adiabatic connection of fractional chern insulators to ... · a. sterdyniak, n. regnault, & gm,...

73
Adiabatic connection of Fractional Chern Insulators to Fractional Quantum Hall States Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish Laboratory November 21, 2012, University of Leeds A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012) GM & N. R. Cooper, Phys. Rev. Lett. 103, 105303 (2009)

Upload: others

Post on 18-Jul-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Adiabatic connection of Fractional Chern Insulators to Fractional Quantum Hall States

Gunnar MöllerCavendish Laboratory, University of Cambridge

Cavendish Laboratory

November 21, 2012, University of Leeds

A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012)

Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

GM & N. R. Cooper, Phys. Rev. Lett. 103, 105303 (2009)

Page 2: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21st, 2012

• Motivation: physical realizations of lattices with high flux density

• Relationship between different realizations of topological band structures:

• Particle entanglement spectrum as a probe for quantum Hall states in lattices

Outline

‣ Adiabatic continuation from Fractional Chern Insulators to Fractional Quantum Hall states

Page 3: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Magnetic flux through periodic potentials

• magnetic field in presence of crystal potentials in solid state systems

0 a n 1

Page 4: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Magnetic flux through periodic potentials

• magnetic field in presence of crystal potentials in solid state systems

• cold atoms in `rotating’ optical lattices: 0 ∼ a n 1

0 a n 1

• Simulating Aharonov-Bohm flux by complexhopping in tight binding optical lattices 0 a n 1

• Simulating Aharonov-Bohm flux by Berry phases in real space

0 a n 1“Optical Flux Lattices”

Simulation of Landau-gauge (continuum) 0 ∼ L1/2

Cold A

toms

Page 5: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Magnetic flux through periodic potentials

• magnetic field in presence of crystal potentials in solid state systems

• cold atoms in `rotating’ optical lattices: 0 ∼ a n 1

0 a n 1

• Simulating Aharonov-Bohm flux by complexhopping in tight binding optical lattices 0 a n 1

• Simulating Aharonov-Bohm flux by Berry phases in real space

0 a n 1“Optical Flux Lattices”

Simulation of Landau-gauge (continuum) 0 ∼ L1/2

Cold A

toms

Page 6: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Magnetic flux through periodic potentials

• magnetic field in presence of crystal potentials in solid state systems

• cold atoms in `rotating’ optical lattices: 0 ∼ a n 1

0 a n 1

• Simulating Aharonov-Bohm flux by complexhopping in tight binding optical lattices 0 a n 1

• Simulating Aharonov-Bohm flux by Berry phases in real space

0 a n 1“Optical Flux Lattices”

Simulation of Landau-gauge (continuum) 0 ∼ L1/2

Cold A

toms

Page 7: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Magnetic flux through periodic potentials

• magnetic field in presence of crystal potentials in solid state systems

• cold atoms in `rotating’ optical lattices: 0 ∼ a n 1

0 a n 1

• Simulating Aharonov-Bohm flux by complexhopping in tight binding optical lattices 0 a n 1

• Simulating Aharonov-Bohm flux by Berry phases in real space

0 a n 1“Optical Flux Lattices”

Simulation of Landau-gauge (continuum) 0 ∼ L1/2

• Chern bands: Berry flux in reciprocal space

0 a n 1

Cold A

toms

Solid State

Cold A

toms

Page 8: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Magnetic flux through periodic potentials

• magnetic field in presence of crystal potentials in solid state systems

• cold atoms in `rotating’ optical lattices: 0 ∼ a n 1

0 a n 1

• Simulating Aharonov-Bohm flux by complexhopping in tight binding optical lattices 0 a n 1

• Simulating Aharonov-Bohm flux by Berry phases in real space

0 a n 1“Optical Flux Lattices”

Simulation of Landau-gauge (continuum) 0 ∼ L1/2

• Chern bands: Berry flux in reciprocal space

0 a n 1

Cold A

toms

Solid State

Cold A

toms

Page 9: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Cold Atoms I: Optical Lattices with Complex Hopping

B

optical lattice + Raman lasers

H = −J

α,β

b†αbβe

iAαβ + h.c.+

1

2U

α

nα(nα − 1)− µ

α

⇒ possibility to simulate Aharonov-Bohm effect of magnetic field by imprinting phases for hopping via Raman transitions

