd

)yln()xln(yx

ln

)yln()xln()yxln(x)eln(

)0x(                                      xe

32

x

)xln(

−≠−+−=+

=

−=⎟⎟⎠

⎞⎜⎜⎝

+=⋅

=

>= ( ) ( ) ( )

++++=

−−

+−

−−=

6x

2xx1e

e  =  e  e                    )(e  =  e

   ...31x

21x1x)xln(

32x

y+xyxyxyx

32

RatePeriodic  mean  

Annual  mean

Annual  standard  deviation

Period  standard  deviation

Rate  pdf

a α

g γ

vi u µ s σ Normal

d  =  SD(r)  =  SD(1+r)

ri d δ Log  normal

Page 64: Advanced financial models

Related  Concepts    

¨  Expected  Rate  of  Return  On  Equity  ¤  CAPM  requires  that  the  return  rate  is  normally  distributed  with  a  trend    ¤  Ordinary  least  squares  

       

¨  Theore-cal  basis  for  r  being  an  independent  random  variable  ¤  Efficient  Market  Hypothesis  

¨  Theore-cal  basis  for  r  being  an  independent  random  variable  with  a  trend  ¤  Ra-onal  Market  Hypothesis        

64

( ) ( )( )

( )FMFEE

iE1ii

E1ii

rrβr  k    r    zsr1SS

                 r1SSE

−⋅+==

⋅++⋅=

+⋅=

Page 65: Advanced financial models

Geometric  Brownian  Mo-on  65

( ) ( )[ ]

[ ]

tsz1ii

s,0N

1i

i

v1ii

2i

i1i-­‐i

eSS

e~SS

eSS

s,0N~v

 vSln    Sln

2

i

Δ⋅⋅−

⋅=

⋅=

+=

tszi

itsz

i1ii

i)rln(1v

ii

ii

i

ii

er

)r(1e

)r(1SS)r(1ee

tszv

)rln(1        v  

Δ⋅⋅

Δ⋅⋅

+

=

+=

+⋅=

+==

Δ⋅⋅=

+=

       dwσdt2σμ              dln(S)2

* ⋅+⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−=( )

( )Tσ

Tσ.5rKSln

d

Tσ.5rKSln

d

2*0

2

2*0

1

⋅⋅−+⎟⎠⎞

⎜⎝⎛

=

⋅⋅++⎟⎠⎞

⎜⎝⎛

=

[ ] ( )  1eer1var22 ssu22 −⋅=+=δ +⋅

[ ] *

2

u2s

ueer1E ≡=+

+

Page 66: Advanced financial models

Geometric  Brownian  Mo-on  66

( )[ ] [ ]

( )

( ) ( )...

6tsz

2tsztsz1ee

3x

2xx)x1ln(

6x

2xx1e

e  ΔtZ1

rSDr)(1SD

 ΔtZ1SS

ΔtZ?r

3

i

2

ii

tszv

32

32x

tszi

itt

ii

ii

1-­‐ii

+Δ⋅⋅

+Δ⋅⋅

+Δ⋅⋅+==

−+−=+

++++=

=⋅δ⋅+

=+≡δ

⋅δ⋅+⋅=

⋅δ⋅==

Δ⋅⋅

Δ⋅⋅

Not  yet  ready  to  related  normal  and  lognormal  distribu-ons.    Need  lognormal  sta-s-cs  and  Ito’s  Lemma  Normal  

 Natural  log  rates    Natural  log  prices  

Lognormal    Simple  rates    Future  value  factors    Prices  

u,  s        µ, σ r,  d        α, δ g,              γ,

Page 67: Advanced financial models

Alterna-ves    

¨  Fat  Tail  Models    ¤  Power  law  not  exponen-al  tails    ¤  Leptokurtosis,  finite  variance  ?    ¤  Examples    

n  Student  t  –  no  skew    n  Levy  stable  –  skew    

¨  Non  IID  Models  –  non-­‐sta-onary  process    ¤  Correla-on  in  rate  vola-lity,  but  not  in  rate,  so  s-ll  ‘unpredictable’    

ARCH  models    ¤  Used  with  normal  or  other  distribu-on  

67

Page 68: Advanced financial models

Addendum  68

( ) ( )

