advanced digital calibration techniques for data convertersyxc101000/courses/7327/slides/digital...

62
12/3/2014 1 Erik Jonsson School of Engineering & Computer Science Advanced Digital Calibration Techniques for Data Converters Yun Chiu Erik Jonsson Distinguished Professor University of Texas at Dallas EECT 7326, Fall 2014 -2- © Y. Chiu Presentation Outline Principles of Multistep A/D Conversion Architectural Redundancy Error Mechanisms and Digital-Domain Calibration Error-Parameter Identification PRBS Test-Signal Injection (sub-ADC, sub-DAC, input) Two-ADC Equalization (ref.-ADC, split-ADC, ODC) Energy Efficiency and Trend Summary

Upload: buitram

Post on 01-Feb-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

1

Erik Jonsson School of Engineering & Computer Science

Advanced Digital Calibration Techniques for Data Converters

Yun Chiu

Erik Jonsson Distinguished Professor

University of Texas at Dallas

EECT 7326, Fall 2014 - 2 - © Y. Chiu

Presentation Outline

• Principles of Multistep A/D Conversion

• Architectural Redundancy

• Error Mechanisms and Digital-Domain Calibration

• Error-Parameter Identification

– PRBS Test-Signal Injection (sub-ADC, sub-DAC, input)

– Two-ADC Equalization (ref.-ADC, split-ADC, ODC)

• Energy Efficiency and Trend

• Summary

Page 2: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

2

EECT 7326, Fall 2014 - 3 - © Y. Chiu

Presentation Outline

• Principles of Multistep A/D Conversion

• Architectural Redundancy

• Error Mechanisms and Digital-Domain Calibration

• Error-Parameter Identification

– PRBS Test-Signal Injection (sub-ADC, sub-DAC, input)

– Two-ADC Equalization (ref.-ADC, split-ADC, ODC)

• Energy Efficiency and Trend

• Summary

EECT 7326, Fall 2014 - 4 - © Y. Chiu

···

What is A/D Conversion?

,

s

in in sNFSoutN

FSt=nT

V t V nTVLSB = = D n = = 2

2 V

• Quantization = division + normalization + truncation

• VFS is the Full-Scale range of ADC determined by Vref.

CT, CA DT, DA

Page 3: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

3

EECT 7326, Fall 2014 - 5 - © Y. Chiu

Quantization Error (or Noise)

∆ ∆

- ε2 2

Dout

0

Vin

∆ 2∆ 3∆

1

3

5

0

2

4

6

7

VFS

2

-∆-2∆-3∆

VFS

2

"Random" quantization error is usually regarded as noise.

N = 3

∆ /2 2

2 2ε

-∆/2

1 ∆σ = ε dε =

∆ 12

0-∆/2 ∆/2ε

1/∆

• N is large

• Vin >> ∆, Vin is active

• ε is uniformly distributed

Ref. [1]

EECT 7326, Fall 2014 - 6 - © Y. Chiu

Flash ADC – Exhaustive Search

• Massive parallelism

• Very fast

• Reference ladder

consists of 2N equal

size resistors

• Input is compared

to 2N-1 reference

voltages

• Throughput = fs

• Complexity = 2N

… …

Enc

oder

VFS Vi

fs

Strobe

Dout

2N-1comparators

Do 0

Vi

2∆

5∆

6∆

7∆

VFS

……

0

1

5

6

7

• Flash ADC is rarely used for beyond 6-8 bits due to complexity.

Page 4: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

4

EECT 7326, Fall 2014 - 7 - © Y. Chiu

Long Division (Decimal Case)

183

4 ) 735

4 (1×4=4)

33 (7−4=3)

32 (8×4=32)

15 (33−32=1)

12 (3×4=12)

3 (15−12=3)

1

400 ) 735

400

335

8

40 ) 335

320

15

3

4 ) 15

12

3

DivisorDividend Quotient Remainder

735 4 = 183 r 3

Step 1:

1st bit

Step 2:

2nd bit

Step 3:

3rd bit

EECT 7326, Fall 2014 - 8 - © Y. Chiu

Quantization (Binary Case)

Vin LSB QNDo

735 125 = 1,0,1 r 110

1

500 ) 735

500

235

0

250 ) 235

0

235

N = 3, FS = 1000, ∆ = 1000/8 = 125, Vin = 735

ino

VD =

• The procedure is also known as "binary search".

Step 1:

1st bit

Step 2:

2nd bit

Step 3:

3rd bit

Page 5: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

5

EECT 7326, Fall 2014 - 9 - © Y. Chiu

Successive-Approximation (SAR) ADC

SAR = 1 comparator + 1 DAC + digital logic

EECT 7326, Fall 2014 - 10 - © Y. Chiu

Sam

plin

g

......

Binary Search – MSB Cycle

N = 3, FS = 1 V, ∆ = 0.125 V, Vin = 0.735 V0.735V

0.5V

VX = Vi – 0.5V;

if VX > 0, MSB = 1, keep current VX VX;

otherwise, MSB = 0, restore VX VX + 0.5V;

Page 6: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

6

EECT 7326, Fall 2014 - 11 - © Y. Chiu

Sam

plin

g

......

Binary Search – MSB-1 Cycle

N = 3, FS = 1 V, ∆ = 0.125 V, Vin = 0.735 V0.235V

0.25V

VX = VX – 0.25V;

if VX > 0, MSB-1 = 1, keep current VX VX;

otherwise, MSB-1 = 0, restore VX VX + 0.25V;

EECT 7326, Fall 2014 - 12 - © Y. Chiu

Sam

plin

g

......

Binary Search – MSB-2 Cycle

N = 3, FS = 1 V, ∆ = 0.125 V, Vin = 0.735 V0.235V

0.125V

VX = VX – 0.125V;

if VX > 0, MSB-2 = 1, keep current VX VX;

otherwise, MSB-2 = 0, restore VX VX + 0.125V;

Page 7: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

7

EECT 7326, Fall 2014 - 13 - © Y. Chiu

Quantization (Binary) Modified…

Vin LSB QNDo

735 125 = 1,0,1 r 110

N = 3, FS = 1000, ∆ = 1000/8 = 125, Vin = 735

ino

VD =

Step 1:

1st bit

Step 2:

2nd bit

Step 3:

3rd bit

• Always use the same divisor but amplify the residue.

1

500 ) 940

500

440

EECT 7326, Fall 2014 - 14 - © Y. Chiu

Algorithmic (Cyclic) ADC

• Fixed comparison threshold (VFS/2) + 1-b DAC + Residue Amplifier

• Modified "Binary Search"

Page 8: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

8

EECT 7326, Fall 2014 - 15 - © Y. Chiu

Bit Cycles

• Comparison if VX < VFS/2, then bj = 0; otherwise, bj = 1

• Residue generation Vo = 2·(VX - bj·VFS/2)

VX

Vo

VFS/20 VFS

VFSbj=0 bj=1

EECT 7326, Fall 2014 - 16 - © Y. Chiu

Pipelined ADC

• Algorithmic ADC loop unrolled pipeline enables high throughput

Page 9: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

9

EECT 7326, Fall 2014 - 17 - © Y. Chiu

Presentation Outline

• Principles of Multistep A/D Conversion

• Architectural Redundancy

• Error Mechanisms and Digital-Domain Calibration

• Error-Parameter Identification

– PRBS Test-Signal Injection (sub-ADC, sub-DAC, input)

– Two-ADC Equalization (ref.-ADC, split-ADC, ODC)

• Energy Efficiency and Trend

• Summary

EECT 7326, Fall 2014 - 18 - © Y. Chiu

What happens with circuit offsets?