Aαβ = 2πnV

⇒ Bose-Hubbard with a magnetic field (! Lorentz force)

particle density vortex/flux density interaction nV U/JnV

J. Dalibard, et al. Rev. Mod. Phys. 83, 1523 (2011)

experimental realisation:

Page 10: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Cold Atoms I: Optical Lattices with Complex Hopping

‘anti-magic’ optical lattice for Yb

Gerbier & Dalibard, NJP 2010

Staggered Flux ‘Rectified’ Flux

Realized by group of I. Bloch:Phys. Rev. Lett. 107, 255301 (2011). Experimental realization outstanding

Can tune flux density!

Page 11: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Cold Atoms II: Berry phases of optically dressed states

spacially varying optical coupling of N internal states (consider N=2)

H =p2

2m1 +

2

−∆ ΩR(r)

ΩR(r) ∆

Yblocal spectrum En(r) and dressed states: |Ψr

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, RMP 2011

Page 12: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Cold Atoms II: Berry phases of optically dressed states

spacially varying optical coupling of N internal states (consider N=2)

H =p2

2m1 +

2

−∆ ΩR(r)

ΩR(r) ∆

Yblocal spectrum En(r) and dressed states: |Ψr

adiabatic motion of atoms in space in the optical potential generates a Berry phase

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, RMP 2011

Page 13: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Cold Atoms II: Berry phases of optically dressed states

for N=2, consider Bloch sphere of unit vector

spacially varying optical coupling of N internal states (consider N=2)

H =p2

2m1 +

2

−∆ ΩR(r)

ΩR(r) ∆

Yblocal spectrum En(r) and dressed states: |Ψr

adiabatic motion of atoms in space in the optical potential generates a Berry phase

nφ =1

8πijkµνni∂µnj∂νnk

n = Ψr|σ|Ψr

Berry flux generated:

Anφ d

2r =Ω

Total flux quanta = # times Bloch vector wraps sphere

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, RMP 2011

Page 14: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Cold Atoms II: Optical Flux Lattices

periodic optical Raman potentials are conveniently located by standing wave Lasersyielding an optical flux lattice of high flux density, here nϕ=1/2a2 (fixed)

(a) Local direction of unit Bloch vector (b) Local density of Berry Flux n nφ

Nigel Cooper, PRL (2011); N. Cooper & J. Dalibard, EPL (2011)

Page 15: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Cold Atoms II: Optical Flux Lattices

periodic optical Raman potentials are conveniently located by standing wave Lasersyielding an optical flux lattice of high flux density, here nϕ=1/2a2 (fixed)

(a) Local direction of unit Bloch vector (b) Local density of Berry Flux n nφ

Nφ = 1

Nigel Cooper, PRL (2011); N. Cooper & J. Dalibard, EPL (2011)

Page 16: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Fractionalization in Chern bands? Chern #1 Bands = FQHE ?

Proposition: correlated states reproduce the physics of FQHE

Page 17: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Fractionalization in Chern bands? Chern #1 Bands = FQHE ?

Proposition: correlated states reproduce the physics of FQHE

Page 18: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Fractionalization in Chern bands? Chern #1 Bands = FQHE ?

Proposition: correlated states reproduce the physics of FQHE

Page 19: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Fractionalization in Chern bands? Chern #1 Bands = FQHE ?

Proposition: correlated states reproduce the physics of FQHE

Page 20: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

H =− t1

rr

a†rar + h.c.

− t2

rr

a†rare

iφrr + h.c.

− t3

rr

a†rar + h.c.

