adapted from notes by ece 5317-6351 prof. jeffery t ...courses.egr.uh.edu/ece/ece5317/class...

46
Prof. David R. Jackson Dept. of ECE Notes 12 ECE 5317 - 6351 Microwave Engineering Fall 2019 Waveguiding Structures Part 7: Transverse Equivalent Network (TEN) 1 Adapted from notes by Prof. Jeffery T. Williams

Upload: others

Post on 14-Dec-2020

20 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Prof. David R. JacksonDept. of ECE

Notes 12

ECE 5317-6351 Microwave Engineering

Fall 2019

Waveguiding Structures Part 7:Transverse Equivalent Network (TEN)

1

Adapted from notes by Prof. Jeffery T. Williams

Page 2: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Waveguide Transmission Line ModelOur goal is to come up with a transmission line model for a waveguide mode.

The waveguide mode is not a TEM mode, but it can be modeled as a wave on a

transmission line.

2

x

y

z

ab

I

+- V z

“Transverse Equivalent Network” model of TE10 waveguide mode

Page 3: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

For a waveguide mode, voltage and current are not uniquely defined.

10 sin zjk zyE E x e

aπ − =

( ) ( ) 10 00

, , sin sinz z

B bjk z jk z

AB yA

V x z V x z E dr E dy E b x e V x ea aπ π− − = = ⋅ = = = ∫ ∫

The voltage depends on x!

TE10 Mode

3

Waveguide Transmission Line Model (cont.)

( )yE x

x

y

b

a

A

B

-

+V

( )0 10 / 2,0V E b V a≡ =

x

y

z

ab

Page 4: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

( )( , , ) ( , ) z zjk z jk zt t A AE x y z e x y e e+ − +−= +

1 ˆ( )t tw

H z EZ

± ±= ± ×

( )( , , ) ( , ) z zjk z jk zt t A AH x y z h x y e e+ − +−= −

Wave impedance

w TE TMZ Z Z= or

Examine the transverse (x, y) fields of a waveguide mode:

Note: The minus sign above arises from:

4

Modal amplitudes

Waveguide Transmission Line Model (cont.)

TEz

Zkωµ

≡ zTM

c

kZωε

=

1 ˆ( , ) ( )t tw

h x y z eZ

= ×Note:

The shape function et (x,y) has an arbitrary amplitude normalization.

Page 5: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Introduce a defined voltage into the field equations:

( )0 01

1( , , ) ( , ) z zjk z jk zt tE x y z e Vx y e V e

C+ −− += +

( )0 01

1( , , ) ( , ) z zjk z jk zt tH x y z h Vx y e V e

C+ −− += −

0 1V C A± ±≡

5

We may use whatever definition of voltage we wish here. (In other words, C1 is arbitrary.)

Waveguide Transmission Line Model (cont.)

We then have:

Page 6: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

0 0

0 02

1( , , ) ( , ) z zjk z jk zt t

VH x y z h x y eVC Z Z

e−+ −

+ = −

Next, introduce a characteristic impedance (having an arbitrary value)into the equations:

0 0

0

0

1 0

( , , ) ( , ) z zjk z jk zt t

ZH x y z h x y eV V eC Z Z

− ++ −

= −

6

Waveguide Transmission Line Model (cont.)

12

0

CCZ

where

Page 7: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Summary of Fields

( )0

)

1

(

01( , , ) ( , ) z zjk

V z

z jk zt tE x y z e x y V e V e

C− ++ −= +

0 0

2 0

(

0

)

1( , , ) ( , ) z z

I

jk

z

z jk zt t

V VH x y z h x y e eC Z Z

+ −− +

= −

7

Waveguide Transmission Line Model (cont.)

The z dependence of the transverse fields behaves like voltage and current on a transmission line.

Page 8: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

The transmission-line model is called the Transverse Equivalent Network (TEN)

model of the waveguide.

8

Waveguide Transmission Line Model (cont.)

( )I z

+- 0 , zZ k( )V z z

TEN

Waveguide

t

t

E VH I

⇔⇔

same kz

Page 9: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Power flow down the waveguide (complex power):

( ) ( )

( ) ( ) ( )

WG *

* **

1 2

1 ˆ2

1 1 ˆ( , ) ( , )2

t tS

t tS

P z E H z dS

V z I z e x y h x y z dSC C

= × ⋅

= × ⋅

( ) ( ) ( )WG TEN **

1 2

1 ˆ( , ) ( , )t tS

P z P z e x y h x y z dSC C

= × ⋅

9

Waveguide Transmission Line Model (cont.)

Complex power flowing down the TEN transmission line.