Ideal RA offset CMP offset

Nearly zero tolerance on circuit offset errors!!

Vi

Vo

VFS/20 VFS

VFSb=0 b=1

Vi

Vo

VFS/20 VFS

VFSb=0 b=1

Vi

Vo

VFS/20 VFS

VFSb=0 b=1Vos

Vos

Vi

Do

VFS/20 VFS Vi

Do

VFS/20 VFS Vi

Do

VFS/20 VFS

Page 10: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

10

EECT 7326, Fall 2014 - 19 - © Y. Chiu

Over-range & Under-range Comparators

Vi

Vo

VFS/20 VFS

VFSbj=0 bj=1

VFS/2

Bj+1=0

Bj+1=1

Vi

Do

VFS/20 VFS00

01

10

11

Vi

Vo

VFS/20 VFS

VFSbj=0 bj=1

VFS/2

Bj+1=0

Bj+1=1

Bj+1=-1

Bj+1=2

Vi

Do

VFS/20 VFS00

01

10

11

1 CMP 3 CMPs

EECT 7326, Fall 2014 - 20 - © Y. Chiu

Redundancy (a.k.a. DEC or RSD)

Original w/ Redundancy

• 4-level (2-bit) DAC required instead of 2-level (1-bit) DAC

Page 11: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

11

EECT 7326, Fall 2014 - 21 - © Y. Chiu

Vi

Vo

VFS/20 VFS

VFSbj=0 bj=1

VFS/2

Bj+1=0

Bj+1=1

Bj+1=-1

Bj+1=2

Vi

Do

VFS/20 VFS00

01

10

11

Complementary Analog-Digital Information

• Max tolerance of comparator offset is ±VFS/4 simple comparators

• Key to understand redundancy:

FS oji

VV = +

2

Vb

2

1 bit

1 FS

o

j

Vb = 0

2

EECT 7326, Fall 2014 - 22 - © Y. Chiu

From 1-bit to 1.5-bit Architecture

1-bitNo redundancy

½ bit

½ FS

oVb = 0

2

Page 12: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

12

EECT 7326, Fall 2014 - 23 - © Y. Chiu

oVb = 0

2

From 1-bit to 1.5-bit Architecture

½ bit

½ FS

oVb = 0

2

½ bit

½ FS

EECT 7326, Fall 2014 - 24 - © Y. Chiu

From 1-bit to 1.5-bit Architecture

• Center the two thresholds optimal symmetric offset tolerance

oVb = 0

2

oV

b = 02

Page 13: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

13

EECT 7326, Fall 2014 - 25 - © Y. Chiu

The 1.5-bit Architecture

• 3 decision levels

→ ENOB = log23 = 1.58

• Max tolerance of comparator offset is ±VR/4

• An implementation of the Sweeny-Robertson-Tocher(SRT) division principle

• The conversion accuracy relies on the loop-gain error, i.e., the gain error and nonlinearity

• A 3-level DAC is required

Can the same technique be applied to SAR?

o i RV = 2 V - b -1 V

Ref. [2]

EECT 7326, Fall 2014 - 26 - © Y. Chiu

1.5-bit Multiplier DAC (MDAC)

• 2X gain + 3-level DAC + subtraction all integrated

• Can be generalized to n.5-bit architectures

R1

2i

1

21o V

C

C1bV

C

CCV

o i RV = 2 V - b -1 V

Page 14: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

14

EECT 7326, Fall 2014 - 27 - © Y. Chiu

2.5-bit Multiplier DAC (MDAC)

• 4X gain + 7-level DAC + subtraction all integrated

o i RV = 4 V - b -3 V

b=1 b=3 b=5b=0 b=2 b=4 b=6

Vi

Vo

-5VR/8 VR/8

VR/2

-VR/2

0

-3VR/8 -VR/8 5VR/83VR/8-VR VR

VR

Vo

Vi

0

-VR

VR

Decoder

Φ1e

A

Φ2

VR6

VR1

6 CMP’s

Φ1 C1

Φ1 C2

Φ2

C3

C4

Φ1

Φ1

Φ2

Φ2

b

EECT 7326, Fall 2014 - 28 - © Y. Chiu

Residue Transfer Function (2.5b MDAC)

• Only half of the internal dynamic range is used under ideal condition!

overflowrange

underflowrange

normalrange

Page 15: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

15

EECT 7326, Fall 2014 - 29 - © Y. Chiu

With comparator offset

overflowrange

underflowrange

normalrange

EECT 7326, Fall 2014 - 30 - © Y. Chiu

Internal Redundancy

• Comparator and amplifier offsets tolerated by internal redundancy.

overflowrange

underflowrange

normalrange

Page 16: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

16

EECT 7326, Fall 2014 - 31 - © Y. Chiu

How does Redundancy work in SAR?

• Binary search is efficient, but displays zero error tolerance.

EECT 7326, Fall 2014 - 32 - © Y. Chiu

+FS

t

0

-FS

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

Vin

t

VX

0 0

1/2

1/4 3/8

1

0

1

1

Binary Search Revisited

• When everything is ideal…

Page 17: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

17

EECT 7326, Fall 2014 - 33 - © Y. Chiu

+FS

t

0

-FS

1111

1110

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

Vin

t

VX

0

1

0

1

1

1

0

0

1101

1/2

3/45/8

0

1/4 3/8

Binary Search w/ Dynamic Error

• Settling error, comparator hysteresis etc.

EECT 7326, Fall 2014 - 34 - © Y. Chiu

Overlapping Search Ranges

• Results indicate decision trajectory, no longer binary-coded.

+FS

t

0

-FS

1

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

Vin

t

VX

1

10

0

01

1

00

1

Page 18: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

18

EECT 7326, Fall 2014 - 35 - © Y. Chiu

Redundancy of Sub-binary Search

• Dynamic errors absorbed by redundancy.

+FS

t

0 0

-FS

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

Vin

1

1

0

0 1

0

1

1 1

t

VX

11

00

1

1

0

1

EECT 7326, Fall 2014 - 36 - © Y. Chiu

SAR Redundancy

• Redundant conversion consumes more bit cycles, but

can recover intermediate decision errors.

• Redundancy can be exploited to expedite conversion

progress or to save power.

• DAC levels (matching) still need to be accurate.