+

U

2

r

nr(nr − 1)

Characteristic example: The Haldane Model

• tight binding model in real space on hexagonal lattice• with fine-tuned hopping parameters: obtain flat lower band, e.g. values [D. Sheng, PRL (2011)]

t1 = 1, t2 = 0.60, t2 = −0.58 and φ = 0.4π

F.D.M. Haldane, PRL (1988), Neupert et al. PRL (2011)

Page 21: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

hαβ(k)unβ(k) = n(k)u

nα(k)

A(n,k) = −i

α

un∗α (k)∇ku

nα(k)

Bloch states

H =

k a†k,αhαβ(k)ak,β

• diagonalize Hamiltonian by Fourier transform

Topological (flat) bands in two-dimensions

• study Berry curvature in nth band:

Berry connection:

B(k) = ∇k ∧A(k)Berry curvature:

C = 12π

BZ d2kB(k)Chern number:

Page 22: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Flux Lattices vs Chern Bands

= tight binding model in real space with topological flat bandsCBsreal space reciprocal space

real space reciprocal space

Page 23: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Flux Lattices vs Chern Bands

= tight binding model in real space with topological flat bandsCBsreal space reciprocal space

real space reciprocal space

Page 24: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Flux Lattices vs Chern Bands

= tight binding model in real space with topological flat bandsCBs

= tight binding model in reciprocal space with topological flat bands

real space reciprocal space

real space reciprocal space

N. R. Cooper, R. Moessner, PRL (2012) [arxiv:1208.4579]

Flux Lattice

absorption of photons = momentum + state transfers

Page 25: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Flux Lattices vs Chern Bands

= tight binding model in real space with topological flat bandsCBs

= tight binding model in reciprocal space with topological flat bands

real space reciprocal space

real space reciprocal space

N. R. Cooper, R. Moessner, PRL (2012) [arxiv:1208.4579]

Flux Lattice

absorption of photons = momentum + state transfers

Page 26: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Overview of underlying band structures

CBs

Lattices with homogeneous flux(Hofstadter bands)

Flux Lattices(vanishing overall flux)

Page 27: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Overview of underlying band structures

CBs

Lattices with homogeneous flux(Hofstadter bands)

Flux Lattices

insertion of flux quanta through plaquettes [see Wu et al]

(vanishing overall flux)

Page 28: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Overview of underlying band structures

CBs

Lattices with homogeneous flux(Hofstadter bands)

Flux Lattices

insertion of flux quanta through plaquettes [see Wu et al]

(vanishing overall flux)

Page 29: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Overview of underlying band structures

CBs

Lattices with homogeneous flux(Hofstadter bands)

Flux Lattices

insertion of flux quanta through plaquettes [see Wu et al]

Magnetic Fields & Landau Levels

(vanishing overall flux)

Page 30: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Overview of underlying band structures

CBs

Lattices with homogeneous flux(Hofstadter bands)

Flux Lattices

insertion of flux quanta through plaquettes [see Wu et al]

Magnetic Fields & Landau Levels

(vanishing overall flux)

+ Interactions

Page 31: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Interaction driven phases in these bands

CBs

Lattices withhomogeneous flux

Flux Latticesinsertion of flux quanta

through plaquettes

Magnetic Fields & Landau Levels

FQHE

FCI

FQHE in lattices

FQHE ?

Page 32: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Interaction driven phases in these bands

CBs

Lattices withhomogeneous flux

Flux Latticesinsertion of flux quanta

through plaquettes

Magnetic Fields & Landau Levels

FQHE

FCI

FQHE in lattices

FQHE ?

C>1

Page 33: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Interaction driven phases in these bands

CBs

Lattices withhomogeneous flux

Flux Latticesinsertion of flux quanta

through plaquettes

Magnetic Fields & Landau Levels

FQHE

FCI

FQHE in lattices

FQHE ?

C>1

C>1

Page 34: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Strongly correlated states from the Hofstadter spectrum

• Hofstadter spectrum provides bands of all Chern numbers [Avron et al.]

E

1

2

-1

-2

Page 35: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Strongly correlated states from the Hofstadter spectrum

• Hofstadter spectrum provides bands of all Chern numbers [Avron et al.]

E

n

• Interactions stabilize fractional quantum Hall liquids in these bands!

• CF Theory: GM & N. R. Cooper, PRL (2009)

• Near rational flux density: LL’s with additional pseudospin indexR. Palmer & D. Jaksch PRL 2006L. Hormozi et al, PRL 2012

1

2

-1

-2

Page 36: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Interrelations between different interacting problems

CBs

Lattices withhomogeneous flux

Flux Lattices

insertion of flux quanta through plaquettes

Magnetic Fields & Landau Levels

FQHE

FCI

FQHE in lattices

FQHE ?