Page 10: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Assume we choose to have:

( )* *1 2 ˆ( , ) ( , )t t

S

C C e x y h x y z dS= × ⋅∫

( ) ( )WG TENP z P z=

Then we have the following constraint:

10

Waveguide Transmission Line Model (cont.)

It is not necessary to make this assumption of equal powers, but it is a useful choice that can be made (we will adopt this choice).

Page 11: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Summary of Constants(assuming equal powers)

( )* *1 2 ˆ( , ) ( , )t t

S

C C e x y h x y z dS= × ⋅∫

10

2

C ZC

=

The most common choice: 0 wZ Z=

Once we pick Z0, the constants are determined.

11

Waveguide Transmission Line Model (cont.)

Page 12: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Summary

( )0

)

1

(

01( , , ) ( , ) z zjk

V z

z jk zt tE x y z e x y V e V e

C− ++ −= +

0 0

2 0

(

0

)

1( , , ) ( , ) z z

I

jk

z

z jk zt t

V VH x y z h x y e eC Z Z

+ −− +

= −

12

Waveguide Transmission Line Model (cont.)

( )* *1 2 ˆ( , ) ( , )t t

S

C C e x y h x y z dS= × ⋅∫

10

2

C ZC

= ( )0 wZ Z= most common choice

1 ˆ( , ) ( )t tw

h x y z eZ

= × w TE TMZ Z Z= or

TEz

Zkωµ

zTM

c

kZωε

=

Page 13: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

TE10 Mode of Rectangular Waveguide

Choose Z0 = ZTE

Assume power equality

13

We make the following choices:

010TEz

Zkωµ

=

210 2zk k

aπ = −

ck ω µε=

1

2TE

C ZC

=

( )* *1 2 ˆ( , ) ( , )t t

S

C C e x y h x y z dS= × ⋅∫

x

y

z

ab

Page 14: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

* 21 2 *

2*

0 0

*

1 sin

1 sin

12

TESa b

TE

TE

xC C dSZ a

x dydxZ a

abZ

π

π

=

=

=

∫ ∫

14

TE10 Mode (cont.)

10

ˆ sin

1ˆ sin

t

tTE

TEz

e y xa

h x xZ a

Zk

π

π

ωµ

=

= −

=

( )* *1 2 ˆ( , ) ( , )t t

S

C C e x y h x y z dS= × ⋅∫

so

x

y

z

ab

Note:The transverse shape function et has been chosen (arbitrarily) to have a unit amplitude

at the center of the waveguide.

Calculate this term:

Page 15: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

*1 2 *

12TE

abC CZ

=

1

2TE

C ZC

=

Solution:

1

2

21

2TE

abC

abCZ

=

=

Take the conjugate of the second one and then multiply the two equations together.

Note: The solution is unique to within a

phase term (we choose the phase to be zero here).

15

10

ˆ sin

1ˆ sin

t

tTE

TEz

e y xa

h x xZ a

Zk

π

π

ωµ

=

= −

=

21 2

abC =

TE10 Mode (cont.)

x

y

z

ab

We have:

Page 16: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

16

TE10 Mode (cont.)

( )0

)

1

(

01( , , ) ( , ) z zjk

V z

z jk zt tE x y z e x y V e V e

C− ++ −= +

0 0

2 0

(

0

)

1( , , ) ( , ) z z

I

jk

z

z jk zt t

V VH x y z h x y e eC Z Z

+ −− +

= −

1

2

21

2TE

abC

abCZ

=

=

Recall:

( )0 0

( )

2 ˆ( , , ) sin z z

V z

jk z jk ztE x y z y x V e V e

ab a− ++ −π = +

)

0 0

(

2 1ˆ( , , ) sin z zjk z

I

jk zt TE

TE TE TE

z

V VH x y z Z x x e eab Z a Z Z

+ −− + π = − −

Hence:10

ˆ sin

1ˆ sin

t

tTE

TEz

e y xa

h x xZ a

Zk

π

π

ωµ

=

= −

=

Page 17: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

17

TE10 Mode (cont.)

( ))

0

(

02ˆ( , , ) sin z zjk z jk z

V z

tE x y z y x V e V eab a

− ++ −π = +

(

0 0

)

2ˆ( , , ) sin z zjk z jk zt

TE TE

I z

V VH x y z x x e eab a Z Z

+ −− + π = − −

Summary for TE10 mode

1010TEz

Zkωµ

=

210 2zk k

aπ = −

x

y

z

ab

1

2 10

21

2TE

abC

abCZ

=

=

10

ˆ sin

1ˆ sin

t

tTE

TEz

e y xa

h x xZ a

Zk

π

π

ωµ

=

= −

=

Page 18: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

[ ]

[ ]

220

220

158.0 rad / m

304.1 rad / m

za

zb r

k ka

k ka

π

πε

= − =

= − =

Example: Waveguide DiscontinuityFor a 1 [V/m] (field at the center of the guide) incident TE10 mode in guide A, find the TE10 mode fields in both guides, and the reflected and transmitted powers.