(will come back to this later…)

Page 19: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

19

EECT 7326, Fall 2014 - 37 - © Y. Chiu

Presentation Outline

• Principles of Multistep A/D Conversion

• Architectural Redundancy

• Error Mechanisms and Digital-Domain Calibration

• Error-Parameter Identification

– PRBS Test-Signal Injection (sub-ADC, sub-DAC, input)

– Two-ADC Equalization (ref.-ADC, split-ADC, ODC)

• Energy Efficiency and Trend

• Summary

EECT 7326, Fall 2014 - 38 - © Y. Chiu

Pipelined ADC Errors (I)

• Capacitor mismatch

• Op-amp finite-gain error and nonlinearity

• Charge injection and clock feed-through (S/H)

• Settling error

o i RV = 2 V - d V

1 2 2So i/H R

1 2 1 21 1

o o

C C Ct f V

C C C CC C

VA

V

A

V

V

d

1.5b MDAC

Page 20: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

20

EECT 7326, Fall 2014 - 39 - © Y. Chiu

Pipelined ADC Errors (II)

dj -3 -2 -1 0 1 2 3

dj,1 -1 -1 -1 -1 -1 0 1

dj,2 -1 -1 -1 0 1 1 1

dj,3 -1 0 1 1 1 1 1

DAC bit-encoding scheme

dj = dj,1 + dj,2 + dj,3

...

43j,

j+1

j r1 j,2 j,3 j2

11

+

VV V

C + C ACC C+ += +

C C CVd d

Cd

2.5b MDAC

EECT 7326, Fall 2014 - 40 - © Y. Chiu

RA Gain Error and Nonlinearity

-VR/4 VR/4

0

VR/2

-VR/2

Vi

-VR

VR

VR

b=0 b=2b=1

Vo

0Vi-VR VR

Do

Page 21: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

21

EECT 7326, Fall 2014 - 41 - © Y. Chiu

RA Gain Error and Nonlinearity

-VR/4 VR/4

0

VR/2

-VR/2

Vi

-VR

VR

VR

b=0 b=2b=1

Vo

0Vi-VR VR

Do

• Raw accuracy is usually limited to 10-12 bits w/o error correction.

EECT 7326, Fall 2014 - 42 - © Y. Chiu

-VR/4 VR/4

0

VR/2

-VR/2

Vi

-VR

VR

VR

b=0 b=2b=1

Vo

RA Gain Error and Nonlinearity

• Raw accuracy is usually limited to 10-12 bits w/o error correction.

0Vi-VR VR

Do

Page 22: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

22

EECT 7326, Fall 2014 - 43 - © Y. Chiu

Digital

Computation

The Basic Idea of Digital Calibration

ADC

UnknownSystem

SystemInversion

1o

2i

V 1- 1

βA-

C

CV

• match C1 and C2

• make βA very large

Digital soln:

• any constant C1 and C2

• any constant A is fine

Analog soln:e.g., SC amplifier:

Calibration = efficient digital processing to undo certain analog errors

EECT 7326, Fall 2014 - 44 - © Y. Chiu

Two Essential Components of Dig. Cal.

1. A digital-domain technique (e.g. equation) to recover accurate analog information from raw digital output– Treat analog precision or linearity only

– Neglect small consequence on SNR

2. An algorithm to identify the error parameters– Foreground vs. Background techniques

1

2CL

1C

CA 1-

βA- = #

Page 23: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

23

EECT 7326, Fall 2014 - 45 - © Y. Chiu

Linear MDAC Correction

j,1 j,2 j,3j r j+

31 21

4CC C C + C A+ += +

C C CV V Vd d

Cd

ideal residue function

j,1 j,2 j,3

3j j+1

r

1 2

r

4CC C C + C A+ += +

C C Cd d

V V

V V Cd

j,1 j,2 j,j 3 j

j,

,1 j,2 j,3j j+1

j,k j+k jk

1

β + β + β= + α

=

d d dD D

β D+ αd

Digital representation:

j jj,1 j,2 j,

+1 j+1

r r

3 jr

V V V

V V

1 1 1 1+ += + = +

Vd d

4 4d d

4 4

Analog residue function:

Normalized residue function:

error parameters: { αj, βj,k }

EECT 7326, Fall 2014 - 46 - © Y. Chiu

Bit-Weight (Radix) Correction

...

...

1 in

j j j+1 j+1 j+2 j+2 j+1 j j-1

j j+1 j+j j+1 j+22

D =D

=...+ d β + d β + d β +... α α α

=...+d +d +d +γ γ γ weighted sum of ALL bits!(bit weight or radix error)

segmental offset

For 1-b or 1.5-b MDAC:

...

...

1 in

j j+1 j+2

j j+1 j+j j+1 j+2

j j j+1 j+1 j+2 j+2

2

j j+1 j+2

j j+1 j+2

D =D

d d d=...+ + + +

2 2 2d + d + d +

=.

1+∆ 1+∆ 1+∆

d ∆ d ∆ d ∆..+ + + +

2 2 2

Alternatively,

Page 24: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

24

EECT 7326, Fall 2014 - 47 - © Y. Chiu

Bit-Weight (Radix) Correction

Vi-VR VR

Do

Vi-VR VR

Do

Vi-VR VR

Do

radix error:needs multiplication

segmental offset:addition only

d1=-1 d1=1d1=0 d1=-1 d1=1d1=0 d1=-1 d1=1d1=0

1.5b MDACresidue nonlinearity

EECT 7326, Fall 2014 - 48 - © Y. Chiu

Nonlinear MDAC Correction

43j,

j+1

j r1 j,2 j,3 j2

11

+

VV V

C + C ACC C+ += +

C C CVd d

Cd

431 2j,1 j,2 j,3

j+1j j+1

r r

C + C ACd d

C C+ += +

C

VV V

V Vd

C C C

j,1 j,2 j,3j,1 j,2 j,3j j+1

jm

j,k,k j+1 j,mk m

d β + β + β= + f

β + α

d dD D

d D

Digital representation:

Analog representation:

Normalized analog representation:

error parameters: { αj,m, βj,k }

Next problem: how to determine {αj,m, βj,k} precisely?

Page 25: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

25

EECT 7326, Fall 2014 - 49 - © Y. Chiu

Let’s try to push this…

-70 dBFS

"Give me a place to stand on, and I will move the Earth…"

Corrected w/ 9th-order power series

LDrawn

0.15μm

VDD

1.2V

Correcting nonlinearity:

Archimedes, 200 BC

EECT 7326, Fall 2014 - 50 - © Y. Chiu

On nonlinear correction

• Memory-less polynomial computation is efficient– A few coefficients fits/predicts full-range nonlinearity

(requiring digital multipliers and adders mostly)

– Caveat 1: coefficients depend on signal statistics!

– Caveat 2: coefficients depend on PVT variations!