C>1

C=1

C>1

Page 37: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Interrelations between different interacting problems

CBs

Lattices withhomogeneous flux

Flux Lattices

insertion of flux quanta through plaquettes

Magnetic Fields & Landau Levels

FQHE

FCI

FQHE in lattices

FQHE ?

C>1

C=1

addition of oscillatorymagnetic field density

leaves LLL intact:should be adiabatic

C>1

Page 38: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Interrelations between different interacting problems

CBs

Lattices withhomogeneous flux

Flux Lattices

insertion of flux quanta through plaquettes

Magnetic Fields & Landau Levels

FQHE

FCI

FQHE in lattices

FQHE ?

C>1

C=1

addition of oscillatorymagnetic field density

leaves LLL intact:should be adiabatic

adiabatically turning onlattice confinement

C>1

Page 39: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Interrelations between different interacting problems

CBs

Lattices withhomogeneous flux

Flux Lattices

insertion of flux quanta through plaquettes

Magnetic Fields & Landau Levels

FQHE

FCI

FQHE in lattices

FQHE ?

C>1

C=1

adiabatic continuation(Wannier or Bloch basis)

addition of oscillatorymagnetic field density

leaves LLL intact:should be adiabatic

adiabatically turning onlattice confinement

X.-L. Qi (2011), Wu et al (2012), Scaffidi & Möller PRL (2012),Liu & Bergholtz PRB (2013)

C>1

Page 40: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Numerical evidence for “Fractional Chern Insulators”

• existence of a gap & groundstate degeneracy [checkerboard lattice]• chern number of groundstate manifold

[D. Sheng]

Page 41: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Numerical evidence for “Fractional Chern Insulators”

• existence of a gap & groundstate degeneracy [checkerboard lattice]• chern number of groundstate manifold

[D. Sheng]

Page 42: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Numerical evidence for “Fractional Chern Insulators”

• Finite size scaling of gap

“Fractional Chern Insulators (FCI)” [N. Regnault & A. Bernevig, PRX ’11]

• Particle Entanglement Spectra : count of excitations matches FQHE (here - Laughlin state)

• existence of a gap & groundstate degeneracy [checkerboard lattice]

• chern number of groundstate manifold [D. Sheng]

Page 43: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Numerical evidence for “Fractional Chern Insulators”

• Strong numerical evidence for QHE physics, but no clear organising principle for different lattice models

• Finite size scaling of gap

“Fractional Chern Insulators (FCI)” [N. Regnault & A. Bernevig, PRX ’11]

• Particle Entanglement Spectra : count of excitations matches FQHE (here - Laughlin state)

• existence of a gap & groundstate degeneracy [checkerboard lattice]

• chern number of groundstate manifold [D. Sheng]

Page 44: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Understanding Fractional Quantum Hall states

φm ∝ zme−|z|2/40

• Single particle states are analytic functions in symmetric gauge A =1

2r ∧ B

• Many particle states are still analytic functions - can write explicitly!

zj = xj + iyj

Ψν= 1m

=

i<j

(zi − zj)me−

i |zi|

2/40e.g. Laughlin:

Page 45: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Understanding Fractional Quantum Hall states

φm ∝ zme−|z|2/40

• Single particle states are analytic functions in symmetric gauge A =1

2r ∧ B

• Many particle states are still analytic functions - can write explicitly!

zj = xj + iyj

Ψν= 1m

=

i<j

(zi − zj)me−

i |zi|

2/40e.g. Laughlin:

• Wavefunctions are nice! Can understand many features

" Quasiparticle excitations: charge / statistics" Incompressibility

" Correlations / You name the observable...

Page 46: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Understanding Fractional Quantum Hall states

φm ∝ zme−|z|2/40

• Single particle states are analytic functions in symmetric gauge A =1

2r ∧ B

• Many particle states are still analytic functions - can write explicitly!

zj = xj + iyj

Ψν= 1m

=

i<j

(zi − zj)me−

i |zi|

2/40e.g. Laughlin:

• Wavefunctions are nice! Can understand many features

" Quasiparticle excitations: charge / statistics" Incompressibility

" Correlations / You name the observable...

Can we construct wavefunctions

forChern Insulators?