18

a0ε

rε0a bµ µ µ= =

x

y

z

0z =

a

b

A

B

2.2856 cm1.016 cm2.54

10 GHzr

ab

====

sin zajk zincyE x e

aπ − =

Page 19: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Example (cont.)

Convention: Choose Z0 = ZTEAssume power equality

1

2

21

2TE

abC

abCZ

=

=

[ ]

[ ]

0

0

499.7

259.6

aa TE

za

bb TE

zb

Z Zk

Z Zk

ωµ

ωµ

= = = Ω

= = = Ω

( ) V/m1 ( , )tA e x y+ = since already has 1 [ ]

TEN

0V +Γ0TV +

0V +

0 ,TEa zaZ k 0 ,TE

b zbZ k

19

010

ˆ sin

1ˆ sin

t

tTE

TEz

e y xa

h x xZ a

Zk

π

π

ωµ

=

= −

=

0 1 1 2abV C A C+ += = =

( )( , , ) ( , ) zjk zinct tE x y z e x y eA −+=

Note: C1 is the same for both

guides, but C2 is different.

Page 20: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

( ) ( )( )

( ) ( )

( )

0

0

0

0

0

0

za za

zb

za za

zb

jk z jk za

jk zb

jk z jk za

a

jk zb

b

V z V e e

V z V Te

VI z e eZV TI z eZ

− ++

−+

+− +

+−

= + Γ

=

= −Γ

=

Equivalent reflection problem:0 0

0 0

0.316b a

b a

Z ZZ Z

−Γ = = −

+

0TEbZ0

TEaZ

1 0.684T = +Γ=

20

TEN

0V +Γ0TV +

0V +

0 ,TEa zaZ k 0 ,TE

b zbZ k

Note: The above TEN enforces the continuity of

voltage and current at the junction, and hence the tangential electric and magnetic fields are automatically continuous in the WG problem.

Example (cont.)

Page 21: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Recall that for the TE10 mode:

( ) ( )( )

( ) ( )

( ) ( )( )

( ) ( )0

0

0.3162

0.6842

1 0.3162

0.6842

za za

zb

za za

zb

jk z jk za

jk zb

jk z jk za

a

jk zb

b

abV z e e

abV z e

abI z e eZ

abI z eZ

− +

− +

= + −

=

= − −

=

( )

( )1

2

1( , , ) ( , )

1( , , ) ( , )

t t

t t

E x y z e x yC

H

V z

x y z h xC

zy I

=

=

21

TEN

Example (cont.)

10

ˆ sin

1ˆ sin

t

tTE

TEz

e y xa

h x xZ a

Zk

π

π

ωµ

=

= −

=

[ ][ ]

158.0 rad / m

304.1 rad / mza

zb

k

k

=

=

1

2

21

2TE

abC

abCZ

=

=

Hence we have:

0V +Γ0TV +

0V +

0 ,TEa zaZ k 0 ,TE

b zbZ k

Page 22: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Hence, for the waveguide problem we have the fields as:

( )( )2 0

1 0.31( , , ) ( , ) 162

za zat

jk zt

jk

aa

zabH x y z h x yC

e eZ

− +−= −

( )1

1( , , ) ( , 0. 842

) 6 zbt t

jb

k zab eE x y z e x yC

−=

( )2 0

1( , , ) ( , ) 1 0.6842

zbjk z

btb t

ab eZ

H x y z h x yC

−=

( )( )1

0.3161( , , ) ( , )2

za zajk z jk zta t

abE x y z e x yC

e e− += + −

22

Example (cont.)

b a0ε

rεz

a

z = 0x

y

A

B

Page 23: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Substituting in for C1 and et, we have (guide A):

( )( )1 ˆ( , , ) sin

22

0.316za zat

zza

jk jkEa

abx ez ex y yab

π − + = −

+

( )( )1

0.3161( , , ) ( , )2

za zajk z jk zta t

abE x y z e x yC

e e− += + −

23

Example (cont.)