• Piecewise-linear or lookup table can be useful– Memory, digital power, and cost

– Complexity and convergence time (esp. tracking speed in background mode)

Solution needs to be practical after all…

Page 26: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

26

EECT 7326, Fall 2014 - 51 - © Y. Chiu

0 3/8 1/8 9/32 3/8

10 6 3.5 2 1

1.6 1.67 1.71 1.75 2

+FS

t

-FS

Vin

SAR Redundancy Forms (I)

• Unit-Element DAC

• Best matching

• Arbitrary decision threshold arbitrary radix

• Redundancy @ each bit

• DAC resolution slightly higher

• Binary-to-Thermo encoder (slow)

Radix:Ref. [3]

EECT 7326, Fall 2014 - 52 - © Y. Chiu

0 1/2 1/4 1/2 3/8

8 4 4 2 1

2 2 1 2 2

+FS

t

-FS

Vin

SAR Redundancy Forms (II)

• Binary DAC

• Good matching

• Periodic redundancy non-uniform radix

• Redundancy @ selective bits

• SAR logic slightly more complex

• Can also use UE DAC

Radix:Ref. [4]

Page 27: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

27

EECT 7326, Fall 2014 - 53 - © Y. Chiu

0 ... ... ... ...

1.864 1.863 1.862 1.86 1

1.86 1.86 1.86 1.86 1.86

+FS

t

-FS

Vin

SAR Redundancy Forms (III)

• Sub-binary DAC

• Poor matching

• Uniform redundancy uniform radix

• Redundancy @ each bit

• Simple layout, simple SAR logic (fast)

• Cannot use UE DAC

• Must calibrate DAC

Radix:Ref. [5]

EECT 7326, Fall 2014 - 54 - © Y. Chiu

Sub-binary DAC – Construction

Vi

...DAC Do

VDAC

VX

...

d0

dN-1

C0·1.86N-1

CN-1

C0·1.86N-2

CN-2

C0·1.86N-3

CN-3

C0·1.86N-4

CN-4 …

• Hard-coded in analog form

• No B2T encoder

• Simple layout

e.g., Radix = 1.86

Ref. [5]

Page 28: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

28

EECT 7326, Fall 2014 - 55 - © Y. Chiu

Sub-binary DAC – Transfer Function

N = 14

= 011…1 VH

= 100…0 VL

Note: only one transition

edge shows up

VL VHVi

Redundant region

1

Do

2

2N

2N-1

0 FS

MSB = 1

MSB = 0

Do

EECT 7326, Fall 2014 - 56 - © Y. Chiu

Sub-binary DAC – Quantization

Vi

...DAC Do

VDAC

VX

...

d0

dN-1

j

j

≈ 2d -1

2d -1

io

FS

N-1j

j=0 j

jj

N-1

=0

Vd =

V

=

C

C

w

C0·1.863

C3

C0·1.862

C2

C0·1.86

C1

C0

C0

d3 = 1d2 = 0

d1 = 0d0 = 1

3

DAC R jj=0

3

ij=0

j

j

Q = V 2d -1

≈ CV

C

+ + +

Radix = 1.86

Ref. [5]

Page 29: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

29

EECT 7326, Fall 2014 - 57 - © Y. Chiu

Do

d o

Sub-binary DAC – Digital Correction

jw = bit weights

Nraw = 14 Nnet = 12

j2d -1N-1

io

j=0j

FS

wV

d = =V

Next problem: how to determine {wj} precisely?

EECT 7326, Fall 2014 - 58 - © Y. Chiu

Presentation Outline

• Principles of Multistep A/D Conversion

• Architectural Redundancy

• Error Mechanisms and Digital-Domain Calibration

• Error-Parameter Identification

– PRBS Test-Signal Injection (sub-ADC, sub-DAC, input)

– Two-ADC Equalization (ref.-ADC, split-ADC, ODC)

• Energy Efficiency and Trend

• Summary

Page 30: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

30

EECT 7326, Fall 2014 - 59 - © Y. Chiu

Error-Parameter Identification Techniques (BG)

• With PRBS test-signal injection (dither)– Sub-ADC injection (comparator dither)

– Sub-DAC injection (DAC dither)

– Input injection (Independent Component Analysis)

• With two-ADC equalization (test signal free)– Reference-ADC equalization (training sequence)

– Split-ADC equalization (blind)

– Offset double conversion (ODC) (blind, single ADC)

Parameter extraction is what the game is all about…

EECT 7326, Fall 2014 - 60 - © Y. Chiu

Recent BG Digital Calibration Techniques

ADC2 x2(n) y2(n)

e(n)Vin

Lewis [11], Chiu [12], McNeill [13]…

ADCAdaptive

DPP

x(n)

y(n)e(n)

T(n)

Vin

Temes [6,7], Lewis [8], Galton [9,10]…

Two-ADCequalization

PRBS injection(Dither)

x1(n)

Adaptive DPP

ADC1Adaptive

DPP

y1(n)

Page 31: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

31

EECT 7326, Fall 2014 - 61 - © Y. Chiu

PRBS Test-Signal Injection

EECT 7326, Fall 2014 - 62 - © Y. Chiu

Comparison of PRBS Injection Techniques

• Sub-ADC injection

– considered as dynamic comparator offset, no removal needed

– higher sub-ADC resolution (injection and ADC matching not req’d)

– works only with busy input

• Sub-DAC injection

– needs to be removed in digital output

– higher sub-DAC resolution (injection and DAC matching req’d)

– can work with quiet input

• Input injection (sub-DAC + sub-ADC)

– needs to be removed in digital output

– No impact on sub-ADC or sub-DAC resolution

– works only with busy input

Page 32: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

32

EECT 7326, Fall 2014 - 63 - © Y. Chiu

PRBS Test-Signal Injection(Sub-ADC Injection)

EECT 7326, Fall 2014 - 64 - © Y. Chiu

Sub-ADC Injection – Comparator Dither

• In steady state, analog gain (G1) and digital gain (G1-1) cancel exactly.

• 2-k ≤ ¼ to avoid overflow in residue output.

• No need to match injection scaling factor (2-k) to the sub-ADC thresholds.

residuepath

Converge@

1D T = 0

Page 33: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

33

EECT 7326, Fall 2014 - 65 - © Y. Chiu

Sub-ADC Injection – Comparator Dither

• In steady state, analog gain (G1) and digital gain (G1-1) cancel exactly.

• 2-k ≤ ¼ to avoid overflow in residue output.

• No need to match injection scaling factor (2-k) to the sub-ADC thresholds.

Converge@

1D T = 0

-VR/2

0

d1=1 d1=2

-VR

VR/2

VR

¼ bit½ bit

...

...

typ. k = 2

EECT 7326, Fall 2014 - 66 - © Y. Chiu

Exploiting Internal Redundancy

• Input falling in shaded region randomly sees one of two RTF’s dithering.

• Decision threshold needs not to be accurate or matched to each other.

• Digitization outcome is independent of PRBS when ADC is ideal !!

Ref. [14]

Page 34: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

34

EECT 7326, Fall 2014 - 67 - © Y. Chiu

Identifying Residue Gain Error

1 1 ideal 1 ideal 1If V { region 1 } and T = +1, D =D ; if T = -1, D =D -δ

1 2 31 1 1

1 1 1Segmental offset : D = + d + d +...d +d δ

4 8 16

1 1 ideal 1 1 idealIf V { region 2} and T = +1, D =D +δ ; if T = -1, D =D

EECT 7326, Fall 2014 - 68 - © Y. Chiu

Identifying Residue Gain Error

1 1 1δ = δ +μ D Tn+1 n n n

1 1 1ideal idealideal 1 ideal 1

1 11 1

1 1

1 1D T = Pr V { region 1 } Pr V { region 2 }D - -DD -δ D +δ

2 21 1

= δ Pr δ PrV { region 1 } V { region 2 }2 21

= δ Pr V { region 1 or 2 }2

1 1D T 0δ removed

Calculating correlation:

LMS learning:

• Correlation reveals information about segmental offset.