Page 47: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Mapping from FQHE to FCI: Single Particle Orbitals

FCIFQHE

• Proposal by X.-L. Qi [PRL ’11]: Get FCI Wavefunctions by mapping single particle orbitals

Page 48: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Mapping from FQHE to FCI: Single Particle Orbitals

FCIFQHE

• Proposal by X.-L. Qi [PRL ’11]: Get FCI Wavefunctions by mapping single particle orbitals

• Idea: use Wannier states which are localized in the x-direction• keep translational invariance in y (cannot create fully localized Wannier state if C>0!)

|W (x, ky) =

kx

f(x,ky)kx

|kx, ky

Page 49: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Mapping from FQHE to FCI: Single Particle Orbitals

FCIFQHE

• Proposal by X.-L. Qi [PRL ’11]: Get FCI Wavefunctions by mapping single particle orbitals

• Idea: use Wannier states which are localized in the x-direction• keep translational invariance in y (cannot create fully localized Wannier state if C>0!)

• Qi’s Proposition: using a mapping between the LLL eigenstates (QHE) and localized Wannier states (FCI), we can establish an exact mapping between their many-particle wavefunctions

|W (x, ky) =

kx

f(x,ky)kx

|kx, ky

1:1

Page 50: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Mapping from FQHE to FCI: Single Particle Orbitals

FCIFQHE

• Proposal by X.-L. Qi [PRL ’11]: Get FCI Wavefunctions by mapping single particle orbitals

• Idea: use Wannier states which are localized in the x-direction• keep translational invariance in y (cannot create fully localized Wannier state if C>0!)

• Qi’s Proposition: using a mapping between the LLL eigenstates (QHE) and localized Wannier states (FCI), we can establish an exact mapping between their many-particle wavefunctions

|W (x, ky) =

kx

f(x,ky)kx

|kx, ky

1:1

?

Page 51: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Wannier states in Chern bands

H =

k a†k,αhαβ(k)ak,β

• Some formalism

α = 1 α = 2

α = 3

c†k,α =1√N

R

eik·(R+δα)c†R,α

hαβ(k)unβ(k) = n(k)u

nα(k)

• construction of a Wannier state at fixed ky

A(n,k) = −i

α

un∗α (k)∇ku

nα(k)

Hamiltonian

Eigenstates

Berry connection

|W (x, ky) =χ(ky)√

Lx

kx

e−i kx0 Ax(px,ky)dpx × eikx

θ(ky)2π × e−ikxx|kx, ky

Fourier transform

Page 52: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Wannier states in Chern bands

H =

k a†k,αhαβ(k)ak,β

• Some formalism

α = 1 α = 2

α = 3

c†k,α =1√N

R

eik·(R+δα)c†R,α

hαβ(k)unβ(k) = n(k)u

nα(k)

• construction of a Wannier state at fixed ky in gauge with

A(n,k) = −i

α

un∗α (k)∇ku

nα(k)

Hamiltonian

Eigenstates

Berry connection

Fourier transform

|W (x, ky) =χ(ky)√

Lx

kx

e−i kx0 Ax(px,ky)dpx × eikx

θ(ky)2π × e−ikxx|kx, ky

‘Parallel transport’ of phase

Berry connection indicates changeof phase due to displacement in BZ

Ay = 0

Page 53: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Wannier states in Chern bands

H =

k a†k,αhαβ(k)ak,β

• Some formalism

α = 1 α = 2

α = 3

c†k,α =1√N

R

eik·(R+δα)c†R,α

hαβ(k)unβ(k) = n(k)u

nα(k)

• construction of a Wannier state at fixed ky in gauge with

A(n,k) = −i

α

un∗α (k)∇ku

nα(k)

Hamiltonian

Eigenstates

Berry connection

Fourier transform

|W (x, ky) =χ(ky)√

Lx

kx

e−i kx0 Ax(px,ky)dpx × eikx

θ(ky)2π × e−ikxx|kx, ky

‘Parallel transport’ of phase ‘Polarization’

ensures periodicity of WF in ky # ky + 2!