1

2

21

2TE

abC

abCZ

=

=10

ˆ sin

1ˆ sin

t

tTE

TEz

e y xa

h x xZ a

Zk

π

π

ωµ

=

= −

=

Page 24: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Substituting in for C2 and ht, we have (guide A):

( )( )1 0.3162

1 1ˆ( , , ) sin1

2

za zajk z jk zT TEta Ea

TEa

a

H x y z x xZ a

aa

b eZb

e

Z

π − + = − − −

( )( )2 0

1 0.31( , , ) ( , ) 162

za zat

jk zt

jk

aa

zabH x y z h x yC

e eZ

− +−= −

24

Example (cont.)

0TE

a aZ Z=

Page 25: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Substituting in for C1 and et, we have (guide B):

( )1

1( , , ) ( , 0. 842

) 6 zbt t

jb

k zab eE x y z e x yC

−=

( )2

1 0.ˆ( , , ) sin 84

2

6 zbjk ztbE x y z y x

aabab eπ − =

25

Example (cont.)

Page 26: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Substituting in for C2 and ht, we have (guide B):

( )2 0

1( , , ) ( , ) 1 0.6842

zbjk z

btb t

ab eZ

H x y z h x yC

−=

( )1 0.6842

1 1ˆ( , , ) sin1

2

zbjk zEtb

b

TT

TEb

Eb

H x y z x xZ ab

Z

ab eZa

π − = −

26

Example (cont.)

0TE

b bZ Z=

Page 27: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Summary of Fields

( )1ˆ( , , ) sin 0.684 zbjk ztb TE

b

H x y z x x eZ a

π − = −

( )ˆ( , , ) sin 0.684 zbjk ztbE x y z y x e

aπ − =

( )( )1ˆ( , , ) sin 0.316za zajk z jk zta TE

a

H x y z x x e eZ a

π − + = − − −

( )( )ˆ( , , ) sin 0.316za zajk z jk ztaE x y z y x e e

aπ − + = + −

[ ][ ]

499.7

259.6

TEa

TEb

Z

Z

= Ω

= Ω

[ ][ ]

158.0 rad / m

304.1 rad / mza

zb

k

k

=

=

27

Example (cont.)

Page 28: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Power Calculations:

22*

0 0 0 *0

1 1 1 1 1Re Re2 2 2 2

inca TE

a a

abP V I VZ Z

+ + + = = =

22 2*

0 01 1 1Re2 2 2

refa TE

a

abP V IZ

+ + = Γ = Γ

( ) ( )2

2 2*0 0

1 1 1Re 1 12 2 2

transb TE

a

abP V IZ

+ + = − Γ = − Γ

Note: In this example, Z0 and Γ are real.

28

Example (cont.)

( )0 1 1 112

abV C A C C+ +≡ = = =Recall:

Page 29: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

Final Results:

[ ][ ][ ]

1.161 mW

0.116 mW

1.045 mW

inca

refa

transb

P

P

P

=

=

=

29

Example (cont.)

a0ε

x

y

z

0z =

a

b

A

B

Note: 90.1% of the incident power is transmitted.

2.2856 cm1.016 cm2.54

10 GHzr

ab

====

Page 30: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

30

Quarter-Wave Transformer in Waveguide

A quarter-wave transformer is shown here.

/ 4gTd λ=

0 0 0T a bZ Z Z=

Now 100% of the incident power is now transmitted.

Goal: , Td εDetermine :

0TE

i iZ Z=Top view

z

x

10TE10TE

d

0aZ0bZ0TZ

arTε

Page 31: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

31

Quarter-Wave Transformer in Waveguide (cont.)

0aZ 0 ,T zTZ k 0bZ

d

Waveguide problem

TEN

Top view

z

x

10TE10TE

d

0aZ0bZ0TZ

arTε

Page 32: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

32

Design recipe:

/ 4gTd λ=

0 0 0T a bZ Z Z=

Quarter-Wave Transformer in Waveguide (cont.)

0 0 0 0

0 0

22

0

) :

) : /

) :

) :

:

) : 2 /

: / 4

T T a b

zT T zT

T zT T

rT T rT

T T zT

gT gT T

gT

Z Z Z Z

k Z k

k k ka

k k

k

d d

ωµ

π

ε ε

β β

λ λ π β

λ

=

=

= −

=

=

=

=

Determine

Determine

Determine

Determine

5) Determine

Determine

7) Determine

1

2

3

4

60aZ 0 ,T zTZ k 0bZ

d

Top view

z

x

10TE10TE

d

0aZ 0bZ0TZ

arTε

Page 33: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

33

Quarter-Wave Transformer in Waveguide (cont.)

Example: 2.2856 cm1.016 cm2.54

10 GHzr

ab

====

Top view

z

x

10TE10TE

d

0aZ0bZ0TZ

arTε

1.530.716 cm

rT

dε ==

Results:

Page 34: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

34

Rectangular Waveguide(end view)

Note:Planar discontinuities are modeled as

purely shunt elements.