• Exact size of shaded region is not important (only affects Pr(.)).

• Key observation: if ADC is ideal, D1 must be uncorrelated to T.

Page 35: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

35

EECT 7326, Fall 2014 - 69 - © Y. Chiu

PRBS Test-Signal Injection(Sub-DAC Injection)

EECT 7326, Fall 2014 - 70 - © Y. Chiu

2D

Sub-DAC Injection – DAC Dither

Converge@

2D T = 0

• In steady state, analog gain (G1) and digital gain (G1-1) cancel exactly.

• 2-k ≤ ¼ to avoid overflow in residue output, DAC adds 2 bits minimum.

• Injection bit scaling factor (2-k) must match to the sub-DAC unit elements.

residuepath

Page 36: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

36

EECT 7326, Fall 2014 - 71 - © Y. Chiu

2D

Sub-DAC Injection – DAC Dither

Converge@

2D T = 0

-VR/2

0

d1=1 d1=2

-VR

VR/2

VR

¼ bit½ bit

...

...

typ. k = 2

• In steady state, analog gain (G1) and digital gain (G1-1) cancel exactly.

• 2-k ≤ ¼ to avoid overflow in residue output, DAC adds 2 bits minimum.

• Injection bit scaling factor (2-k) must match to the sub-DAC unit elements.

EECT 7326, Fall 2014 - 72 - © Y. Chiu

Signal-Dependent DAC Dither

Vj (VR) T = +1 T = -1

-1 -⅜ 0 0

-⅜ -⅛ 0 VR

-⅛ ⅛ -½ VR ½ VR

⅛ ⅜ -VR 0

⅜ 1 0 0

PRBS Injection Table

• PRBS only injected when input falls within the shaded region.

• Extra comparators needed to instrument the SD dither.Ref. [15]

Page 37: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

37

EECT 7326, Fall 2014 - 73 - © Y. Chiu

Opportunistic DAC Dither

Vin/VR

2x rangeres in RV = 4V - V D

res in RV = 4V - V D + PN

in R inr

Res

th

in

4V - V D'+PN , V V

4V - V D, o.w.V =

Vre

s/V

R

0-1 11

-1

0

Vre

s/V

R

1

-1

0

1

-1

0

-2

2

Vin/VR

Vre

s/V

R

2x range

0-1 1

Vth Vth Vth

0-1 1

GapGap

• When redundancy is not ample, blind injection requires large DR.

• Without additional comparators, detecting Vth vicinity is difficult.

EECT 7326, Fall 2014 - 74 - © Y. Chiu

Exploiting Comparator Metastability

Q+

, Q-

Q+

, Q-

Vin-Vthsmall

Vin-Vth large

• Comparator resolving time indicates proximity of input.

• Proximity detector also functions as metastabilty detector/resolver.

Page 38: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

38

EECT 7326, Fall 2014 - 75 - © Y. Chiu

12b 160MS/s CMOS Prototype (40nm)

• (5b + 8b) synchronous two-step pipelined SAR architecture.

• First-stage capacitor weights identified w/ opportunistic DAC dither.

EECT 7326, Fall 2014 - 76 - © Y. Chiu

Die Photo

40nm low-leakage CMOS process(active area = 0.042mm2)

Integrator+

DAC

MDAC1 MDAC2 MDAC3 MDAC4

Sub-ADC1

Sub-ADC2

Sub-ADC3

Sub-ADC4

Sub-ADC5

Clock&

PN Gen.

300μm

139μ

m

Ref. [16]

Page 39: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

39

EECT 7326, Fall 2014 - 77 - © Y. Chiu

Measured ADC Dynamic Performance

10 80 30055

60

65

70

75

80

85

90

Fin [MHz]

dB

Fin = 80MHz

SNDRSFDR

100 160 20055

60

65

70

75

80

85

90

Fs [MHz]

dB

Fs = 160MHz

SNDRSFDR

Fs = 160MHz after cal. Fin = 25MHz after cal.

EECT 7326, Fall 2014 - 78 - © Y. Chiu

Power Consumption

Analog 1.1V2.8mW(53.6%)

Digital 1.1V2.2mW(42.2%)

• Total power is 4.96mW at 160MS/s operation.

Ref. [16]

Page 40: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

40

EECT 7326, Fall 2014 - 79 - © Y. Chiu

PRBS Test-Signal Injection(Input Injection)

EECT 7326, Fall 2014 - 80 - © Y. Chiu

Direct Input Injection

• Algorithm works reliant on the independence b/t input and T.

• Multi-parameter extraction is possible by Independent Component Analysis.

Page 41: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

41

EECT 7326, Fall 2014 - 81 - © Y. Chiu

Independent Component Analysis (ICA)

o 1 2D = α D +β D -k T

n+1 n α 1 o 2

n+1 n β 2 o 1

α = α -μ g D g T

β =β -μ g D g T

Hérault-Jutten (HJ) stochastic de-correlation:

In our simulation, we picked g1(x) = x and g2(x) = x3.

Only two parameters need to be identified.

Ref. [17]

EECT 7326, Fall 2014 - 82 - © Y. Chiu

Simulation Results

1 1.1 1.2 1.3 1.4 1.51

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

/2

0 0.1 0.2 0.3 0.4-120

-100

-80

-60

-40

-20

0

ENOB=3.32

0 0.1 0.2 0.3 0.4-120

-100

-80

-60

-40

-20

0ENOB=11.99

H-J Learning TrajectoryBefore After

• Typical learning pattern of the H-J algorithm

• Steady-state coefficient fluctuation causing low-level spurs

Page 42: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

42

EECT 7326, Fall 2014 - 83 - © Y. Chiu

ICA extended to nonlinear treatment

2 3o i 0 1 i 2 i 3 iV = f V a +a V +a V +a V +...

jj j j ob n+1 = b n -μ D n T n j =1,...,5

Error model:

Update equations:

Ref. [17]

EECT 7326, Fall 2014 - 84 - © Y. Chiu

An ICA Approach for SAR Calibration

ˆ id T

Digital Post-Processing

• ICA recovers 2X speed at the cost of slower convergence.

• ALL bit weights {wj} are learned simultaneously!

T: PRBS

Page 43: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

43

EECT 7326, Fall 2014 - 85 - © Y. Chiu

Prototype SAR ADC w/ ICA

Sub-binary DACRef. [18]

EECT 7326, Fall 2014 - 86 - © Y. Chiu

Prototype SAR ADC w/ ICA

ICA

90nm CMOS, 0.05mm2

• 12b, 50MS/s in BG mode

• (3.3+1.4)mW power (45fJ/step)

• CICC Best Paper Award

Ref. [18]

Page 44: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

44

EECT 7326, Fall 2014 - 87 - © Y. Chiu

Measurement Results

Learning Curve

Dynamic Performance

• Gear shifting helps stabilize the steady-state fluctuations.