Berry connection indicates changeof phase due to displacement in BZ

Ay = 0

Page 54: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Wannier states in Chern bands

H =

k a†k,αhαβ(k)ak,β

• Some formalism

α = 1 α = 2

α = 3

c†k,α =1√N

R

eik·(R+δα)c†R,α

hαβ(k)unβ(k) = n(k)u

nα(k)

• construction of a Wannier state at fixed ky in gauge with

A(n,k) = −i

α

un∗α (k)∇ku

nα(k)

Hamiltonian

Eigenstates

Berry connection

Fourier transform

|W (x, ky) =χ(ky)√

Lx

kx

e−i kx0 Ax(px,ky)dpx × eikx

θ(ky)2π × e−ikxx|kx, ky

‘Parallel transport’ of phase ‘Polarization’

ensures periodicity of WF in ky # ky + 2!

Berry connection indicates changeof phase due to displacement in BZ

Ay = 0

ky-dependent phase factor, or `gauge’

More on gauge of Wannier orbitals: Y-L Wu, A. Bernevig, N. Regnault, PRB (2012)

Page 55: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Wannier states in Chern bands

• construction of a Wannier state at fixed ky in gauge with

Fourier transform

|W (x, ky) =χ(ky)√

Lx

kx

e−i kx0 Ax(px,ky)dpx × eikx

θ(ky)2π × e−ikxx|kx, ky

‘Parallel transport’ of phase ‘Polarization’

ensures periodicity of WF in ky # ky + 2!

Berry connection indicates changeof phase due to displacement in BZ

Ay = 0

• or, more simply we can think of the Wannier states as the eigenstates of the position operator

Xcg|W (x, ky) = [x− θ(ky)/2π]|W (x, ky)

• role of polarization: displacement of centre of mass of the Wannier state

Xcg = limqx→0

1

i

∂qxρqx

θ(ky) =

0Ax(px, ky)dpx

Page 56: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

H =− t1

rr

a†rar + h.c.

− t2

rr

a†rare

iφrr + h.c.

− t3

rr

a†rar + h.c.

+

U

2

r

nr(nr − 1)

An example: The Haldane Model

• tight binding model on hexagonal lattice• with fine-tuned hopping parameters: obtain flat lower band

t1 = 1, t2 = 0.60, t2 = −0.58 and φ = 0.4π

Page 57: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Conventions for numerical evaluation

Real Space Reciprocal Space

G1 = 2πex/L1 sin(γ)

G2 = 2π[− cot(γ)ex + ey]/L2

v1 = sin(γ)ex + cos(γ)ey

v2 = ey

nx = 0 Lx − 1

Ly − 1

ny = 0

unβ(k+ LiGi) = un

β(k)• choose ‘periodic’ gauge with Bloch functions:

A few remarks:

Anx(q1, q2) = log [un∗

α (q1, q2)unα(q1 + 1, q2)]• use discretized Berry connection

kx

0Ax(px, ky)dpx →

q1(kx)

q1=0

Anx(q1, q2)

• discretize its integrals by the rectangle rule

Page 58: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Qi’s Mapping

• Can introduce a canonical order of states with monotonously increasing position:

Ky = ky + 2πx = 2πj/Ly

j = ny + Lyx = 0, 1, ..., Nφ − 1

ky = 2πny/Ly

• Increase in position for ky # ky + 2! = Chern-number C, as

∂kyXcg|x = − 1

∂θ(ky)

∂ky=

0B(px, ky)dpx

Y-L Wu, A. Bernevig, N. Regnault, PRB (2012)

More on Wannier states:

Z. Liu & E. Bergholtz, PRB 2013

Page 59: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Case study: Bosons with contact interactions

Hint ∝

i<j

δ(ri − rj)

• Landau level momentum conserved:

• Linearized momentum

H =

j1,j2,j3,j4

Vj1j2;j3j4 c†j1c†j2 cj3 cj4

expand Hamiltonian in single-particle orbitals (finite size, periodic boundary conditions)

Vj1j2;j3j4 ∝ δj1+j2, j3+j4 Vj1j2;j3j4 ∝ δ mod Lxj1+j2, j3+j4

Ky = ky + 2πx = 2πj/Ly

kmaxy = Nφ − 1 Kmax

y = Lx × Ly − 1

T. Scaffidi, GM, PRL (2012)[arxiv:1207.3539]

Page 60: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Case study: Bosons with contact interactions

