ada 197603

Upload: jupni-mulyana

Post on 10-Feb-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/22/2019 Ada 197603

    1/129

    Applied Reswearch LaboratoryThe Pewylvvania State Univeroft0

    CDDH..0)Mt-NTAMM

    TICIINICALDTPOC

  • 7/22/2019 Ada 197603

    2/129

  • 7/22/2019 Ada 197603

    3/129

    ba NAME OF PERFORMING ORGANIZATION I6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONApplied Research Laboratory (If applicable) Naval Sea Systems CommandThe Pennsylvania State Univers' y ARL Department of the Navy6C ADDRESS City, State, and ZIPCode) 7b. ADDRESS City, State, and ZIP Code)P. 0. Box 30 Washington, DC 20362State College, PA 168048a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

    ORGANIZATION i (MIf be )Naval Sea Systems Command N8c ADDRESS City, State, and ZIP Code 10. SOURCE OF FUNDING NUMBERSDepartment of the Navy PROGRAM IPROJECT ITASK IWORK UNITW ashington, DC 20362 ELEMENT NO. NO NO. ACCESSION NO.

    11 TITLE Include Security Classification)Development of a Database of Thermochemical Parameters for UseWith the SOLGASMIX Computer Program

    12 PERSONAL AUTHOR S)Jonathan A. Peters

    13a TYPE OF REPORT 113b TIME COVERED 114. DATE OF REPORT Year, Month, Day S1.PAGE COUNTM.S. Thesis FROM TO July 1988 12716 SUPPLEMENTARY NOTATION

    17 COSATI CODES 18. SUBJECT TERMS Continue on reverse if necessary and identify by block number)FIELD GROUP SUB-GROUP chemical equilibria, SOLGASMIX code, thermochemical

    analysis, thermodynamic equilibria

    19 ABSTRACT Continue on reverse if necessary and identify by block number)

    After a brief discussion of the theory of chemical equilibrium, thecomputer program SOLGASMIX, for calculating thermodynamic equilibria incomplex chemical systems, is described. Modifications to SOLGASMIX whichallow the program to access a database of thermochemical curvefits arediscussed. Additional extensions to +he SOLGASMIX program, including aninteractive user interface, are introduced. Several SOLGASMIX applications are

    20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATIONEUNCLASSIFIED/UNLIMITED 0 SAME AS RPT 03 DTIC USERS Unclassified

    22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE Include Area Code) 22c. OFFICE SYMBOL

  • 7/22/2019 Ada 197603

    4/129

  • 7/22/2019 Ada 197603

    5/129

    ABSTRACT

    After a brief discussion of the theory of chemical equilibrium, thecomputer program SOLGASMIX, for calculating thermodynamic equilibria incomplex chemical systems, is described. Modifications to SOLGASMIX whichallow the program to access a database of thermochemical curvef its are Wdiscussed. Additional extensions to the SOLGASMIX program, including aninteractive user interface, are introduced. Several SOLGASMIX applications arepresented in detail, and the results of the program compared with those of othermethods. Several additional programs, which allow the user to incorporate thecurvefit database in other applications, are described. A number of inputexamples are given for the each of the various programs, and data punching

    guides are given where appropriate. The various operating systems supporting theSOLGASMIX system are discussed. An index listing the species in the curvefitdatabase is included. --

    OTIC

    INSPECTED

    Accession ForNTPs UGRA&I

    t. i ;t on/__ -j,:,tjijty Codes

    - ;Avail and/orDi t Special

    010

    %~ %

    ~~~~~'V2I***.' -%

  • 7/22/2019 Ada 197603

    6/129

    TABLE OF CONTENTS

    ABSTRACT ............................................ iiLIST OF TABLES ....................................... vLIST OF FIGURES ...................................... vACKNOWLEDGMENTS ..................................... viINTRODUCTION ......................................... 1SOLGASMIX ............................................ 4THE JANAF CURVEFIT DATABASE ........................... 8OTHER MODIFICATIONS TO SOLGASMIX ...................... 13TESTS OF PROGRAM ACCURACY .............................. 15LIMITATIONS ON THE USE OF SOLGASMIX................... 17COCLUSIOS.............................................. 20REFERENCES ........................................... 21APPENDIX A: GUIDE TO THE USE OF SOLGASMIX ............ 30

    A.l: DATA PUNCHING GUIDE FORARL/PSU SOLGASMIX................ 31

    A.2: SHORT FORM OF DATAPUNCHING GUIDE................... 39A.3: COMMONLY OCCURRING

    RUN TIME ERRORS.................. 42APPENDIX B: EXAMPLES OF SOLGASMIX DATA DECKS ......... 44

    B.2: EXAMPLE OF SOLGASMIX OUTPUT .............. 57APPENDIX C: INDEX TO SPECIES IN JANAF

    CURVEFIT DATABASE................ 65APPENDIX D: THE JFIT PROGRAM .......................... 99

    D.I: PUNCHING GUIDE FOR THE JFITCURVEFITTING PROGRAM ........... 100

    D.2: EXAMPLE DATA DECK FOR JFIT............... 101APPENDIX E: SUBROUTINE JREAD.......................... 02

    .. .l - , -

  • 7/22/2019 Ada 197603

    7/129

  • 7/22/2019 Ada 197603

    8/129

  • 7/22/2019 Ada 197603

    9/129

  • 7/22/2019 Ada 197603

    10/129

  • 7/22/2019 Ada 197603

    11/129

  • 7/22/2019 Ada 197603

    12/129

  • 7/22/2019 Ada 197603

    13/129

  • 7/22/2019 Ada 197603

    14/129

    Gs/RT - [{ ( AGi/RT ) + lnP + ln(ni/N) } ','. 5+ .ni{( AGi/RT ) + Iln(ni/N)} [a]+ ni{ AGi/RT I%

    Where:N = Total number of moles of all species in a mixture.

    The first summation term applies to the gas phase. The second is a doublesummation over every species in each of the condensed phase mixtures. The lastsummati-)n applies to pure condensed species, which can be considered to besingle component mixtures. SOLGASMIX uses Lagrange's method of undeterminedmultipliers and a Taylor series expansion about an estimated compositional pointin order to minimize equation [2]. The solution is further constrained by the fact,'that the molar amounts of each element in the equilibrium must be conserved.This can be expressed as;

    Where;Aii= Coefficient on element j n formula

    of species ibj= Moles of element j.

    SOLGASMIX allows the user to take nonidealities into account by specifyingactivity coefficients (yi) for any species, which are multiplied by the ni/N termsin the above summations.

    The input to SOLGASMIX consists of a list of species which are to beconsidered as possible constituents of the equilibrium mixture. In addition to theatomic composition of each of these species, the user must provide the programwith values for the standard Gibbs free energy of formation for each species, atevery temperature for which an equilibrium solution is desired. Previous versions

  • 7/22/2019 Ada 197603

    15/129

  • 7/22/2019 Ada 197603

    16/129

    7The second method available for providing thermochemical data to

    SOLGASMIX is to enter the coefficients of a curvefit for the value of AG(T) foreach species in the equilibrium set of phases. The function has the form;

    AG(T) = a/T + b + cT + dT 2 + eT 3 + fTln(T) [9]where the six coefficients a...f are provided as input to the program.

    Extensive use of SOLGASMIX 1 2 demonstrated that most of the effortinvolved in compiling a data deck for use with the program was expended infinding or deriving accurate curvefits for either Cp or AG values for the variousspecies possibly present in the equilibrium composition. While a number ofsources of thermochemical data give coefficients of Cp functions in a formatthat is immediately useable by SOLGASMIX (for example, see Barin, Knackel3,the accuracy of these curvefits is often unknown. In addition, the requirementthat Cp curvefits must be valid over the entire temperature range from 298 K tothe desired equilibrium temperature limits the effectiveness of the first methodof data entry. The usefulness of the second data entry option is limited by thelack of tabulated curvefits for AG functions, and also by the fact that if eat ofreaction calculations are desired, it is necessary to specify both Cp and AG *curvefit coefficients.

    In order to enhance the performance of SOLGASMIX, an extensive libraryof curvefits of known accuracy was developed to interface with the program. Thiseffort is discussed in subsequent sections. I

    kz'9

  • 7/22/2019 Ada 197603

    17/129

    THE JANAF CURVEFIT DATABASEAmong the most widely used sources of thermochemical data are the

    JANAF (Joint Army,Navy,Air Force) thermochemical tables 1 4 . Althoughoriginally developed for use in propulsion calculations, this document containstabulated data for a variety of species applicable to many classes of chemicalprocesses. As a source of data for SOLGASMIX, the JANAF tables offernumerous advantages. First, the tables are widely accepted throughout thevarious engineering communities as an accurate and reliable source ofthermochemical data. Second, the fact that 1796 species are represented in thethird edition (the latest release, as of this writing) makes the JANAF tables oneof the most extensive compilations of data available. Finally, since the tableswere originally created on a computer, it was possible for the author to obtain anadvance release of the tables in a computer readable format.