EN

OB

[bit]

0 10 20 30 40 50 6050

55

60

65

70

75

80

85

90

fin [MHz]

SF

DR

/ S

ND

R [d

B]

SFDR w/ cal. SNDR w/ cal. SFDR w/o cal.SNDR w/o cal.

EECT 7326, Fall 2014 - 88 - © Y. Chiu

Two-ADC Equalization

Page 45: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

45

EECT 7326, Fall 2014 - 89 - © Y. Chiu

Two-ADC Equalization Techniques

• Reference-ADC equalization

– Slow-Fast two-ADC architecture to accomplish accuracy and throughput simultaneously using adaptive equalization

– Two (different) ADC’s needed, subject to skew error without SHA

• Split-ADC equalization

– Two almost identical ADC’s employed for blind equalization

– Two ADC’s needed, subject to skew error without SHA

• Offset double conversion (ODC)

– Self-equalization by digitizing every sample twice with opposite DC offsets injected to the input

– Single ADC with modified timing in background mode

– Conversion throughput halved in background mode

EECT 7326, Fall 2014 - 90 - © Y. Chiu

Two-ADC Equalization(Reference-ADC)

Page 46: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

46

EECT 7326, Fall 2014 - 91 - © Y. Chiu

Reference-ADC Equalization

• Concept inspired by adaptive equalization in digital comm. receivers

• Divide-and-conquer approach to achieve analog speed and

accuracy

Ref. [11,12]

EECT 7326, Fall 2014 - 92 - © Y. Chiu

EQZ of Time-Interleaved ADC Array

• ALL paths are aligned to the unique ref. ADC after equalization.

Ф

Φ1

tnov

Фr

Φ2

Φ10

1 21002

1

2

11002

1002

ADC1

T/H

Ref.ADC

ADC10

ADF1

ADF10

D1

DLL

Ф1

Vin

1X

1X

D10

Dr

Ф10

Ф1

Ф10

Фr

Ф

Ф′

Digital

Cal.

Page 47: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

47

EECT 7326, Fall 2014 - 93 - © Y. Chiu

Prototype 10-way TI-ADC Array

Performance Comparison(@ time of publication)

Time CMOS Process

Speed[MS/s]

SFDR[dB]

FoM[fJ/step]

ISSCC06 0.13µm 600 43 220

ISSCC08 0.13µm 1250 48 480

VLSI08 65nm 800 58 280

ISSCC09 0.13µm 600 65 210

Die photo

• The 2009 DAC/ISSCC Student Design Contest Award

Ref. [5]

EECT 7326, Fall 2014 - 94 - © Y. Chiu

0 100 200 300-90

-80

-70

-60

-50

-40

-30

-20

-10

0

frequency [MHz]0 100 200 300

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

frequency [MHz]0 100 200 300

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

frequency [kHz]

SNDR=31.2dBSFDR=33.0dB

SNDR=46.7dBSFDR=65.2dB

SNDR=42.2dBSFDR=60.5dB

3fs/10

2fs/10 4fs/10

fs/10

HD3

HD3 HD3

SNDR=31.2 dBSFDR=33.0 dB

SNDR=42.2 dBSFDR=60.5 dB

SNDR=46.7 dBSFDR=65.2 dB

ADC Array EQZ – Measured Spectra

(fs = 600MS/s, fin = 7.8MHz, Ain = 0.9FS, 16k samples)

Ref. ADCAfter Cal.

Page 48: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

48

EECT 7326, Fall 2014 - 95 - © Y. Chiu

Two-ADC Equalization(Split-ADC)

EECT 7326, Fall 2014 - 96 - © Y. Chiu

Split-ADC Equalization

Vi

Vo

ADCA

Vi

Vo

ADCB

• Blind equalization w/o reference possible by offsetting the RTFs

• Fast convergence due to zero-forcing equalization

Ref. [13]

Page 49: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

49

EECT 7326, Fall 2014 - 97 - © Y. Chiu

Vin

dB

dA

Zero Forcing

Radix correction Zero-forcing EQZError observation

Vin

dB

dA

ε = 0

ε = dB−dA

EECT 7326, Fall 2014 - 98 - © Y. Chiu

Two-ADC Equalization(Offset Double Conversion)

Page 50: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

50

EECT 7326, Fall 2014 - 99 - © Y. Chiu

Offset Double Conversion (ODC) for SAR

• ODC enables zero-forcing self-equalization.

• ALL bit weights {wj} are learned simultaneously!

Digital Post-Processing

EECT 7326, Fall 2014 - 100 - © Y. Chiu

How to determine Bit Weights?

Is the transfer curve shift-invariant?

Page 51: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

51

EECT 7326, Fall 2014 - 101 - © Y. Chiu

How to determine Bit Weights?

Is the transfer curve shift-invariant?

EECT 7326, Fall 2014 - 102 - © Y. Chiu

How to determine Bit Weights?

Is the transfer curve shift-invariant?

Page 52: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

52

EECT 7326, Fall 2014 - 103 - © Y. Chiu

How to determine Bit Weights?

• Shift-invariant ONLY when the transfer curve is completely linear!

• Non-constant difference b/t D+ and D− reveals bit weight information.

EECT 7326, Fall 2014 - 104 - © Y. Chiu

Prototype SAR ADC w/ ODC

Sub-binary DAC ODC Aux. DAC

0.13µm CMOS, 0.06mm2

• 12b, 45MS/s in FG mode

• 3mW power (36.3 fJ/step)

• Most read JSSC article Nov. 2011

C0C1C13

SAR Logic

–VR

d0d1d13

CMPp

+VR

VX

C0

Vin

C13,d C6,dC∆

ReadyCMPn

CLKCLK

ACLK

Ref. [19]

Page 53: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

53

EECT 7326, Fall 2014 - 105 - © Y. Chiu

Measurement ADC Spectra (BG Mode)

0 5 10-120

-100

-80

-60

-40

-20

0d

B

Freq [MHz]0 5 10

-120

-100

-80

-60

-40

-20

0

dB

Freq [MHz]

After Cal.Before Cal.