Hint ∝

i<j

δ(ri − rj)

• Landau level momentum conserved:

• Linearized momentum

H =

j1,j2,j3,j4

Vj1j2;j3j4 c†j1c†j2 cj3 cj4

expand Hamiltonian in single-particle orbitals (finite size, periodic boundary conditions)

Vj1j2;j3j4 ∝ δj1+j2, j3+j4 Vj1j2;j3j4 ∝ δ mod Lxj1+j2, j3+j4

Different conservation laws # Problems live in different Hilbert spaces

Ky = ky + 2πx = 2πj/Ly

kmaxy = Nφ − 1 Kmax

y = Lx × Ly − 1

T. Scaffidi, GM, PRL (2012)[arxiv:1207.3539]

Page 61: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Matrix elements in the Wannier basis

Hint ∝

i<j

δ(ri − rj)

Ky = ky + 2πx = 2πj/Ly

HFCI =

ky1,ky2,ky3,ky4x1,x2,x3,x4

ky1+ky2=ky3+ky4

c†W (ky1,x1)c†W (ky2,x2)

cW (ky3,x3)cW (ky4,x4)

kx1,kx2,kx3,kx4kx1+kx2=kx3+kx4

f∗(x1,ky1 )kx1

f∗(x2,ky2)kx2

f(x3,ky3)kx3

f(x4,ky4)kx4

a=A,B

u∗aα0(k1)u

∗aα0(k2)u

aα0(k3)u

aα0(k4)

Vj1j2;j3j4

Page 62: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Case study: Bosons with contact interactions

-6

-5

-4

-3

-2

-1

0

-6

-5

-4

-3

-2

-1

0

FCIFQHE

• Magnitude of two-body matrix elements for delta interactions in the Haldane model

• System shown: two-body interactions for N = 6, Lx × Ly = 3× 4

Ktoty = 0 Ktot

y = 4 Ktoty = 8 Ktot

y = 0 Ktoty = 4 Ktot

y = 8

Kto

ty

=0

Kto

ty

=4

Kto

ty

=8

Kto

ty

=0

Kto

ty

=4

Kto

ty

=8

• Matrix elements differ in magnitude, but overall similarities are present• Different block-structure due to non-conservation of linearized momentum Ky

Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012) [arxiv:1207.3539]

• Lack of translational invariance of matrix elements in momentum space

V (ri − rj) ∝ δ(ri − rj)

lnVαα lnVαα

Page 63: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Reduced translational invariance in Ky

• A closer look at some short range hopping processes

Ky

Ky

Ky

• for FCI: hopping amplitudes depend on position of centre of mass / Ky

Center of mass position

|V|2

0 2 4 6 8 100

0.5

1

K1y +K2

y

Page 64: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Interpolating in the Wannier basis

• Can write both states in single Hilbert space with the same overall structure (indexed by Ky) and study the low-lying spectrum numerically (exact diagonalization)

• Can study adiabatic deformations from the FQHE to a fractionally filled Chern band

Th. Scaffidi & GM, Phys. Rev. Lett. (2012)

H(x) =∆FCI

∆FQHE

(1− x)HFQHE + xHFCI

FQHE of Bosons at

ν = 1/2

x = 0 x = 1

Laughlin state Same topological phase?

Half filled band of the (flattened) Haldane-model

B

• Here: look at half-filled band for bosons

Page 65: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

|Ψ(x)|Φ|2 |PkGS |Ψ|2

0 0.2 0.4 0.6 0.8 1x0.7

0.8

0.9

1

N=6, 3 x 4N=6, 4 x 3N=8, 4 x 4N=10,4 x 5

0 0.2 0.4 0.6 0.8 1x0.7

0.8

0.9

1

Evaluating the accuracy of the Wannier states: Overlaps

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv:1207.3539]

Overlap Weight in GS sector

FCI FCIFQHEFQHE

Bosons at ν = 1/2

• Can write both states in single Hilbert space with the same overall structure (indexed by Ky) and study the low-lying spectrum numerically (exact diagonalization)

• Can study adiabatic deformations from the FQHE to a fractionally filled Chern band

