adaptive learning gravity inversion for 3d salt body imaging fernando j. s. silva dias valéria c....

44
Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal University of Pará

Upload: derrick-gregory

Post on 13-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Adaptive learning gravity inversion for

3D salt body imagingFernando J. S. Silva Dias

Valéria C. F. Barbosa National Observatory

João B. C. SilvaFederal University of Pará

Page 2: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

• Introduction and Objective

• Methodology

• Real Data Inversion Result

• Conclusions

• Synthetic Data Inversion Result

Content

Page 3: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Introduction

Brazilian sedimentary

basin

Seismic and gravity data are combined to interpret salt bodies

Page 4: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

IntroductionWhere is the base of the salt body ?

Top of the salt body

It is much harder to “see” what lies beneath salt bodies.

Page 5: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Oezsen (2004)

We adapted the 3D gravity inversion through an adaptive learning procedure (Silva Dias et al., 2007) to estimate the

shape of salt bodies.

Starich et al. (1994) Yarger et al. (2001)

Huston et al. (2004)

Methods that reconstruct 3D (or 2D) salt bodies from gravity data

Interactive gravity forward modeling:

Gravity inversion methods

Bear et al. (1995)

Krahenbuhl and Li (2006)

Jorgensen and Kisabeth (2000)

Routh et al. (2001) Moraes and Hansen (2001)

Objective

Page 6: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Methodology

• Forward modeling of gravity anomalies

• Inverse Problem

• Adaptive Learning Procedure

Page 7: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Gravity anomaly

x

y

z

3D salt body

Source Region

Forward modeling of gravity anomalies

y

xD

epth

Page 8: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

y

z

Dep

th

x

Source Region

dy

dzdx

The source region is divided into an mx × my× mz grid

of M 3D vertical juxtaposed prisms

Forward modeling of gravity anomalies

Page 9: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

x

Observed gravity anomaly

y

z

Dep

th

Source Region

To estimate the 3D density-contrast distribution

y

x

Forward modeling of gravity anomalies

Page 10: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

The vertical component of the gravity field produced by the

density-contrast distribution (r’):

)(g ir )'(rV

i

''

'3

i dvzz

rr

Methodology

The discrete forward modeling operator for the gravity anomaly can be expressed by:

g A p

''

')( 3

jVi

iiij dv

zzA

rrr

where(N x 1) (M x 1)(NxM)

Page 11: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Methodology

2

Ago 1N

g

The unconstrained Inverse Problem

The linear inverse problem can be formulated by

minimizing

ill-posed problem

p

Page 12: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

x

y

z Source Region

Dep

thMethodology

Concentration of salt mass about specified

geometric elements (axes and points)

3D salt body

Page 13: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

z

Dep

th

3D salt body

Homogeneous salt body embedded in homogeneous sediments

Methodology

First-guess skeletal outline of the salt body

Only one target density contrast

g/cm3

homogeneous sediments

Page 14: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Homogeneous salt body embedded in a heterogeneous sedimentary pack

zHeterogeneous

sedimentary pack

Dep

th

3D salt body

Methodology

A reversal 3D density-contrast distribution

Page 15: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

z

Dep

th Heterogeneous salt body

Methodology

Homogeneous sediments

g/cm3g/cm3

g/cm3

g/cm3

Heterogeneous salt body embedded in homogeneous sediments

First-guess skeletal outline of a particular homogeneous section of the salt body

A reversal 3D density-contrast distribution

Page 16: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

MethodologyIterative inversion method consists of two nested iterative loops:

The outer loop: adaptive learning procedure

The inner loop: Iterative inversion method fits the gravity data satisfies two constraints:

• Density contrast values: zero or a nonnull value.