SNDR = 60.2dB

SFDR = 66.4dB

THD = -61.7dB

SNDR = 70.7dB

SFDR = 94.6dB

THD = -89.1dB

EECT 7326, Fall 2014 - 106 - © Y. Chiu

Convergence Time (BG Mode)

0 1 2 3 4 5 6

x 104

-5

0

5

10

e [L

SB

]

Number for samples

0 1 2 3 4 5 6

x 104

-5

0

5

10

e [L

SB

]

Number for samples

0 1 2 3 4 5 6

x 104

-5

0

5

10

e [L

SB

]

Number for samples

22000 samples @ 22.5MS/s ≈ 1ms

Page 54: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

54

EECT 7326, Fall 2014 - 107 - © Y. Chiu

Comparison with 12b ADCs

2000 2002 2004 2006 2008 201010

-2

10-1

100

101

Year

Fo

M (

pJ/

con

v. s

tep

)

2000 2002 2004 2006 2008 201010

-2

10-1

100

101

102

Year

Act

ive

area

(m

m2 )

0.06mm2

46fJ/step @ 22.5MS/s31fJ/step @ 45MS/s

Total Power: 3.0mW

(@ time of publication)

EECT 7326, Fall 2014 - 108 - © Y. Chiu

Summary of Dig. BG Cal. Techniques

Method Parameter Test signal Injection point Reference†

DNC + GEC { βj,k, αj,m } multi PRBS sub-DAC [9,10,20-24]

Split capacitor { ∆j } 1 PRBS sub-DAC [25,26]

Sig.-dep. dither { γj } 1 PRBS sub-DAC [15,16]

GEC + SA { γj } 2 PRBS sub-ADC [27,28]

Statistics { αj,m } 1 PRBS sub-ADC [29,30]

Fast GEC { γj } 1 PRBS sub-ADC [31]

ICA { γj }, { αj,m } 1 PRBS input [17,18,32,33]

Ref. ADC { βj,k, αj,m } n/a n/a [5,11,12,34-36]

Virtual ADC { βj,k, αj,m } offset sub-DAC [37,38]

Split ADC{ αj,m } n/a n/a [13,39]

{ βj,k, αj,m } n/a n/a [40]

ODC{ γj } offset input [19]

{ βj,k, αj,m } offset input [41]

† References are furnished at the end of the slides.

Page 55: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

55

EECT 7326, Fall 2014 - 109 - © Y. Chiu

Presentation Outline

• Principles of Multistep A/D Conversion

• Architectural Redundancy

• Error Mechanisms and Digital-Domain Calibration

• Error-Parameter Identification

– PRBS Test-Signal Injection (sub-ADC, sub-DAC, input)

– Two-ADC Equalization (ref.-ADC, split-ADC, ODC)

• Energy Efficiency and Trend

• Summary

EECT 7326, Fall 2014 - 110 - © Y. Chiu

ADC Figure-of-Merit (FoM)

W ENOB

P JouleFoM

2 BW 2 Conversion -Step

BW: min{fs/2, ERBW}

ERBW: effective resolution BW

"Energy Efficiency"

P: power consumption

ENOB: effective number of bits

Walden FoM:

ENOB

S 10

2 BW 4FoM 10log dB

PSchreier FoM:

• Walden FoM is intuitive but penalizes noise/matching-limited designs.

• Schreier FoM is more fair to high dynamic range designs.

Page 56: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

56

EECT 7326, Fall 2014 - 111 - © Y. Chiu

Performance, Efficiency, and Power

α/2αENOBPerforman = 2 BW Hz pce Ste

Performance = Speed × SNR

α/2αENOB

P J

2 BW SteEnergy Eff n

picie cy

αα

ENOBENOB

P= 2 BW =

2 B

Performance Efficie

W

ncy

Power

Note: α = 2 - 4

EECT 7326, Fall 2014 - 112 - © Y. Chiu

Performance–Efficiency (PE) Chart

1E+09

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E+16

1E+17

1E-18 1E-17 1E-16 1E-15 1E-14 1E-13 1E-12

Energy Efficiency = Power/(2·BW·3ENOB)

Per

form

ance

= 2

·BW

·3E

NO

B

Constant performance

Co

nst

ant

effi

cien

cy

(log scale)

(lo

g s

cale

)

X·Y = Power

α = 3

Page 57: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

57

EECT 7326, Fall 2014 - 113 - © Y. Chiu

PE Chart: Pipelined ADC (<2005)

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E-16 1E-15 1E-14 1E-13 1E-12 1E-11

Pipeline (<2005)

ISSCC & VLSI data

100mW

1W

10mW1mW100μW10μW

Efficiency

Per

form

ance

10W

EECT 7326, Fall 2014 - 114 - © Y. Chiu

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E-16 1E-15 1E-14 1E-13 1E-12 1E-11

Pipeline (<2005)

Pipeline (2005-2010)

PE Chart: Pipelined ADC (2005-2010)

ISSCC & VLSI data

100mW

1W

10mW1mW100μW10μW

Efficiency

Per

form

ance

10W

Page 58: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

58

EECT 7326, Fall 2014 - 115 - © Y. Chiu

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E-16 1E-15 1E-14 1E-13 1E-12 1E-11

Pipeline (<2005)

Pipeline (2005-2010)

Pipeline (2010-2013)

PE Chart: Pipelined ADC (2010-2013)

ISSCC & VLSI data

100mW

1W

10mW1mW100μW10μW

Efficiency

Per

form

ance

10W

EECT 7326, Fall 2014 - 116 - © Y. Chiu

PE Chart: SAR ADC (<2005)

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E-16 1E-15 1E-14 1E-13 1E-12 1E-11

SAR (<2005)

ISSCC & VLSI data

100mW

1W

10mW1mW100μW10μW

Efficiency

Per

form

ance

10W

Page 59: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

59

EECT 7326, Fall 2014 - 117 - © Y. Chiu

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E-16 1E-15 1E-14 1E-13 1E-12 1E-11

SAR (<2005)

SAR (2005-2010)

PE Chart: SAR ADC (2005-2010)

ISSCC & VLSI data

100mW

1W

10mW1mW100μW10μW

Efficiency

Per

form

ance

10W

EECT 7326, Fall 2014 - 118 - © Y. Chiu

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E-16 1E-15 1E-14 1E-13 1E-12 1E-11

SAR (<2005)

SAR (2005-2010)

SAR (2010-2013)

PE Chart: SAR ADC (2010-2013)

ISSCC & VLSI data

100mW

1W

10mW1mW100μW10μW

Efficiency

Per

form

ance

10W

12b,160MS/s5mW

Page 60: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

60

EECT 7326, Fall 2014 - 119 - © Y. Chiu

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E-16 1E-15 1E-14 1E-13 1E-12 1E-11

Pipeline (<2005)Pipeline (2005-2010)Pipeline (2010-2013)SAR (<2005)SAR (2005-2010)SAR (2010-2013)

ISSCC & VLSI data

100mW

1W

10mW1mW100μW10μW

Efficiency

Per

form

ance

10W

PE Chart: Both ADCs (<2014)

IndustryADCs

UniversityADCs

EECT 7326, Fall 2014 - 120 - © Y. Chiu

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E-16 1E-15 1E-14 1E-13 1E-12 1E-11

Pipeline (<2005)Pipeline (2005-2010)Pipeline (2010-2013)SAR (<2005)SAR (2005-2010)SAR (2010-2013)

ISSCC & VLSI data

100mW

1W

10mW1mW100μW10μW

Efficiency

Per

form

ance

10W

EUT

PE Chart: Both ADCs (<2014)

OSU

IMEC

NCKU

NCTUMichigan

MIT

Panasonic

OSUFujitsu

ADI TI Agilent

ADI

AKM

BCMKENET

NSC

Page 61: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

61

EECT 7326, Fall 2014 - 121 - © Y. Chiu

Bibliography

1. W. R. Bennett, "Spectra of quantized signals," Bell Syst. Tech. J., vol. 27, pp. 446-472, Jul. 1948.

2. S. H. Lewis et al., "A 10-b 20-MS/s analog-to-digital converter," JSSC, vol. 27, Mar. 1992.

3. F. Kuttner, "A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-μm CMOS," in ISSCC, 2002.

4. C. C. Liu et al., "A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation," in ISSCC, 2010.

5. W. Liu et al., "A 600MS/s 30mW 0.13μm CMOS ADC Array Achieving Over 60dB SFDR with Adaptive Digital Equalization," in ISSCC, 2009.