    The JANAF tables contain tabulated data for a number of thermochemicalfunctions, including specific heat and Gibbs free energy vables. Since Cp valuesare discontinuous at both first and second order phase transitions 1 5 , it wasrecognized that a greater number of curvefits would be required to represent Cpfunctions than would be needed to predict AG values to similiar accuracy.Therefore, curves were fit to the AG values for each species in the JANAFtables. Curvefits were also developed for the enthalpy change;

    H(T) - H(298) fCp(T)dTThus, SOLGASMIX can predict heats of reaction by directly calculating theffCp(T)dT terms which appear in equations [6] and [7]. Again, elimination of theneed for specific heat functions enhances the accuracy of the results. The formof this second set of curvefits is;

    Z 3 2 [10]H(T) - H(298)= a + bT + cT + dT + e/T + f/T

  • 7/22/2019 Ada 197603

    18/129

  • 7/22/2019 Ada 197603

    19/129

  • 7/22/2019 Ada 197603

    20/129

    11-,%complete data punching guide for the program is included in Appendix A.Appendix B contains a number of short example data decks for the program, Sillustrating the features of each of the data entry options.

    In order to use the database as a source of thermochemical data, the usermust specify all species formulae according to the modified Hill indexing -system 17 , as used in the JANAF tables. Appendix C is an index listing everyspecies available in the database, along with its correct Hill formula name.Appendix G presents a short discussion of the interactive utility program J-IND,which can be used to create a good portion of the input deck for a SOLGASMIXjob. J-IND ensures that the correct Hill formula names are used for each speciesin the equilibrium system.

    Although the JANAF curvefit database contains data for a large numberof chemical species, many users will need access to data for species not includedin the JANAF tables. The JFIT program is a modification of FITTER6 whichallows each user to create an auxilliary database of curvefits for species no tincluded in the JANAF tables. The thermochemical curvefits contained in thisauxilliary database will then be accessed by SOLGASMIX as needed. Appendix Dcontains a data punching guide and an example data set for JFIT.

    Although the curvefit database was originally created for use withSOLGASMIX, some users will find the data applicable to a number of other typesof problems. For this reason, the subprograms JREAD, HFUN and GFUN werecreated to facilitate the use of curvefit data within application programs.JREAD returns the curvefit coefficients and statistical data for one or morespecies, while HFUN and GFUN use these coefficients to calculate valv-s cfH(T)-H(298) and AG, respectively. Appendix E is a detailed guide to the use ofthese programs. Appendix F contains a listing for the short application program

    S. .

  • 7/22/2019 Ada 197603

    21/129

  • 7/22/2019 Ada 197603

    22/129

    13 .OTHER MODIFICATIONS TO Sc .aASMIX

    Although the most significant modifications to SOLGASMIX relate to theinterface with the JANAF curvefit database, the author has made numerous otherchanges designed to enhance the usefulness of the program. With the exception ofsubroutines GASOL, ABER and XBER, major changes were made to each sectionof SOLGASMIX. Despite the scope of these extensions and modifications, everyeffort was made to maintain compatibility with data decks created for use withearlier versions of the program. The most obvious difference between earlier dataformats (see Besmann1 o ) is that all read statements in SOLGASMIX have beenconverted to list directed (free format) input. Experience has shown that thissignificantly reduces the tedium of creating a data deck for use with theprogram. As discussed in Appendix A, the free format input setup requires theuser to enclose all character strings (i.e: the species names) in single quotes, andinsert commas or spaces between successive data items on a sirgle input line.

    On machines which support interactive processing (see Appendix H for adiscussion of the various operating systems supported by the latest version ofSOLGASMIX), several subroutines have been added which comprise a menu ofinteractive features. The menu allows the user to change some of the parametersin the equilibrium system without creating an entirely new data deck. Using thisfeature, one can interactively change the ambient pressure or temperatureconditions, the system volume, or the initial molar amounts of one or morespecies in the equilibrium set of phases. The author has found this facility to beextremely useful, particularly where the effects of subtle changes in systemcomposition or ambient conditions are to be investigated. Another feature addedto the latest version of the program allows SOLGASMIX to predict the adiabaticflame temperature of a system by iteratively solving for equilibrium at various

  • 7/22/2019 Ada 197603

    23/129

  • 7/22/2019 Ada 197603

    24/129

    15 .1TESTS OF PROGRAM ACCURACY

    Since the latest version of SOLGASMIX contains extensive modificationsto every portion of the program, a number of jobs were run in order to allowcomparison between the equilibrium values predicted by the modified programand those arrived at using other methods. As an example, consider the productionof lime from calcium carbonate (limestone). For this reaction;

    CaCO3 ......-> CaO + COZ.the equilibrium constant Kp s given by:

    Kp = [CO 2 ][CaOl/[CaCO 3]where the bracketed values represent the partial molar fractions of eachconstituent. Since it has been observed that the solid calcium carbonate and.calcium oxide constituents are immiscible, Kp is numerically equal to the partial .,pressure of CO2 (if an ideal gas assumption is employed). Since 1 8 : '

    ln(Kp) = -AGrxn/(RT)values of the partial pressure of CO Z predicted by SOLGASMIX can be directlycompared to theoretically predicted values for Kp. This comparison is showngraphically in Figure 4 over the temperature range from 500 - 1100 K (440 -15200 F).

    Since CaCO3 is not included in the JANAF tables, it was necessary toprovide SOLGASMIX with some means of calculating values for the Gibbs freeenergy of this species. One method would have been to use JFIT to add calciumcarbonate to the auxilliary (user specified) database, as discussed in Appendix D.The second method is illustrated in the first sample data deck of Appendix B, andis the data setup used for the SOLGASMIX predictions here discussed. In thisexample, the curvefits for AG are specified as in equation [9]. Note that only twocoefficients are given for each curvefit, which approximates the Gibbs free

  • 7/22/2019 Ada 197603

    25/129

    energy function as a linear function of temperature. Even with this rather crude16approach, the maximum difference between the theoretical value of Kp and thepartial pressure of COZ predicted by SOLGASMIX is approximately 3%, as shownin igure 4.

    The second short example data deck in Appendix B is for the calculationof the equilibrium between water and its vapor. The results are compared with .values from the literature in Figure 5. The maximum difference between the %calculated and measured values of Figure 5 is under 3%, thus providing evidenceof the usefulness of SOLGASMIX when applied to this multiphase equilibriumsystem. In this example, the JANAF curvefit database is used as a source of ,thermochemical data, so no coefficients for AG functions are included in the datadeck. Note that the species WATER(L) is referenced in the program input, butis not included in the JANAF tables. In order to include this species in anequilibrium problem, the curvefit database must first be customized by the userwith the JFIT program. The JFIT example included in Appendix D contains thenecessary data to generate thermochemical curvefits for liquid water at low

    temperatures, as well as for several other species.As a final test of the accuracy of the modified version of SOLGASMIX,

    the combustion of a hydroxyl amine monopropellant was analyzed using bothSOLGASMIX and CEC76, a chemical equilibrium program produced by NASA 1 9 .CEC76 is widely used for gas phase combustion or detonation problems, but lacksthe flexibility of SOLGASMIX when used for systems containing large amounts ofcondensed phase products. The products of the gas phase monopropellantcombustion as predicted by both programs are compared in Table 2. The two setsof results are seen to agree to within 5%, with only minor discrepancies resultingfrom differences in the two calculational algorithms. The data deck used forSOLGASMIX is included as the third example in Appendix B.

    ,_. -.. . . .-. .- -. . -... -..... -. ,'. ,- , ..-.- '. ,:

  • 7/22/2019 Ada 197603

    26/129

  • 7/22/2019 Ada 197603

    27/129

    %18An important consideration regarding the applicability of SOLGASMIX to ,.

    specific chemical systems arises from the form of equation [2]. This equation, .which gives the total Gibbs free energy of a system, involves several implicitassumptions. All mixtures are, by default, assumed to be ideal. In systems forwhich there are nonidealities present, activity coefficients must be specified (bymodifying subroutine FACTOR) in order for the output to agree with observed . ' .phenomena. Unfortunately, the availability of activity coefficients for a systemusually implies considerable previous empirical work, in which case SOLGASMIXresults are less likely to be of critical importance. For this reason, most userswill find themselves forced to assume ideality for each mixture in a problem.

    A related assumption, also implicit in equation [2], is that the ideal gaslaw is used to predict values of Gibbs free energy for pressures other thanatmospheric. At conditions near the critical point for a gas, this approximationcan be very inaccurate. For this reason, when using SOLGASMIX for gas phaseequilibria under ambient conditions of high pressure and low temperature, theuser is well advised to consider the effects of nonideal gas behavior whenanalyzing the program output.

    One final caution regarding the accuracy of SOLGASMIX e( .ilibriumpredictions refers not to a shortcoming in the program itself, but in the way some .users approach an equilibrium calculation. Because only species specified by theuser are tested for inclusion in the equilibrium mixture, it is possible tooverconstrain a problem by specifying too few species. In other words, if aspecies which would otherwise comprise a significant portion of the equilibriummixture is left out of a SOLGASMIX input data deck, the calculated equilibrium .will be completely erroneous. It is therefore necessary to include every speciesin the data deck which might conceivably be included in the products of an actual

  • 7/22/2019 Ada 197603

    28/129

  • 7/22/2019 Ada 197603

    29/129

  • 7/22/2019 Ada 197603

    30/129

    21REFERENCES

    1. William Smith and Ronald Missen, Chemical Reaction Equilibrium Analysis,Theory and Algorithms., (New York, John Wiley & Sons) p.1 (1982).