• Concentration of the estimated nonnull density contrast

about a set of geometric elements (axes and points)

• Coarse interpretation model

• first-guess geometric elements (axes and points)

• corresponding target density contrasts

x

y

z

x

y

z

pjtargetg/

cm3

x

z

y

• refined interpretation model

• new geometric elements (points)

• corresponding target density contrasts

Page 17: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

The inversion method of the inner loop estimates

iteratively the constrained parameter correction Δp by

Minimizing

Subject to

Methodology

Δp2 )( k

W )( k1/2

p

and updates the density-contrast estimates by

2 Ago 1

NΔp )(po +

)( k )( k

)()()1( ˆˆ kkk pΔpp o

)(

3

ˆ k-1j

jjj

p

dwWp

)( k1/2 )( k1/2

={ }Prior reference vector

Page 18: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

}{min1 N

jdE

d j

MjNzezyeyxd Ejjj ,,1,,,1)()((2/1222

xe )j

Methodology

z

y

x

xe

)

ye, , ze)

jd

The method defines dj as the

distance from the center of the

j th prism to the

closest geometric elementclosest geometric element

d j

Inner loop

Page 19: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Adaptive Learning Procedure

• Interpretation model

• Geometric elements

• Associated target density contrasts

Outer Loop

Page 20: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

static geologic

reference model

x

y

z

OUTER LOOP:First Iteration OUTER LOOP: Second Iteration

New geometric elements (points) and associated target density contrasts

Dynamic geologic reference model

Adaptive Learning Procedure

INNER LOOP:

First density-contrast distribution estimate

New interpretation model

Each 3D prism is divided

First interpretation model first-guess geometric elements and associated

target density contrasts

Page 21: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Inversion of Synthetic Data

Page 22: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Noise-corrupted gravity anomaly

Synthetic example with a variable density contrast

-1 0 1 2 3 4 5 6 7

y (km)

1

2

3

4

5

6

7

8

9x

(km

)

-0.1

0.1

0.3

0.5

mGal

Page 23: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Homogeneous salt dome with density of 2.2 g/cm3 embedded in five sedimentary layers

Synthetic example with a variable density contrast

with density varying with depth from 1.95 to 2.39 g/cm3.D

epth

3D salt body

1.5 km Nil zone

1.95 g/cm3

2.39 g/cm3

Page 24: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Synthetic example with a variable density contrast

Density contrast (g/cm3)

Dep

th (

km)

The true reversal 3D density-contrast distribution

abovebelow

Page 25: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

The blue axes are the first-guess skeletal outlines: static geologic reference model

Synthetic example with a variable density contrast

Page 26: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Synthetic example with a variable density contrast

True Salt Body

Estimated Salt

Body

Interpretation model at the fourth iteration: 80×72×40 grid of 3D prisms.

Page 27: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Synthetic example with a variable density contrast

Estimated Salt BodyFitted anomaly

-1 0 1 2 3 4 5 6 7y (km)

1

2

3

4

5

6

7

8

9

x(k

m)

Page 28: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Real Gravity Data

Galveston Island salt dome

Texas

Page 29: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Localization of Galveston Island salt dome

Study area

Page 30: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Localization of Galveston Island salt dome

Study area

Location map of the study area (after Fueg, 1995; Moraes and Hansen, 2001)

Page 31: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Galveston Island salt dome

(UTM15)km E

NBouguer anomaly maps

(UTM15) km E N

314 320 326 332

3134

3136

3138

3140

3142

3144

3146

3148

3150

3152

-1.4-0.212.2mGalFueg’s (1995)

density models

Page 32: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Galveston Island salt domeD

epth

(km

)

0.08 0.00 (g/cm3)

0.20 (g/cm3)

0.10 (g/cm3)

0.06 (g/cm3)

0.02 (g/cm3)

- 0.04 (g/cm3)

- 0.08 (g/cm3)

- 0.13 (g/cm3)

0.15

0.5

0.8

1.2

1.5

2.0

3.4

Dep

th (

km)

0.08 0.00 (g/cm3)

0.20 (g/cm3)

0.10 (g/cm3)