6. T. Sun, A. Wiesbauer, and G. C. Temes, "Adaptive compensation of analog circuit imperfections for cascaded delta-sigma ADCs," in ISCAS, 1998.

7. P. Kiss et al., "Adaptive digital correction of analog errors in MASH ADC’s—Part II: Correction using test-signal injection," TCAS2, vol. 47, Jul. 2000.

8. D. Fu, K. C. Dyer, S. H. Lewis, and P. J. Hurst, "A digital back-ground calibration technique for time-interleaved analog-to-digital converters," JSSC, vol. 33, Dec. 1998.

9. E. J. Siragusa and I. Galton, "Gain error correction technique for pipelined analogue-to-digital converters," Electronics Letters, vol. 36, 2000.

10. I. Galton, "Digital cancellation of D/A converter noise in pipelined A/D converters," TCAS2, vol. 47, Mar. 2000.

11. X. Wang, P. J. Hurst, and S. H. Lewis, "A 12-bit 20-MS/s pipelined ADC with nested digital background calibration," in CICC, 2003.

12. Y. Chiu, C. W. Tsang, B. Nikolic, and P. R. Gray, "Least mean square adaptive digital background calibration of pipelined analog-to-digital converters," TCAS1, vol. 51, Jan. 2004.

13. J. McNeill, M.C.W. Coln, B. J. Larivee, ""Split ADC" architecture for deterministic digital background calibration of a 16-bit 1-MS/s ADC," JSSC, vol. 40, Dec. 2005.

14. H. S. Fetterman et al., "CMOS pipelined ADC employing dither to improve linearity," in CICC, 1999.

EECT 7326, Fall 2014 - 122 - © Y. Chiu

Bibliography

15. Y.-S. Shu and B.-S. Song, "A 15b linear, 20MS/s, 1.5b/stage pipelined ADC digitally calibrated with signal-dependent dithering," in VLSI, 2006.

16. Y. Zhou, B. Xu, and Y. Chiu, "A 12b 160MS/s synchronous two-step SAR ADC achieving 20.7fJ/step FoM with opportunistic digital background calibration," to appear in VLSI, 2014.

17. Y. Chiu, S.-C. Lee, and W. Liu, "An ICA framework for digital background calibration of analog-to-digital converters," Sampling Theory in Signal and Image Processing (STSIP), vol. 11, no. 2-3, 2012.

18. W. Liu, P. Huang, and Y. Chiu, "A 12-bit 50-MS/s 3.3-mW SAR ADC with background digital calibration," in CICC, 2012.

19. W. Liu, P. Huang, and Y. Chiu, "A 12bit 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC achieving over 90dB SFDR," in ISSCC, 2010.

20. P. C. Yu et al., "A 14b 40MS/s pipelined ADC with DFCA," in ISSCC, 2001.

21. E. J. Siragusa and I. Galton, "A digitally enhanced 1.8V 15b 40MS/s CMOS pipelined ADC," in ISSCC, 2004.

22. A. Panigada and I. Galton, "Digital background correction of harmonic distortion in pipelined ADCs," TCAS I, Sep. 2006.

23. A. Panigada and I. Galton, "A 130mW 100MS/s pipelined ADC with 69dB SNDR enabled by digital harmonic distortion correction," in ISSCC, 2009.

24. K. Nair and R. Harjani, "A 96dB SFDR 50MS/s digitally enhanced CMOS pipeline A/D converter," in ISSCC, 2004.

25. H.-C. Liu, Z.-M. Lee, and J.-T. Wu, "A 15b 20MS/s CMOS pipelined ADC with digital background calibration," in ISSCC, 2004.

26. J.-L. Fan, C.-Y. Wang, and J.-T. Wu, "A robust and fast digital background calibration technique for pipelined ADCs," TCAS I, Jun. 2007.

27. J. Li and U.-K. Moon, "Background calibration techniques for multistage pipelined ADC’s with digital redundancy," TCAS II, Sep. 2003.

Page 62: Advanced Digital Calibration Techniques for Data Convertersyxc101000/courses/7327/slides/digital calibration... · • Error Mechanisms and Digital-Domain Calibration

12/3/2014

62

EECT 7326, Fall 2014 - 123 - © Y. Chiu

Bibliography

28. J. Li et al., "0.9V 12mW 2MSPS algorithmic ADC with 81dB SFDR," in VLSI, 2004.

29. B. Murmann et al., "A 12b 75MS/s pipelined ADC using open- loop residue amplification," in ISSCC, 2003.

30. J. Keane et al., "Background interstage gain calibration technique for pipelined ADCs," TCAS I, Jan. 2005.

31. R. Massolini, G. Cesura, and R. Castello, "A fully digital fast convergence algorithm for nonlinearity correction in multistage ADC," TCAS II, May 2006.

32. S.-C. Lee, B. Elies, and Y. Chiu, "An 85dB SFDR 67dB SNDR 8OSR 240MS/s SD ADC with nonlinear memory error calibration," in VLSI, 2012.

33. Y. Zhou and Y. Chiu, “Digital calibration of inter-stage nonlinear errors in pipelined SAR ADC,” in MWSCAS, 2013.

34. C. Tsang et al., "Background ADC calibration in digital domain," in CICC, 2008.

35. D. Stepanovic and B. Nikolic, “A 2.8GS/s 44.6mW time-interleaved ADC achieving 50.9dB SNDR and 3dB effective resolution bandwidth of 1.5GHz in 65nm CMOS,” in VLSI, 2012.

36. B. Xu and Y. Chiu, “Background calibration of time-interleaved ADC using direct derivative information,” in ISCAS, 2013.

37. B. Peng et al., "A virtual-ADC digital background calibration technique for multistage A/D conversion," TCAS II, Nov. 2010.

38. B. Peng et al., "A 48-mW, 12-bit, 150-MS/s pipelined ADC with digital calibration in 65nm CMOS," in CICC, 2011.

39. J. McNeill et al., "Split-ADC digital background correction of open-loop residue amplifier nonlinearity errors in a 14b pipeline ADC," in ISCAS, 2007.

40. S. Sarkar, Y. Zhou and Y. Chiu, "PN-assisted deterministic digital calibration of split two-step ADC to over 14-bit accuracy," to appear in MWSCAS, 2014.

41. B. Peng et al., "An offset double conversion technique for digital calibration of pipelined ADCs," TCAS II, Dec. 2010.

42. B. Murmann, "ADC Performance Survey 1997-2013," [Online]: www.stanford.edu/~murmann/adcsurvey.html.