    2. IBID, p.Z.3. S. R. Brinkley, Jr., J. Chem. Phys., 14(9), 563 (1946).4. S. R. Brinkley, Jr., J. Chem. Phys., 15(Z), 107 (1947).5. W. B. White et. al., J. Chem. Phys., 28(5), 751 (1958).6. F. Zeleznik and S. Gordon, NASA TN D-473 (1960).7. G. Eriksson, Chemica Scripta, 8(3), 100 (1975).8. G. Eriksson, Acta Chem. Scand., 25, 2651 (1971).9. G. Eriksson and E. Rosen, Chemica Scripta, 4(5), 193 (1973).10. Theodore M. Besmann, SOLGASMIX-PV, a Computer Program to Calculate

    Equilibrium Relationships in Complex Chemical Systems., (ORNL/TM-5775)(1977).11. Edward Beahm, Letter to Dr. Karl Spear (of MRL/PSU), dated January 18,1980.IZ. Jonathan Peters, Complex Heterogeneous Equilibria Involving HydratedSalts, ARL/PSU Undergraduate Thesis (1985).13. I. Barin and 0. Knacke, Thermochemical Properties of Inorganic Substances,

    (New York, Springer-Verlag) (1973).14. M.W. Chase, et. al., JANAF Thermochemical Tables, Third Ed., (Washington,Natl. Bureau of Standards) (1985).15. P. W. Atkins, Physical Chemistry, Third Ed., (New York, W.H Freeman)(1986).16. User's Manual, IMSL Library (Ed. 9.2), (IMSL inc.), (1984).17. Chase et. al., p. 20 .18. Atkins, p. 542.19. Gordon and McBride, Computer Program for Calculation of ComplexChemical Equilibrium Compositions, Rocket Performance, Incident andReflected Shocks, and Chapman-Jouget Detonations, NASA SP-Z73, March1976.20. PSU Guide to VM/CMS, Part 1, (The Pennsylvania State UniversityComputer Center) (June, 1984).IU

    0, , r~ , e1 eW M It( 'M ', , ,,=: . , . ,, p .. 'r >k W

  • 7/22/2019 Ada 197603

    31/129

    zz,21. JCL TECHNIQUES, (The Pennsylvania State University Computer Center)(November, 1984). 022. Dudley J. Benton, User Guide to LIBRY FORTRAN Callable Library,(Version 3.0), (Norris TN., TVA) (1987).23. MS FORTRAN Optimizing Compiler Language Reference, (Microsoft, inc.)(1987).24. VS FORTRAN Application Programming: Language Reference, (IBM Corp.),(March 1983).25. Programming in VAX FORTRAN, (Digital Electronics Corp.), (1984).

    N

    '.1

    % %

    w9

  • 7/22/2019 Ada 197603

    32/129

  • 7/22/2019 Ada 197603

    33/129

  • 7/22/2019 Ada 197603

    34/129

  • 7/22/2019 Ada 197603

    35/129

  • 7/22/2019 Ada 197603

    36/129

  • 7/22/2019 Ada 197603

    37/129

    ~pTrmE E 1~ JL ~ L~ KL ~ 'VVVVVVVVVVV ,. ~ -28

    C\CD

    CLLLuI

    C) :D

    >j

    H i

    0 Lo*. LI.II(dA)NI

    L-4

  • 7/22/2019 Ada 197603

    38/129

  • 7/22/2019 Ada 197603

    39/129

  • 7/22/2019 Ada 197603

    40/129

    31A.I: DATA PUNCHING GUIDE FOR ARL/PSU SOLGASMIX ,.:Note: highlighted sections have been added to SOLGASMIXAt the Pennsylvania State University.

    CARD VARIABLE NAME1. TITLE Anything punched on this line will %.be repeated at the top of eachoutput page.2. L The number of elements in thechemical system (L

  • 7/22/2019 Ada 197603

    41/129

    3ZA(Il) The coefficient on the elementalsymbol of element 1 in species I.A(I,2) The coefficient on the elementalsymbol of element 2 in species I.

    A(I,L) The coefficient on the elementalsymbol of element L in species I.Note: There is one card #4 for each species for a totalMS cards. The species order should be defined asfollows: Species in mixture 1 (gas phase),species in mixture 2, and so on, followed bythe condensed phases. Note that within eachmixture, putting the species that are mostlikely to be present in the equilibrium mixturefirst will result in faster execution time.Note also that if the equilibrium activity

    for a species will be specified, this speciesmust be regarded as an element in its chosenreference state.5. IEL(l) The number of the species forelement number 1 in its chosenreference state. >

    IEL(2) The number of the species for %element number 2 in its chosenreference state.

    IEL(L) The number of the species for thelast element in its chosenreference state. "6. KVAL2 Main Control card. Indicates whichprogram options are desired.

    =1: No heat of reaction calculations performed. Valuesof the coefficients of the function AG(T) ,as thermodynamic input. ,=2: No heat of reaction calculations performed. Valuesof AH*, So, and coefficients of the functionCp(T) as thermodynamic input.=3: Heat calculations performed. Coefficients of thefunctions AG(T) and Cp(T) , and values ofAH and So as thermodynamic data.=4: Heat of reaction calculations performed. Valuesof AH*, S*, and coefficients of the functionCp(T) as thermodynamic input.

  • 7/22/2019 Ada 197603

    42/129

    R1 MUI WVV1XVgV~. ~ .-

    33=5: Heat calculations performed. Thermodynamic dataread from the JANAF curvefit database. See belowfor punching guide for this value of KVAL2 only.=6: No heat calculations. Thermodynamic data read

    from JANAF curvefit database (and/or user definedextensions to the database).Note: If KVAL2 is entered as -2, -4, or -5,heat calculations will be performed (theabsolute value of KVAL2 is taken as theproper control value), but the values of .thermochemical properties as calculatedby the program will not be printed.

    This can result in a great savings inthe amount of output generated by theprogram.

    CONTINUE WITH CARD NUMBER 9 IF KVAL2 = 2, 4, 5, OR 6.7. MGT The number of coefficients (X) inthe expression AG(T) = XI/T +X2 + X3T + X4T2 + X5T3 +X6TLn(T) which are to be used tocalculate AG.

    IGT(l) The number "i" for one of the XiIGT(2) The number "i" for another XiIGT(MGT) The number of the last coefficient.

    8. GE(I,l,l) The value of the coefficient IGT(l)for species number 1.

    GE(I,1,2) The value of the coefficient IGT(2)for species number 1.* :.GE(I,I,MGT) The value of the last coefficient

    (IGT(MGT)) used for calculatingAG for species number I.Note: There is one card #8 per species in the sameorder used for card #4, for a total of MS cards.The value of AG(T) has units of Joule/Mole

    9. T The value of the equilibriumtemperature (K).

  • 7/22/2019 Ada 197603

    43/129

    34CONTINUE WITH CARD NUMBER 16 IF KVAL2 = 1 OR 6, OIL 0bIF KVALI < 9. KVALI = 9 AT START OF PROGRAM.CONTINUE WITH CARD NUMBER 13 IF KVAL2 = 5.

    10. HF(I) Af (the standard heat of formation)of species number I.S(I) So (absolute entropy) for speciesnumber I.

    Note: The value of HF in units of Joule/Mole. The valueof S is in Joule/Mole/K. There is one card perspecies, in same order as card 4.11. NOM(1) The number of Cp(T) functionsfor species number 1.

    NOM(2) The number of C (T) functionsfor species number 2.

    NOM(MS) The number of Cp(T) functionsfor the last species.12 C(I,J,l) The value of "a" in the exlression= a + bT + cT2 + d/T +e/Tj for the J'th C functionfor species number

    C(I,J,2) The value of b for the J'th CPfunction for species number I?0C(I,J,5) The value of e for the J'th Cpfunction for species number I.TOM(IJ) The temperature (K) of thetransition from C expression Jto Cp expression J+l for speciesnumber I. This value only hassignificance if NOM(I) is greater

    than J.HOM(I,J) The enthalpy of transition (J/Mole)for the above transition. Has

    significance if NOM(I) is greaterthan J.Note: There are NOM(I) cards per species, for atotal of MS species. The order of species isas entered in card #4. The value of Cp hasunits of J/Mole/K.CONTINUE WITH CARD 16 IF KVAL2=2

  • 7/22/2019 Ada 197603

    44/129

    35 .13. MIN The number of species present inthe raw material before reaction .(non equilibrium mixture).

    IIN(l) The species number for one ofthese species.

    IIN(2) The species number for another oneof these species.

    IIN(MIN) The species number for the lastspecies initially present in theunreacted mixture.14. TO The temperature of the raw materialbefore reaction (K).

    CONTINUE WITH CARD 1615. PTOT The total pressure on theequilibrium mixture (atmospheres),or the system volume (liters). Forpressure, PTOT is positive. For

    volume, punch with a - sign.16. KVAL1 Second control card. Controlsprogram flow.

    =1: A starting estimate for the equilibriumcomposition will be entered by the user.Continue with cards 17, 18, 19, 20, and (*) 16.