H(x) =∆FCI

∆FQHE

(1− x)HFQHE + xHFCI

Page 66: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Adiabatic continuation in the Wannier basis

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

E

x

x2

0

0.025

0.05

0.075

0 1 2 3 4

ky

x2

0 5 10 15

0

0.025

0.05

0.075

Ky

1

FQHE FCI

• Spectrum for N=10:

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv:1207.3539]

Page 67: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Adiabatic continuation in the Wannier basis

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

E

x

x2

0

0.025

0.05

0.075

0 1 2 3 4

ky

x2

0 5 10 15

0

0.025

0.05

0.075

Ky

1

FQHE FCI FQHE FCI

• Spectrum for N=10: • Gap for different system sizes & aspect ratios:

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv:1207.3539]

Page 68: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Adiabatic continuation in the Wannier basis

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

E

x

x2

0

0.025

0.05

0.075

0 1 2 3 4

ky

x2

0 5 10 15

0

0.025

0.05

0.075

Ky

1

• We confirm the Laughlin state is adiabatically connected to the groundstate of the half-filled topological flat band of the Haldane model

FQHE FCI FQHE FCI

• Spectrum for N=10: • Gap for different system sizes & aspect ratios:

• Clean extrapolation to the thermodynamic limit - (unlike overlaps)

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv:1207.3539]

Page 69: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Entanglement spectra and quasiparticle excitations

|Ψ =

i

e−ξ,i/2|ΨA,i ⊗ |ΨB

,i

credit: A. Sterdyniak et al. PRL 2011

• Entanglement spectrum: arises from Schmidt decomposition of ground state into two groups A, B => Schmidt eigenvalues ξ plotted over quantum numbers for symmetries within each block

Dominant (universal) eigenvalues of PES yield count of excited states - and their wavefunctions - from groundstate wavefunction only!

Laughlin, N=8, NA=4

Page 70: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Entanglement spectra and quasiparticle excitations

|Ψ =

i

e−ξ,i/2|ΨA,i ⊗ |ΨB

,i

credit: A. Sterdyniak et al. PRL 2011

• Entanglement spectrum: arises from Schmidt decomposition of ground state into two groups A, B => Schmidt eigenvalues ξ plotted over quantum numbers for symmetries within each block

Dominant (universal) eigenvalues of PES yield count of excited states - and their wavefunctions - from groundstate wavefunction only!

Laughlin, N=8, NA=4

Page 71: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

FCI: Adiabatic continuation of the entanglement spectrum

|Ψ =

i

e−ξ,i/2|ΨA,i ⊗ |ΨB

,i

Dictionary:

Total #eigenvalues below entanglement gap = 804 + 800 + 800 + 800 + 800

Total #eigenvalues below entanglement gap = 4x(201 + 200 + 200 + 200 + 200)

Same number of states for all x

‘Infinite’ entanglementgap for pureLaughlin state

FQHE FCI

N = 10

NA = 5

Ktoty

x

ktotT

Th. Scaffidi & GM, Phys. Rev. Lett. (2012) [arxiv:1207.3539]

Page 72: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Finite size behaviour of entanglement gap

• The entanglement gap remains open for all values of the interpolation parameter k• Finite size scaling behaviour encouraging, but analytic dependency on system size unknown

FQHE FCI

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

!-G

ap

"

N = 10,4!5N = 10,5!4

N = 8,4!4N = 6,3!4N = 6,4!3

Page 73: Adiabatic connection of Fractional Chern Insulators to ... · A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012) Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012)

Gunnar Möller University of Leeds, November 21, 2012

Conclusions: FCI wavefunctions from Wannier states

• Wavefunctions of FCI’s in the Wannier basis are similar but not identical to FQH states in the Landau gauge

• We demonstrated the adiabatic continuity of the ground states at ν=1/2 using Qi’s mapping between Wannier basis and FQH eigenstates

• FCI wavefunctions not very accurate for the Haldane model (higher overlaps in models with N>2 sublattices)

higher overlaps also by explicit gauge fixing, see: Wu, Regnault, Bernevig, PRB (2012)

Th. Scaffidi & GM, Phys. Rev. Lett. 109, 246805 (2012) [arxiv:1207.3539]