( ) ( ) ( )SlnSlnSln-­‐Sln

eSS

Δtσz        Δt2σμ        1SS

Δtσz        ΔtμSlnSln

1-­‐ii

it

2

ii

i1-­‐ii

i1-­‐ii

tt

Δtσz    Δt2σμ

1tt

t

2

tt

ttt

Δ≠Δ=

=

⎥⎦

⎤⎢⎣

⎡⋅⋅+⋅⎟⎟

⎞⎜⎜⎝

⎛++⋅=

⋅⋅+⋅+=

⋅⋅+⋅⎟⎟⎠

⎞⎜⎜⎝

⎛+

⋅−

( ) ( ) nszunSlnSln 1i-­‐1-­‐ni ⋅⋅+⋅+=+( ) ( )[ ]

[ ]

tsztu1ii

s,uN

1i

i

v1ii

2i

i1i-­‐i

eSS

e~SS

eSS

s,uN~v

 vSln    Sln

2

i

Δ⋅⋅+⋅−

⋅=

⋅=

+=

Page 69: Advanced financial models

69

[ ][ ]

[ ]

[ ]2εii1i-­‐i

2εii1i-­‐i

1i-­‐i

2εii1i-­‐i

s0,N~ε            εSS

s0,IID~ε            εSS

SSE                                                    s0,~ε            εSS

+=

+=

=

+=

( ) ( )[ ]

( ) ( )

( )[ ] ( )

Δtσz  1tt

tt

tt

1i-­‐1-­‐ni

i

ii

1ii

1ii

eSS

SlnSlnE

tszSlnSln

1,0N~z                                                      nszSlnSln

⋅⋅⋅−

+

=

=

Δ⋅⋅+=

⋅⋅+=

Generally Rate

Periodic  mean  

Annual  mean

Annual  standard  deviation

Period  standard  deviation

Rate  pdf

a α

g γ

v u µ s σ Normal

d  =  SD(r)  =  SD(1+r)

r d δ Log  normal

Page 70: Advanced financial models

70

[ ][ ]

tΔBzSS

 tΔB    ,0N~ε                                                          

tttΔ                            tΔ    ,0N~ε            εSS

i1-­‐ii

i

ii1-­‐ii

ttt

2t

1i-­‐itttt

⋅⋅+=

−=+=

[ ]

[ ]

mszum1i1mi

sm,umNm

1i

v

2m

1ii

i

2i

eSS

e~e

sm,umN~v

   increment  d,multiperio

⋅⋅+⋅−−+

⋅⋅

=

=

⋅=

⋅⋅

∑[ ] [ ]

it

1i

i

1ii

eS          

eSS

tzt,N~sm,umN~

t

tzttt

tt

22t

µ

Δ⋅σ⋅+Δ⋅µ

⋅=

⋅=

Δ⋅σ⋅+Δ⋅µ=µ

σµ⋅⋅µ

( )ΔtσzΔtμ

SS

ΔtσzΔtμ1SS

t*

i*

tt 1-­‐ii

⋅⋅+⋅=Δ

⋅⋅+⋅+⋅=

ΔtzΔw

tttΔ

SSSΔ

1i-­‐i

tt 1-­‐ii

⋅=

−=

−=

Page 71: Advanced financial models

71

( )

1)r(1g

1fg

)r(1f

fSS

)r(1    SS

n1

n

1iin

n1

nn

n

1iin

n0

n

n

1ii

0

n

−⎟⎟⎠

⎞⎜⎜⎝

⎛+=

−=

+=

=

+=

=

=

=

ns

u

)r(1lns

vSSln

nn

n

1iin

n

1ii

0

n

=

+=

=⎟⎟⎠

⎞⎜⎜⎝

=

=

Page 72: Advanced financial models

Levy  Stable  Distribu-ons    72

Page 73: Advanced financial models

Levy  Stable  Distribu-ons    73

Page 74: Advanced financial models

74

Page 75: Advanced financial models

Power  Law    

¨  Power  law  with  rescaled  range    ¨  Many  natural  phenomena  modeled    

with  power  law  ¨  Nonlinear  feedback    ¨  Hurst  exponent  is  the  slope    ¨  Fractal  and  self  similar    ¨  Complexity    ¨  How  can  it  be  used  in  decision    

making?    ¨  The  rescaled  range  follows  a    

power  law  

75

Page 76: Advanced financial models

76

[ ][ ]

tΔBzSS

 tΔB    ,0N~ε                                                          

tttΔ                            tΔ    ,0N~ε            εSS

i1-­‐ii

i

ii1-­‐ii

ttt

2t

1i-­‐itttt

⋅⋅+=

−=+=

Rate based process is Geometric Brownian Motion (GBM)