    =2: A starting estimate for the equilibriumcomposition will be generated by the program.Continue with cards 17, 18, 19, and (*) 16.=3: The values of NPKT, KH, and B to be used in thenext group of calculations are different fromthose used in the previous group. Continue withcards 17, 18, 19, and (*) 16.=4: The values of NPKT and KH to be used in thenext group are equal to those used in theprevious group, but the values of B aredifferent. Continue with cards 19 and (*) 16.=5: The values of NPKT, KH, and B to be used in the

    next group are the same as those used in theprevious group. Continue with card (*) 16._=6: The value of the reaction temperature will bechanged. Continue with cards 9 and 16.

  • 7/22/2019 Ada 197603

    45/129

    36

    =7: The calculations are to be performed for aconstant volume system, or the equilibriumpressure is different from 1 atmosphere.Continue with cards 15 and 16.=8: New values of GE are to be entered. Continuewith card 8.=9: At a transfer to a new system. Continue with

    card 1.=10: Terminates program execution.=12:: Displays :a menu, allowing the user to interactively change the temperature,S olume, pressure, or composition of theproblem.In noninteractive versions of theprogram, program execution is terminated.Note: The term "group" refers to a series ofequilibrium calculations performed on asystem at the same temperature and pressure.Each group of calculations has one or more"points." The composition of the initialmixture varies between points in the group,although the ambient conditions stay the same.

    The only values of KVALI that are useful forthe first group are 1, 2, or 7. Each of theother possible values for KVALI representsa decision which apply to the second andsubsequent groups: for example, a second groupto be run at a different temperature orpressure.Equilibria will be calculated by SOLGASMIXat places indicated by an asterisk (*) inthe above discussion.

    17. NPKT The number of points in the group(NPKT

  • 7/22/2019 Ada 197603

    46/129

  • 7/22/2019 Ada 197603

    47/129

    38 "STEP The constant increment in theamount or log(a) of element Jor ' pecies IIN(J) between pointsin the group.

    Note: There are MIN cards #19.20. Y(l) An initial estimate for theequilibrium amount of species 1(in moles).

    Y(2) An initial estimate for theequilibrium amount of species 2(in moles).

    Y(MS) An initial estimate for theequilibrium amount of the lastspecies.

  • 7/22/2019 Ada 197603

    48/129

    39A2: SHORT FORM OF DATA PUNCHING GUIDE

    The shortened data deck, below, presents a simplified method for setting -up the input to SOLGASMIX. It uses KVALZ=5; which causes the program to readthermochemical data from the JANAF curvefit database, and indicates that heatof reaction calculations are desired. The data deck setup as discussed below is aconvenient starting point for building more powerful decks to make use of someof the advanced features of the program. Example #8 in Appendix B is set up inthis fashion; the output from this example is included as Appendix B.Z. Example .#Z is similarly constructed, except that KVAL1 options are used to tellSOLGASMIX to automatically calculate equilibria at a number of temperatures(instead of forcing the user to go through the menu). Example #6 is set up in asimiliar fashion, except that the starting estimates for the equilibriumcomposition are generated by the program instead of being entered manually.

    CARD VARIABLE NAME1. TITLE Anything punched on this line willbe repeated at the top of each 9

    output page.2. L The number of elements in the

    chemical system (L

  • 7/22/2019 Ada 197603

    49/129

  • 7/22/2019 Ada 197603

    50/129

    4117. NPKT The integer number '1'18. KH(l..MIN) On this line, enLer an integer'2' for each of the MIN species

    in the unreacted mixture. Separatethe values with spaces or commas.

    19 B(J,I) Moles of species IIN(1).

    B(MIN,I) Moles of species IIN(MIN).Note: There are MIN cards #19, one for each specieswhich is specified as being present in theraw material (nonequilibrium system).

    20. Y(1) An initial estimate for the 3equilibrium amount of species i(in moles).

    Y(MS) An initial estimate for theequilibrium amount of the lastspecies.16. KVALI The second KVALI control card.Usually, this is 10 or 12. Seelong version of data punchingguide for all options.

    '

    1S,-_, . ,-.. _-'.,-,,.-..... < ' -,, ,-:Y X . ': ' - 7' .

  • 7/22/2019 Ada 197603

    51/129

    42 " .A.3: COMMONLY OCCURRING RUN- TIME PROBLEMS.As discussed in the text, cnnsiderable effort was expended to make the -

    latest version of SOLGASMIX as robust as possible. A number of program %segments were added to check for commonly occurring run time errors and -.automatically correct for them. This effort has largely been successful, to theextent that essentially all of the conditions that could potentially cause problemsduring program execution have been corrected for.Nonetheless, there are still several situations in which SOLGASMIXarrives at an erroneous answer to an equilibrium problem, despite proper programexecution. In some cases, the equilibrium results returned by the program will ',..clearly be in error. This condition occurs when the program finds a local minimumin the total free energy function of a system, and is evidenced by the completeabsence of one or more mixtures from the equilibrium set of phases. For example,SOLGASMIX might return an equilibrium in which all of the products are in thegas phase, even at temperatures well below the normal vaporization temperaturesof the products. Fortunately, this problem is easily rectified when it occurs, as .discussed below.Another case in which SOLGASMIX does not find a proper equilibrium ..condition is the case in which the total free energy of a system fails to convergequickly on a minimum value. In this case, the program prints the message THEEQUILIBRIUM CONDITION HAS NOT BEEN OBTAINED.

    The solutions to both of the above problems are similar. In the firstinstance, SOLGASMIX must be forced to find the true minimum of the freeenergy function, instead of the minima which neglects one or more of thecondensed species. In the second instance, either better initial guesses must beprovided, or conditions must be set up under which the equilibrium is easier for *the program to find. The author has found the following to be convenient ways offorcing the program to find the correct minimum for the system free energy.1. In some cases, SOLGASMIX will fail to find an equilibrium the first time aproblem is run, but will arrive at the solution on the second try. This can A

    be accomplished by use of the interactive menu. Choosing the "GO WITHNEW SYSTEM option from the menu without changing any of the ambient mconditions or the initial composition of the system has the effect of letting 0SOLGASMIX pick up where it left off. The composition arrived at in the Plast iteration will be the new starting point for the second series ofiterations.2. If initial estimates for the equilibrium composition have been specified, an

    attempt to improve the accuracy of these guesstimates should be made.If the program has been instructed to generate starting estimates ..(KVAL1=2), the data deck should be changed so that user supplied .,estimates be utilized. .

    3. In some instances, it is necessary to change the initial amounts of one ormore species in the equilibrium. This is especially true for problems inwhich the set of initial molar amounts in a system corresponds to astoichiometric case. The addition of a minute amount of one or more ofthe reactants may move the equilibrium in a direction to which theiterative solution can converge.

    0..

  • 7/22/2019 Ada 197603

    52/129

    434. In many cases the program will not converge to a solution at a giventemperature/pressure (T,P) point, but will find a valid solution at differentambient conditions. In this case, one can start from conditions under which -an equilibrium is calculated, and sneak up on the desired solution byvarying the ambient conditions. In this case, the valid solution arrived at

    for one set of conditions will serve as the initial estimate for the next(T,P) point.The above solutions can most readily be implemented through the menu, which isreached by specifying a value of 1Z for KVAL1. This is one of the most usefulaspects of the versions of the program which run on systems supportinginteractive processing. A somewhat more complex fix which is occasionallynecessary is described below:5. If SOLGASMIX returns a result in which a mixture appears to have beenerroneously deleted from the equilibrium set of phases, the program mustbe forced to include that mixture in the calculated equilbrium. To do this,it may be convenient to add an inert species to the mixture in question.For example, the addition of a noble gas such as argon is sometimesnecessary for problems in which almost all of the products are in thecondensed phase. Likewise, adding an element to the problem which ispresent in only one species in the data set will force the inclusion of themixture containing the reference state of that element. The techniquemost often used by the author is to add traces of two imaginary species tohis data deck. The species YOUCANTGETTTUM and UNOBTAINIUMare entered into the auxilliary (user specified) database with the JFITprogram. These species are specified with a zero value for AG at all

    temperatures, with no enthalpy change upon heating. Thus, neither the,.heat of reaction nor the equilibrium composition of the mixture is sensiblychanged by the addition of these species, providing that the molar amountsof these species are small. The ninth example in Appendix B illustratesthe use of these species as trace elements. This example deck causesSOLGASMIX to calculate three different equilibria. In the first, theexistence of the liquid mixture is ignored, and erroneous results areobtained. For the second equilibria, some **(CR) is added to the secondmixture. This has the effect of causing the program to find yet anotherinvalid equilibrium condition, in which the gas phase is ignored. Finally,correct results are obtained when some *(G) is added to the gaseousphase, forcing the inclusion of this mixture into the set of phases. The 7sample data deck for JFIT (see Appendix D) causes the JFIT program toadd *(G) and **(CR), along with several other species, to the auxilliarydatabase.

    ,:..:-.,v .......-...

  • 7/22/2019 Ada 197603

    53/129

  • 7/22/2019 Ada 197603

    54/129

    ,- , X . 7-

    45EXAMPLE 2: This is the input deck to predict the

    equilibrium between liquid water and water 6vapor. Note that the species "WATER(L)"is a user defined extension to the curvefitdatabase, and as such requires the JFITprogram to be run first (see Appendix D).