The equivalent circuit gives us the correct reflection and transmission of the TE10 mode.

Inductive iris

Capacitive iris

Resonant iris

Matching Elements in Waveguide

Page 35: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

35

Inductive iris in air-filled waveguide10 0

0 10

02

0

1

TEz

Z Zk

k a

ωµ

η

π

= =

=

1T = +Γ

Because the element is a shunt discontinuity, we have

Top view

Higher-order mode region

z

x

TΓ1

10TE10TE

TEN Model

0TEZ0

TEZ sL

Matching Elements in Waveguide (cont.)

Note:The shunt inductor models the effects of the iris

and gives the amplitudes of the TE10 mode correctly everywhere, but the TEN model does not

tell us how strong the higher-order modes are.

Page 36: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

36

Much more information can be found in the following reference:

N. Marcuvitz, Waveguide Handbook, Peter Perigrinus, Ltd. (on behalf of the Institute of Electrical Engineers), 1986.

Equivalent circuits for many types of discontinuities Accurate CAD formulas for many of the discontinuities Graphical results for many of the cases Sometimes, measured results

Matching Elements in Waveguide (cont.)

Page 37: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

37

Using Irises for MatchingAn iris is shown here being used for matching to a load

(illustrated for a horn antenna load).

Top view

z

x

d

a

10w TEZ Z=

10TE

Waveguide

HornIris

An inductive iris is shown being used for matching.

Page 38: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

38

Using Irises for Matching (cont.)The TEN is shown

TEN Model

0 wZ Z= sjX LZ0Z

z

d

a

10w TEZ Z=

10TE Waveguide Horn

Physical Problem

Iris

Page 39: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

39

A field probing can be used to determine the unknown load impedance ZL.

z

a HornProbe

1- LΓ

1+ LΓ

( )( )y

incy

E zE z

z

1

mind

1SWR

1L

L

+ Γ=

− Γ

SWR -1SWR 1LΓ =

+

Using Irises for Matching (cont.)

Page 40: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

40

A field probing can be used to determine the unknown load impedance ZL.

1- LΓ

1+ LΓ

( )( )

inc

V zV z

z

1

mind

1SWR

1L

L

+ Γ=

− Γ

LZ0Z

SWR -1SWR 1LΓ =

+

Using Irises for Matching (cont.)

TEN Model

Page 41: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

41

A Smith chart can be used to find the unknown load impedance.

Using Irises for Matching (cont.)

maxV

minV

ΓL

ZNLmind ( )SWR N

inR=

Γplane

Page 42: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

42

A Smith chart can also be used to find the locationof the shunt susceptance and its value.

0 01/Z Y= sjX LZ0Z

d

1s

s

BX

= −Note :

s sZ jX=

s sY jB=

Using Irises for Matching (cont.)

0

N ss

BBY

Page 43: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

43

Using Irises for Matching (cont.)

′Γ = −Γ

′Γ planeN

LY1 N

injB+

1inG =1N

inG =

ΓL

d

Choose:

( )0

N Ns in

Ns

B B

B

= −

<

Note:We must use

this upper point for an

inductive iris.

Page 44: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

44

A quarter-wave transformer matching scheme is shown here.d is arbitrary

The iris is used to cancel the input susceptance at z = -d.

(The arbitrary distance d gives us a “safety buffer” from the horn discontinuity, to allow the higher-order modes to decay. The extra λg/2 is also a safety buffer.)

Using Irises for Matching (cont.)

Top view

z

x

d

a 10w TEZ Z=

Waveguide

Horn

/ 4gλ / 2gλ

0TZ

Quarter-wave transformer Safety buffers

Iris

( )inZ real

100T TE inZ Z Z=

Page 45: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

45

Using Irises for Matching (cont.)

Choose:

1Nin N

in

ZG

=

10Nin in TEZ Z Z=

′Γ = −Γ

′Γ planeN

LY

1inG =

ΓL

d

NinY

( )0

N Ns in

Ns

B B

B

= −

<

Page 46: Adapted from notes by ECE 5317-6351 Prof. Jeffery T ...courses.egr.uh.edu/ECE/ECE5317/Class Notes/Notes 12 5317...Notes 12 ECE 5317-6351 Microwave Engineering Fall 2019 Waveguiding

46

Using Irises for Matching (cont.)

1Nin N

in

ZG

=

10Nin in TEZ Z Z=

′Γ = −Γ

′Γ planeN

LY

1inG =

ΓL

d

N Nin inY G=

Now we don’t need an iris!

0NsB =