[ ]

[ ]

mszum1i1mi

sm,umNm

1i

v

2m

1ii

i

2i

eSS

e~e

sm,umN~v

   increment  d,multiperio

⋅⋅+⋅−−+

⋅⋅

=

=

⋅=

⋅⋅

∑[ ] [ ]

it

1i

i

1ii

eS          

eSS

tzt,N~sm,umN~

t

tzttt

tt

22t

µ

Δ⋅σ⋅+Δ⋅µ

⋅=

⋅=

Δ⋅σ⋅+Δ⋅µ=µ

σµ⋅⋅µ

( )ΔtσzΔtμ

SS

ΔtσzΔtμ1SS

t*

i*

tt 1-­‐ii

⋅⋅+⋅=Δ

⋅⋅+⋅+⋅=

ΔtzΔw

tttΔ

SSSΔ

1i-­‐i

tt 1-­‐ii

⋅=

−=

−=

Page 77: Advanced financial models

Appendix:  Exponen-als  and  Natural  Logs    77

( )

( )dxdy

y1

dxln(y)d

edxdy

dxed yy

⋅=

⋅=

+++++=

⎟⎠⎞

⎜⎝⎛ +=

∞→

!4x

!3x

!2xx1e

n11lime

432x

n

n

xlndxX1

ea1dxe xaxa

=

⋅=

∫ ⋅⋅

Page 78: Advanced financial models

Appendix:  Exponen-als  and  Natural  Logs    78

Page 79: Advanced financial models

Price  as  a  Stochas-c  Diff  Eqn    79

( )( )1eSSd

1eSS

eSSS

eSSS

eSS

eSS

dwtd

tztt

tzttt

tzt

t

t

tzt

t

t

tzttt

i

1i

i

1i1i

i

1i

1i

i

1i

i

i

1ii

−⋅=

−⋅=Δ

⋅=+Δ

=+Δ

=

⋅=

⋅σ+⋅µ

Δ⋅σ⋅+Δ⋅µ

Δ⋅σ⋅+Δ⋅µ

Δ⋅σ⋅+Δ⋅µ

Δ⋅σ⋅+Δ⋅µ

Δ⋅σ⋅+Δ⋅µ

−−

( )SfF =

Page 80: Advanced financial models

80

( )[ ] ( )[ ] ...  1eSSF

211eS

SFdt

tFdF

...  dSSF

21dS

SFdt

tFdF

2dwtd2

2dwtd

22

2

+−⋅∂

∂⋅+−⋅

∂+

∂=

+∂

∂⋅+

∂+

∂=

⋅σ+⋅µ⋅σ+⋅µ

( )

( )

( )dxdy

y1

dxdy

y1

dxln(y)d

edxyd  

dxed

edxdy

dxed

2

y2

2

2

y2

yy

⋅=⋅=

⋅=

⋅=

dxdS

S1

dxdS

S1

dx  d

dxdS

S1

dxln(S)  d

2 ⋅−=⎟⎠⎞

⎜⎝⎛ ⋅

⋅=

( )

n0

nu0

tμ0t

*

*

n*

nnu

n0

nu0

)a1(SeSeS]E[S

)a1ln(u

)a1ln(nn1u

)a1(lnnu

)a1(e

)a1(SeS

**

*

*

+⋅=⋅=⋅=

+=

+⋅⋅=

+=⋅

+=

+⋅=⋅

⋅⋅

Page 81: Advanced financial models

¨  Actually,  they  [power  laws]  aren’t  special  at  all.  They  can  arise  as  natural  consequences  of  aggrega-on  of  high  variance  data.  You  know  from  sta-s-cs  that  the  Central  Limit  Theorem  says  distribu-ons  of  data  with  limited  variability  tend  to  follow  the  Normal  (bell-­‐shaped,  or  Gaussian)  curve.  There  is  a  less  well-­‐known  version  of  the  theorem  that  shows  aggrega-on  of  high  (or  infinite)  variance  data  leads  to  power  laws.  Thus,  the  bell  curve  is  normal  for  low-­‐variance  data  and  the  power  law  curve  is  normal  for  high-­‐variance  data.  In  many  cases,  I  don’t  think  anything  deeper  than  that  is  going  on.  

81