    EXAMPLE 2: VAPOR PRESSURE OF WATER2,2,0,3,1'H2(REF)' 2.0 0.002(REF)' 0.0 2.0'H201(G)' 2.0 1.0'WATER(L)' 2.0 1.01,2-5273.152,2,4273.152 21.00000.00.00 1.00 0.00 10000.06283.155 -293.156303.15 .

    5 .'6313.15560323.1563 3 .156343.1556%%353.15 -56363.1556 " ~5 .

  • 7/22/2019 Ada 197603

    55/129

    46373.15510

    W

    4

    ,.

    d-;,.. "" ,s, " M# . ww"-"."%, " i5

  • 7/22/2019 Ada 197603

    56/129

    47EXAMPLE 3: The example below predicts the productsof NOSET-1845 monopropellant combustion.The JANAF curvefit database is used forthermochemical data, but no heat calculationsare performed.

    EXAMPLE 3: CARBON/HYDROGEN/OXYGEN/NITROGEN EQUILIBRIUM4,1,1,53 'C ' 'H ' tO ' 'N'N2(REF) .00 .00 .00 2.00..'H2(REF) .00 2.00 .00 .00'02(REF) .00 .00 2.00 .00'C302(G) 3.00 .00 2.00 .00'C201(G) 2.00 .00 1.00 .00'C3(G) 3.00 .00 .00 .00'C2Nl(G) 2.00 .00 .00 1.00'C4N2(G) 4.00 .00 .00 2.00C2N2(G) 2.00 .00 .00 2.00N2OI(G) .00 .00 1.00 2.00'C2H4(G) 2.00 4.00 .00 .00'C2(G) 2.00 .00 .00 .00'HlNlO1(G) .00 1.00 1.00 1.00C2HI(G) 2.00 1.00 .00 .00'ClH1N1(G) 1.00 1.00 .00 1.00'C5(G) 5.00 .00 .00 .00'HlNlO2(G) .00 1.00 2.00 1.00'C1(G) 1.00 .00 .00 .00'ClH1N1O1(G) 1.00 1.00 1.00 1.00'HI(G) ' 00 1.00 .00 .00'HINI(G) ' .00 1.00 .00 1.00'ClN2(G) 1.00 .00 .00 2.00'C4(G) 4.00 .00 .00 .00'C1H2OI(G) '1.00 2.00 1.00 .00 .'N204(G) ' .00 .00 4.00 2.00'C2H2(G) 2.00 2.00 .00 .00'C2H4OI(G) 2.00 4.00 1.00 .00'cl1oz(G) '1.00 .00 1.00 1.00:'CZNl(G) 1.00 .00 .00 1.00'ClH3(G) 1.00 3.00 .00 .00 .'NIO2(G) ' .00 .00 2.00 1.00'ClH3O(G)' 1.00 1.00 1.00 .00CH1(G) 1.00 1.00 2.00 .00'CHIO(G) 1 .00 1.00 1.00 .00ClH(G) 1.00 1.00 .00 .00'01(G)' .00 1.00 1.00 .00C1H2(G) 1.00 2.00 .00 .00'01(G) .00 .00 1.00 .00-.'H2NI(G) .00 2.00 .00 1.00 .'CIO2(G) 1.00 .00 2.00 .00'N103(G) .00 .00 3.00 1.00 .'N203(G) .00 .00 3.00 2.00'NIOI(G) .00 .00 1.00 1.00'CIH4(G) 1.00 4.00 .00 .00'N205(G) .00 .00 5.00 2.00'N3(G) .00 .00 .00 3.00

    weS

  • 7/22/2019 Ada 197603

    57/129

    48'H2N2(G) .00 2.00 .00 2.00'Ni(G) .00 .00 .00 1.00'H102(G) .00 1.00 2.00 .00'H202(G) .00 2.00 2.00 .00'H201(L,G)-C .00 2.00 1.00 .00'H4N2(G) .00 4.00 .00 2.00'H3NI(G) .00 3.00 .00 1.00'ClO1(G) 1.00 .00 1.00 .00'03(G) .00 .00 3.00 .00'C1(REF) 1. 0. 0. 0.54,2,3,1

    1144.267200.021222253.72619.38418.73144.8612

    ,

  • 7/22/2019 Ada 197603

    58/129

    49EXAMPLE 4: This example predicts the equilibrium

    between a hydrated salt and its evolvedwater vapor. Coefficients for C functionsare provided as thermochemical Rata. Thedata deck causes SOLGASMIX to calculateequilibria at 9 temperature/pressure points:temperatures of 500, 600, and 700 K, withpressures of 1.0, 1.5, and 2.0 atmospheresfor each temperature.

    EXAMPLE 4: DEHYDRATION OF ALUMINUM OXIDE TRIHYDRATE.3,2,0,3,5O, H, 'AL'OTWO' 2.0 0.0 0.0IHTWO' 0.0 2.0 0.0'H20' 1.0 2.0 0.0'AL' 0.0 0.0 1.0'ANHYD' 3.0 0.0 2.0'MONO' 4.0 2.0 2.0'DIHYD' 5.0 4.0 2.0'TRIHYD' 6.0 6.0 2.01,2,42500.000.0 205.130.0 130.65-242579. 188.810.0 28.34-1674400. 51.07-1971606. 96.91 r-2270500. 118.59-2568948. 140.2729.972 4.186E-3 0.0 -1.67E5 0.0 0.0 0.027.293 3.265E-3 0.0 5.02E4 0.0 0.0 0.030.014 1.072E-3 0.0 3.35E4 0.0 0.0 0.020.679 1.237E-2 0.0 0.0 0.0 0.0 0.0114.82 1.281E-2 0.0 -3.55E6 0.0 0.0 0.0108.75 4.939E-2 0.0 3.35E5 0.0 0.0 0.085.00 2.344E-1 0.0 0.0 0.0 0.0 0.0 .61.24 4.194E-4 0.0 0.0 0.0 0.0 0.0 1 "".1 1170.0 ,60.020.010.0 0.0 0.10 0.0 0.10 1.0 2.0 6.06600.6700.

  • 7/22/2019 Ada 197603

    59/129

    505o1.500500.

    600.56 ,572.0006500 . aJ:

    5~6

    a600.5 .6700.10

    .%

    IS

  • 7/22/2019 Ada 197603

    60/129

    51EXAMPLE 5: In this example, the equilibrium betweenhydrogen, nitrogen, and ammonia is calculated.Cp functions are again used for thermochemicaldata input, and heat of reaction calculationsare performed. Note that in an actual ammoniaproduction process, a catalyst is needed due toa very slow rate of reaction.

    EXAMPLE 5: AMMONIA EQUILIBRIUM, WITH HEAT.'N' 'H''NITROGEN' 2.0 0.0'HYDROGEN' 0.0 2.0'AMMONIA' 1.0 3.01,24600.00.0 191.590

    0.0 130.650-46046. 192.4301 1 127.67 0.4270E-2 0.0 0.0 0.0 0.0 0.027.29 0.3260E-2 0.0 0.5023E5 0.0 0.0 0.029.76 0.2512E-1 0.0 -0.1549E6 0.0 0.0 0.0 . 1 2 ,273.15710.0211 15.000

    ~~

    10.00012

  • 7/22/2019 Ada 197603

    61/129

    52 *EXAMPLE 6: This is the same problem as in the previous

    example, except the JANAF curvefit database isused for thermochemical data. Note that the datadeck is significantly shorter, as there is no *> Nneed to enter coefficients for specific heat orGibbs free energy curves.

    EXAMPLE 6: AMMONIA EQUILIBRIUM USING JANAF DATABASE2103 'N' 'Ht'N2(REF)' 2.0 0.0'H2(REF)' 0.0 2.0'H3Nl(G)' 1.0 3.01,25600.0212273.15710.0212 25.00010.00012

  • 7/22/2019 Ada 197603

    62/129

    - . -. . %-

    53EXAMPLE 7: This sample contains data for the equilibrium .?

    between lithium and fluorine. Both Cp andGibbs free energy curvefits are specified, butthere is only one coefficient given for eachAG curve: thus, the data deck is valid at onlyone temperature.

    EXAMPLE 7: LITHIUM/FLUORINE REACTION.'LI' 'F'1F2' 0.0 2.0

    'LIF V' 1.0 1.0'L12F2' 2.0 2.0'LI V' 1.0 0.0'LI L' 1.0 0.0'LIF L' 1.0 1.05 13.1 20.0-410995.-916769.38285.0.00-503292.0 .1200.1.0 202.789 :;-340787.0 200.278-942781.0 258.627 .159300.0 138.7812380. 33.938 W-598651.0 42.9621 1 1 1 1 134.440 0.0 0.0 0.0 0.0 0.0 0.034.302 0.0 0.0 0.0 0.0 0.0 0.072.291 0.0 0.0 0.0 0.0 0.0 0.0 *-20.786 0.0 0.0 0.0 0.0 0.0 0.030.018 0.0 0.0 0.0 0.0 0.0 0.064.183 0.0 0.0 0.0 0.0 0.0 0.02 1 5 -,298.152

    1.00012.00012'"

    ,

  • 7/22/2019 Ada 197603

    63/129

    54EXAMPLE 8: As in the previous example, this data deck solves

    for the lithium/fluorine equilibrium. Note thatthe JANAF curvefit database is utilized. Despitehaving several additional species defined in thesystem, this data deck is considerably shorter thanthe previous one, illustrating the usefulness of ,the database. Appendix B.2 is a listing of theSOLGASMIX output produced by this example.