0.06 (g/cm3)

0.02 (g/cm3)

- 0.04 (g/cm3)

- 0.08 (g/cm3)

- 0.18 (g/cm3)

0.15

0.5

0.8

1.2

1.5

2.0

3.2

2.6

3.83.9 - 0.23 (g/cm3)

- 0.13 (g/cm3)

First static geologic reference model based on Fueg’s (1995) density models

The first geologic hypothesis about the salt dome

Page 33: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Galveston Island salt domeThe first estimated reversal 3D density-contrast distribution

Page 34: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Dep

th (

km)

0.04 0.00 (g/cm3)

0.19 (g/cm3)

0.08 (g/cm3)

- 0.04 (g/cm3)

0.31

0.35

1.2

2.0

2.2 - 0.13 (g/cm3)

Galveston Island salt dome

(UTM15) km E N

314 320 326 332

3134

3136

3138

3140

3142

3144

3146

3148

3150

3152

-1.4-0.212.2mGal

The second geologic hypothesis about the salt dome

Page 35: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Galveston Island salt domeThe second estimated reversal 3D density-contrast distribution

Density contrast (g/cm3)

-0.13 -0.042 0.045 0.13 0.22

Overhang

Page 36: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Conclusions

Page 37: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Adaptive learning gravity inversion for 3D salt body imaging

Page 38: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Thank You

We thank Dr. Roberto A. V. Moraes and Dr. Richard O. Hansen for providing the

real gravity data

Page 39: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Extra Figures

1 CPU ATHLON with one core and 2.4 GHertz and 1 MB of  cache L22GB of  DDR1 memory

Page 40: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Large source surrounding a small sourceThe red dots are the first-guess skeletal outlines:

static geologic reference model

(a)

(b)

Silva Dias et al. Fig. 8

Estimated density contrast (g/cm3)0.1 0.2 0.3 0.4 0.5

Page 41: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

(a)

(b)

Silva Dias et al. Fig. 8

Estimated density contrast (g/cm3)0.1 0.2 0.3 0.4 0.5

Large source surrounding a small sourceFifth iteration

interpretation model: 48×48×24 grid of 3D prisms.

Page 42: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Multiple buried sources at different depths The points are the first-guess skeletal outlines:

static geologic reference model

density contrast (g/cm3)

0.15 g/cm3

0.3g/cm3

0.4 g/cm3

Third iteration Interpretation model: 28×48×24 grid of 3D prisms.

Silva Dias et al. Fig. 8

(d)

(e)

0.15 0.2 0.3 0.4Estimated density contrast (g/cm3)

Silva Dias et al. Fig. 8

(d)

(e)

0.15 0.2 0.3 0.4Estimated density contrast (g/cm3)

Page 43: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Methodology

Penalization Algorithm:

)(ˆ kjp

jp target

0 (g/cm3)

jp target 0 (g/cm3)

• For positive target density contrast

• For negative target density contrast

)(ˆ kjp

)(ˆ kjp )(ˆ k

jp

jjwp

)( k1/2

=

target

jp or 0 (g/cm3)

)(ˆ kpΔ)(kp o )1(ˆ kp

( k )

op

j

Page 44: Adaptive learning gravity inversion for 3D salt body imaging Fernando J. S. Silva Dias Valéria C. F. Barbosa National Observatory João B. C. Silva Federal

Methodology

Penalization Algorithm:

jp target

0 (g/cm3)

jp target

0 (g/cm3)

• For positive target density contrast

• For negative target density contrast

)(ˆ kjp

)()()1( ˆˆ kkk pΔpp o

pjtarget

2

pjtarget

2

)(ˆ kjp)(ˆ k

jp

)(ˆ kjp

target

jp( k )

op

j

( k )

op

j

0 (g/cm3)

)(

3

ˆ k-1

j

j

jj p

dwp

)( k1/2

=)(ˆ k

jp

)(ˆ kjp