    EXAMPLE 8: LITHIUM/FLUORINE SYSTEM, USING JANAF DATABASE2,2,0,7,2 : 'LI' 'F ,'F2(REF) 0.00 2.00Fl(G) 0.00 1.00'FlLII(G) 1.00 1.00'F2LI2(G) 2.00 2.00'F3LI3(G) 3.00 3.00-LIl(G) 1.00 0.00'L12(G) 2.00 0.00'LIl(L) 1.00 0.00-F1LIl(L) 1.00 1.008,15

    1200.2 1 8298.15

    2 21.00012.0000.001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.0012

    .'

    .

    .0 .0,N,-4

  • 7/22/2019 Ada 197603

    64/129

    55EXAMPLE 9: This example demonstrates several conditions

    under which incorrect results are obtained, andthe methods used to correct for these results.See Appendix A.3 for a discussion. Note that thetwo user defined species "*(G)" and "**(CR)" areincluded in the dataset, necessitating the use ofthe JFIT program.

    EXAMPLE 9: LI/H/O REACTION. KVAL2=-55,2,5,15,6 'H' '0' 'LI' '*' '**'(G)' 0. 0. 0. 1.0 0.'Hl(G)' 1. 0. 0. 0. 0.'H2(REF)' 2. 0. 0. 0. 0.'O1(G)' 0. 1. 0. 0. 0.'02(REF)' 0. 2. 0. 0. 0.'H201(G)' 2. 1. 0. 0. 0.'LII(G)' 0. 0. 1. 0. 0.'L12(G)' 0. 0. 2. 0. 0.'L1201(G)' 0. 1. 2. 0. 0.'L1202(G)' 0. 2. 2. 0. 0.'H1LII(G)' 1. 0. 1. 0. 0.'HLLI101(G) 1. 1. 1. 0. 0.'H2LI202(G)' 2. 2. 2. 0. 0.'HIOI(G)' 1. 1. 0. 0. 0. S'Hl02(G)' 1. 2. 0. 0. 0.**(CR)' 0. 0. 0. 0. 1.'LIl(L)' 0. 0. 1. 0. 0.'HILIl(L)' 1. 0. 1. 0. 0.'H1LI1O1(L)' 1. 1. 1. 0. 0.-L1201(L)' 0. 1. 2. 0. 0.H201(L)' 2. 1. 0. 0. 0.'LII(CR)' 0. 0. 1. 0. 0.'HILI1(CR)' 1. 0. 1. 0. 0.'HILIIOI(CR)' 1. 1. 1. 0. 0.'L1201(CR)' 0. 1. 2. 0. 0.'L1202(CR)' 0. 2. 2. 0. 0.3,5,17,1,16-51000.004 1 6 16 17400.0112 2 2 2,.,0.001.0 .0.001.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0

    1 U '

  • 7/22/2019 Ada 197603

    65/129

    * - * t

    5612 2220.0011.0 .0.0011. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.001 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0110 .00011.00.0011.00.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.001 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.010

    -d

    ,-c1

    . ~

    4 ., i ., '' I,7,,.%% '' %' .t .+ ' '+ + + ;. '.. ',', . J , , . ;, ''. -P.,'' . ',., ; .'''I 1 , + - w~. T P,,4 ,Y , .,+ , ,+ . . , t, ++ + ,+- +, , ' ' ' ',i, ' + , '' , w4 I' wms . ,,,+, ,1 . . / &

  • 7/22/2019 Ada 197603

    66/129

    57

    APPENDIX B.2: EXAMPLE OF SOLGASMIX OUTPUT

    I-

    Lm Z

    0 0 aLA z~ tA

    z j

    m toz : >

    - 0 -1 0000. Lu 00000(A 0

    Li 00000z ui- i m2 V)o i LuS L 0 - -0 0 0 U-

    o z(ii. II 2

  • 7/22/2019 Ada 197603

    67/129

    MK? UUM RVL- K.-

    58

    Lj *

    tox coc. c.< m 000000000

    ).a >< 0 CX 0 "cor, 0 Lm C~c'i N D L (

    V) to 0 Wr-~O, -Z~ 000 N

    C) U- C

    > NO mu.

  • 7/22/2019 Ada 197603

    68/129

    59

    o oM* +. +- +- +- +4LU Uj UJ Uj d W Uj u Uo o 17 c') m m' 0 11 0Mo 0 w N ul u) C') C') No 1 (o 11 0 0) -1 No -I m N N -- 0LL o 0 0 0 C c 0

    + 7 I I IUj U UL LL UL u uj Uj U0 co a. I N m

    u C) o ) ) m C'O L) C) m

    Cn N m m N

    4 ~ I .- 4 + * 4Z Uj U Ul Uj Uj U Uj U U0 0 m' C C') m' 0) Ic 4C N o N 0I) - C.) (o~C (D 0 C) - ''3~~ ~~7C .)

    U) Z C 0 C 0 0 0 CM )U_j I I Uj

    U -. 0 N q7 UO u) r) U) 11 ITU) rC + +- +- + * 4- 4

    v) 0 IT 0 0 a) 7C N 0) U - m' Ul) 0)

    C N 0 C CC0Uo 0 Lo u- o . 0w

    U j e- .- + +- + + +- +- +. + u.

    u+ C C U) - o o - C') Ln- Cn0) - C 0) m C N4 NUC.' C U) N L) C N04C..- U m0 0 U m' 17 N UCj N, m' - ' 0) w04 0

    U f, r. I D I~ I

    Z3 Z3 G

    C. N N U) - ' 'CA NL U) N -)

    C - N U) U U) 7 C%C~~~~kp

  • 7/22/2019 Ada 197603

    69/129

    60

    xwu4 4.0. 0 00NCoco

    -~ ~ cm. cc . X 06n C4 0 0 00 C)

    LA 0 c000C 00C 00 C0000000

    2 0 I.**A . . . .

  • 7/22/2019 Ada 197603

    70/129

    61

    LA~

    LUd

    La,(A

    a

    z.-..', --

    0 - **0)4 j

    4r

    oN

    -

    Z UP ,~ L4LU

  • 7/22/2019 Ada 197603

    71/129

    62

    T, ao

    + + + +. + +

    - . : oo 'T N C N0 CD 0C A

    o C) 0 C 0 a c 0 C1) c - C N - N

    C n o C - co co w co0n - O N Ic m C -c

    4- Inz Cj Cj Cu Cu C C 0 0 C

    0

    1- NN~z in. C -

    w m, In m oII na

    LA I y N1 1 v n+- C - Cn INC

    IA I0 - 0 0 N N 0

    z IN e4 IN') m IN~ N IN -INC 0+- 0 0 0 C C C

    Li- wIIII II-i II IZUN Nc N N -' N cc N. N

    z - co l' * *InNC N C C -- D m4 N C w- C m N (D u

    LLN C C C) C C C 0 C C _j

    4 - n T i) in in v in lq Uin . . 4 . . . . . 4.

    C14 - v in N C C m'IT' C c.) Cn m' N r') to ()

    C') M Lc ') C)

    Ij II F I I IIt

    inj _j _ NLi LL L 2d.

    Lii~OR '- J

    111., 4.~

  • 7/22/2019 Ada 197603

    72/129

  • 7/22/2019 Ada 197603

    73/129

    64

    64f

    ".

    IXI

    040 ~~ ~.f C 0

    U. U.U

    ~%

    2L.

  • 7/22/2019 Ada 197603

    74/129

  • 7/22/2019 Ada 197603

    75/129

    66AL.F6NA3( CRYITE, >ALPHA .NA3ALF6)ALIF6NA3(CR) CRYOLITE, ALPHA (NA3ALF6)ALIF6NA3(CR,L) CRYOLITE (NA3ALF6)ALIF6NA3(L) CRYOLITE (NA3ALF6)ALIHI(G) ALUMINUM HYDRIDE (ALH)ALIHIOI(G) ALUMINUM HYDRIDE OXIDE (OALH)ALIHIOI(G)-B ALUMINUM HYDROXIDE (ALOH)ALlHIOI+(G) ALUMINUM HYDROXIDE, ION (ALOH+)ALlHIOI-(G) ALUMINUM HYDROXIDE, ION (ALOH-)ALlHlO2(G) ALUMINUM HYDROXIDE OXIDE (OALOH)ALIH4LI1(CR) LITHIUM TETRAHYDROALUMINATE (LIALH4)ALlI3(G) ALUMINUM IODIDE (ALI)ALlI3(CR) ALUMINUM IODIDE (ALI3)ALlI3(CR,L) ALUMINUM IODIDE (ALI3)AL1I3(G) ALUMINUM IODIDE (ALI3)ALI3(L) ALUMINUM IODIDE (ALI3) LIOALILI102(CR) LITHIUM ALUMINUM OXIDE (LIALO2)ALILI1O2(CRL) LITHIUM ALUMINUM OXIDE (LIALO2)ALlLI102(L) LITHIUM ALUMINUM OXIDE (LIALO2)op-ALINA1O2(CR) SODIUM ALUMINUM OXIDE (NAALO2)ALIN1(CR) ALUMINUM NITRIDE (ALN)ALINI(G) ALUMINUM NITRIDE (ALN)AL1O1(G) ALUMINUM OXIDE (ALO)AL1O1+(G) ALUMINUM OXIDE, ION (ALO+)AL101-(G) ALUMINUM OXIDE, ION (ALO-)AL102(G) ALUMINUM OXIDE (ALO2)AL102-(G) ALUMINUM OXIDE, ION (AL02-)ALISI(G) ALUMINUM SULFIDE (ALS)AL2(G) ALUMINUM (AL2)AL2BE1O4(CR) BERYLLIUM ALUMINUM OXIDE (BEAL204)AL2BE1O4(CR,L) BERYLLIUM ALUMINUM OXIDE (BEAL204)AL2BE1O4(L) BERYLLIUM ALUMINUM OXIDE (BEAL204)AL2BR6(G) ALUMINUM BROMIDE ((ALLR3)2)AL2CL6(G) ALUMINUM CHLORIDE ((ALCL3)2)AL2CL9K3(CR) POTASSIUM ALUMINUM CHLORIDE (K3AL2CL9)AL2F6(G) ALUMINUM FLUORIDE ((ALF3)2)AL216(G) ALUMINUM IODIDE ((ALI3)2)AL2MG1O4(CR) MAGNESIUM ALUMINUM OXIDE (MGAL204)AL2MG1O4(CR,L) MAGNESIUM ALUMINUM OXIDE (MGAL204)AL2MG1O4(L) MAGNESIUM ALUMINUM OXIDE (MGAL204)AL2O1(G) ALUMINUM OXIDE (AL20)AL2O1+(G) ALUMINUM OXIDE, ION (AL20+)AL202(G) ALUMINUM OXIDE ((ALO)2)AL202+(G) ALUMINUM OXIDE, ION (AL202+)AL203(CR) ALUMINUM OXIDE, ALPHA (AL203)AL203(CR)-B ALUMINUM OXIDE, DELTA (AL203)AL203(CR)-C ALUMINUM OXIDE, GAMMA (AL203)AL203(CR)-D ALUMINUM OXIDE, KAPPA (AL203)AL203(CR,L) ALUMINUM OXIDE (AL203)AL203(L) ALUMINUM OXIDE (AL203)AL2O5SI1(CR) ALUMINUM SILICATE, ANDALUSITE (AL2SIL05)AL2O5SI1(CR)-B ALUMINUM SILICATE, KYANITE (AL2SI05)AL2O5SI1(CR)-C ALUMINUM SILICATE, SILLIMANITE (AL2SIO5)AL2S3(CR) ALUMINUM SULFIDE (AL2S3)

    " " " " "' ','' " '. '', - - - " ' -' " ' ' ' '' ' ,'

  • 7/22/2019 Ada 197603

    76/129

    67AL3Fl4NA5(CR) CHIOLITE (NA5AL3Fl4)AL3F14NAS(CRL) CHIOLITE (NA5AL3F14)AL6B1A(L) CHIOLIE NALMINUM OXDAL6BE1O1O(CR,) BERYLLIUM ALUMINUM OXIDE (BEAL6O1O)AL6BE1O1 (CL) BERYLLIUM ALUMINUM OXIDE (BEAL6O1O)AL6BE1O1O2(L) BELIUM AILINUEMUOXIE (AL6OI13AL613SI2(CR ALUMNU SIIATMALTR)LS10AR1(E) ARGON, (AR)ARA1+( ) ARON, IONB R+BA1(CR,) BARIUM (BA)BA1(CR,) BARIUM (BA)BA1(G) BARIUM (BA)BA1(LE) BARIUM (BA)BAl (RE) BARIUM, (BA)BABA1(G) BARIUM, BOION (BABAlBR2(G) BARIUM BROMIDE (BABR)BAlBR2(CR,) BARIUM BROMIDE (BABR2)BA1BR2(CR,) BARIUM BROMIDE (BABR2)BAlBR2(G) BARIUM BROMIDE (BABR2)BAlBR2(L) BARIUM BROMIDE (BAR2)BAlCL2(G) BARIUM CHLORIDE (BACL)0BA1CL2(CR,) BARIUM CHLORIDE (BACL2)BAlCL2(CR,) BARIUM CHLORIDE (BACL2)BAlCL2(L) BARIUM CHLORIDE (BACL2)BAlF2(CR) BARIUM FLUORIDE (BAF2)BAIFI1(G) BARIUM FLUORIDE, IOBAF) FBA1F1+(G) BARIUM FLUORIDE, ION BAF+BAlF2(CR,L) BARIUM FLUORIDE (BAF2)BAlF2(G) BARIUM FLUORIDE (BAF2)BAlF2(L) BARIUM FLUORIDE (BAF2)BAlH1Ol(G) BARIUM HYDROXIDE (BAOH) :BAlH1Ol+(G) BARIUM HYDROXIDE, ION (BAOH+)SBAlH202(CR) BARIUM HYDROXIDE, ALPHA (BA(OH)2)BAlH2O2(CR,L) BARIUM HYDROXIDE (BA(OH)2)BAlH202(G) BARIUM HYDROXIDE (BA(OH)2) iAlH2O2(L) BARIUM HYDROXIDE (BA(OH)2)BAlI1(G) BARIUM IODIDE (BAI)BAl12(CR) BARIUM IODIDE (BA12)BAl12(CR,L) BARIUM IODIDE (BA12)BAl12(G) BARIUM IODIDE (BA12)J.vBAl12(L) BARIUM IODIDE (BA12)BA1O1(CR)~~~ AIU OXDBBA1O1(CR) BARIUM OXIDE (BAO)BA101(GR,) BARIUM OXIDE (BAO)0BA1O1(L) BARIUM OXIDE (BAO)BA1S1(CR) BARIUM SULIDE (BA)BA1Sl(G) BARIUM SULFIDE (BAS)BE1(R) BERYIUM (BFIE(ASBE1(CR,) BERYLLIUM (BE)BE1(GR,) BERYLLIUM (BE)BE1(L) BERYLLIUM (BE)BE1(RE) BERYLLIUM (BE)BE1+(G) BERYLLIUM, ION (BE+)

  • 7/22/2019 Ada 197603

    77/129

    68BEIBR1(G) BERYLLIUM BROMIDE (BEBR)BEIBR2(CR) BERYLLIUM BROMIDE (BEBR2)BE1BR2(G) BERYLLIUM BROMIDE (BEBR2) , BEICL1(G) BERYLLIUM CHLORIDE (BECL) ..BEICL1+(G) BERYLLIUM CHLORIDE, ION (BECL+)BEICLIFI(G) BERYLLIUM CHLORIDE FLUORIDE (BECLF) >.BElCL2(CR) BERYLLIUM CHLORIDE, ALPHA (BECL2)BElCL2(CR)-B BERYLLIUM CHLORIDE, BETA (BECL2)BE1CL2(CR,L) BERYLLIUM CHLORIDE (BECL2)BElCL2(G) BERYLLIUM CHLORIDE (BECL2)BEICL2(L) BERYLLIUM CHLORIDE (BECL2)BElFI (G) BERYLLIUM FLUORIDE (BEF)BEIF2(CR) BERYLLIUM FLUORIDE (BEF2)BEIF2(CRL) BERYLLIUM FLUORIDE (BEF2)BEIF2(G) BERYLLIUM FLUORIDE (BEF2)BEIF2(L) BERYLLIUM FLUORIDE (BEF2)BEIF3LI1(CR) LITHIUM TRIFLUOROBERYLLATE (LIBEF3)BEIF3LI1(CRL) LITHIUM TRIFLUOROBERYLLATE (LIBEF3)BEIF3LI1(G) LITHIUM TRIFLUOROBERYLLATE (LIBEF3)BElF3LI1(L) LITHIUM TRIFLUOROBERYLLATE (LIBEF3)BEIF4LI2(CR) LITHIUM TETRAFLUOROBERYLLATE (LI2BEF4) IBEIF4LI2(CR,L) LITHIUM TETRAFLUOROBERYLLATE (LI2BEF4)BEIF4LI2(L) LITHIUM TETRAFLUOROBERYLLATE (LI2BEF4)BEIHI(G) BERYLLIUM HYDRIDE (BEH)BElHI+(G) BERYLLIUM HYDRIDE, ION (BEH+)BElHlOl(G) BERYLLIUM HYDROXIDE (BEOH)BEIHIOI+(G) BERYLLIUM HYDROXIDE, ION (BEOH+) IBEIH2(G) BERYLLIUM HYDRIDE (BEH2)BEIH202(CR) BERYLLIUM HYDROXIDE, ALPHA (BE(OH)2)BEIH202(CR)-B BERYLLIUM HYDROXIDE, BETA (BE(OH)2) "BEIH202(G) BERYLLIUM HYDROXIDE (BE(OH)2) .-BElIl (G) BERYLLIUM IODIDE (BEI)BElI2(CR) BERYLLIUM IODIDE (BEI2)BElI2(CR,L) BERYLLIUM IODIDE (BEI2)BEl12(G) BERYLLIUM IODIDE (BE12)BElI2(L) BERYLLIUM IODIDE (BEI2)BElN1(G) BERYLLIUM NITRIDE (BEN)BE1O1(CR) BERYLLIUM OXIDE, ALPHA (BEO)BE1O1(CR)-B BERYLLIUM OXIDE, BETA (BEO)BE1O1(CR,L) BERYLLIUM OXIDE (BEO)BE1O1(G) BERYLLIUM OXIDE (BEO)BE1OI(L) BERYLLIUM OXIDE (BEO)BE1O4SI(CR) BERYLLIUM SULFATE, ALPHA (BESO4)BE1O4Sl(CR)-B BERYLLIUM SULFATE, BETA (BESO4)BE1O4SI(CR)-C BERYLLIUM SULFATE, GAMMA (BESO4) IBE1 4WI(CR) BERYLLIUM TUNGSTEN OXIDE (BEWO4)BE1S1(CR) BERYLLIUM SULFIDE (BES)BEISI(G) BERYLLIUM SULFIDE (BES) 'BE2(G) BERYLLIUM (BE2)BE2CL4(G) BERYLLIUM CHLORIDE ((BECL2)2)BE2F2O1(G) BERYLLIUM FLUORIDE OXIDE (O(BEF)2) IBE2O1(G) BERYLLIUM OXIDE (BE20)BE202(G) BERYLLIUM OXIDE ((BEO)2)BE204SI1(CR) BERYLLIUM SILICATE (BE2SI04)

    Iw%.. "I . , . , .., . .. "6 m-

  • 7/22/2019 Ada 197603

    78/129

    69BR1I1( ) BERYLLIUM OXTIDE ALPHA(B'-)3)BE3N2(CR) BERYLLIUM NITRIDE, ALPHA (BE3N2)BE3N2(CRL) BERYLLIUM NITRIDE (BE3N2)BE3N2(L) BERYLLIUM NTIDE (BE3)BE303(G) BERYLLIUM OXIDE ((BEO)4)BE404(G) BERYLLIUM OXIDE ((BEO)5)BE606(G) BERYLLIUM OXIDE ((BEO)6)BRI(G) BROMINE (BR)BRI+(G) BROMINE, ION (BR+)BR1-(G) BROMINE, ION (BR-)BRlCA1(G) CALCIUM BROMIDE (CABR)BRICLI(G) BROMINE CHLORIDE (BRCL)BRIFI(G) BROMINE FLUORIDE (BRF)BRIF3(G) BROMINE FLUORIDE (BRF3)BRIF5(G) BROMINE FLUORIDE (BRF5)

    BRIFLSI G) SULFUR BROMIDE FLUORIDE (SBRF5)BRIHGI(G) MERCURY BROMIDE (HGBR)BRIHI(G) HYDROGEN BROMIDE (HBR)BRIH3SII(G) BROMOSILANE (SIH3BR)BRIH4NI(CR) AMMONIUM BROMIDE (NH4BR)BRII(G) IODINE BROMIDE (IBR)BRIKI(CR) POTASSIUM BROMIDE (KBR)BRlKG(CRL) POTASSIUM BROMIDE (KBR)BRIKI(G) POTASSIUM BROMIDE (KBR)BRlKl(L) POTASSIUM BROMIDE (KBR)BRILI1(CR) LITHIUM BROMIDE (LIBR)BRILI1(CR,L) LITHIUM BROMIDE (LIBR)BRILI1(G) LITHIUM BROMIDE (LIBR)BRILI1(L) LITHIUM BROMIDE (LIBR)BRIMG1(G) MAGNESIUM BROMIDE (MGBR)BRIMO1(G) MOLYBDENUM BROMIDE (MOBR)BRINA1(CR) SODIUM BROMIDE (NABR)BR1NA1(CR,L) SODIUM BROMIDE (NABR)BR1NA1(G) SODIUM BROMIDE (NABR)

    * BRlNA1(L) SODIUM BROMIDE (NABR)BR1Nl(G) BROMOIMIDOGEN (NBR) bBRINIOl(G) NITROSYL BROMIDE (ONBR)BRIPB1(G) LEAD BROMIDE (PLLR)BRIPI(G) PHOSPHORUS BROMIDE (PBR)BRISI1(G) BROMOSILYLIDYNE (SIBR)BRISR1(G) STRONTIUM BROMIDE (SRBR)BRITI1(G) TITANIUM BROMIDE (TIBR)BRIWI(G) TUNGSTEN BROMIDE (WBR)BRIZR1(G) ZIRCONIUM BROMIDE (ZRBR)BR2(CR,L) BROMINE (BR2)BR2(G) BROMINE (BR2)BR2(REF) BROMINE (BR2)BR2CA1(CR) CALCIUM BROMIDE (CABR2)BR2CA1(CR,L) CALCIUM BROMIDE (CABR2)BR2CA1(G) CALCIUM BROMIDE (CABR2)BR2CA1(L) CALCIUM BROMIDE (CABR2)BR2FE1(CR) IRON BROMIDE (FEBR2)BR2FE1(CR,L) IRON BROMIDE (FEBR2)BR2FE1(G) IRON BROMIDE (FEBR2)

  • 7/22/2019 Ada 197603

    79/129

  • 7/22/2019 Ada 197603

    80/129

    71BR4ZR1(CR)~~~~ ZICNUMBOIE ZB4BR4ZR1(CR) ZIRCONIUM BROMIDE (ZRBR4)

    BR4ZR1(G) ZIROIUM BROMIDE (ZRBR)BR5NB1(CR,) NIOBIUM BROMIDE (NLLR5)BR5NB1(CR,) NIOBIUM BROMIDE (NLLR5)BR5NB1(G) NIOBIUM BROMIDE (NLLR5)BR5NB1(L) TNOBIUM BROMIDE (NLLR5)BR5W(CR,)UGSTE BROIDE WBR5BR5WI(CR) TUNGSTEN BROMIDE (WBR5)BR5WI(CRL) TUNGSTEN BROMIDE (WBR5)BR5Wl(G) TUNGSTEN BROMIDE (WBR5)BR6Wl(G) TUNGSTEN BROMIDE (WBR6)Bl(CR) BORON, BETA-RHOMBOHEDRAL (B)B1(CR,L) BORON (B)Bl(G) BORON (B)Bl(L) BORON (B)Bl(REF) BORON (B)%B1+(G) BORON, ION (B+)B1-(G) BORON, ION (B-)%%BlBE1O2(G) BERYLLIUM BO-hATE (BEBO2)B1BR1(G) BROMOBORANE (LLR)0BiBRiCLi (G) BROMOCHLOROBORANE (LLRCL)BlBRlCL2 (G) BROMODICHLOROBORANE (LLRCL2)BiBRlFi (G) BROMOFLUOROBORANE (LLRF)B1BRlF2 (G) BROMODIFLUOROBORANE (LLRF2)B1BR101(G) BORON BROMIDE OXIDE (OLLR)BlBR2(G) DIBROMOBORANE (LLR2)BlBR2CL1(G) DIBROMOCHEJOROBORANE (LLR2CL)BlBR2Fl(G) DIBROMOFLIJOROBORANE (LLR2F)BlBR2Hl(G) DIBROMOBORANE (BHBR2)B1BR3(G) TRIBROMOBORANE (LLR3)B1BR3(L) TRIBROMOBORANE (LLR3)B1CL1(G) CHLOROBORANE (BCL)BlCL1+(G) CHLOROBORANE, ION (BCL+)BiCLiFi (G) CHLOROFLUOROBORANE (BCLF)BlCL1F2(G) CHLORODIFLUOROBORANE (BCLF2)BlCL101(G) BORON CHLORIDE OXIDE (OBCL)BlCL2(G) DICHLOROBORANE (BCL2)BlCL2+(G) DICHLOROBORANE, ION (BCL2+)0B1CL2-(G) DICHLOROBORANE, ION (BCL2-)B1CL2Fl(G) DICHLOROFLUOROBORANE (BCL2F)B1CL2Hl(G) DICHLOROBORANE (BHCL2)B1CL3(G) TRICHLOROBORANE (BCL3)B1Fl(G) FLUOROBORANE (BF)B1FlOl(G) BORON FLUORIDE OXIDE (OBF) I aB1F2(G) DIFLUOROBORANE (BF2)B1F2+(G) DIFLUOROBORANE, ION (BF2+)B1F2-(G) DIFLUOROBORANE, ION (BF2-)B1F2HI(G) DIFLUOROBORANE (BHF2)B1F2HlO1 (G) DIFLUOROHYDROXYBORANE (BF2OH)%vB1F201(G) BORON FLUORIDE OXIDE (OBF2)0BlF3(G) TRIFLUOROBORANE (BF3)BlF4K3.(CR) POTASSIUM TETRAFLUOROBORATE (KBF4)B1F4K1 (CR,L) POTASSIUM TETRAFLUOROBORATE (KBF4)

  • 7/22/2019 Ada 197603

    81/129

    7ZBlF4l(G)POTASIUMTETRFLUOOBORTE pBFBlF4K1(G) POTASSIUM TETRAFLUOROBORATE (KBF4)

    BlHl(G) BORANE (BH)BlHlOl(G) BORON HYDRIDE OXIDE (HBO)BlHlOl+(G) BORON HYDRIDE OXIDE, ION (HBO+)BlHlOl-(G) BORON HYDRIDE OXIDE, ION (HBO-)BlHlO2(CR) BORIC ACID (HBO2)BlHl02(G) BORIC ACID (HBO2)BlHlSl(G) BORON HYDRIDE SULFIDE (EBS)BlHlSl+(G) BORON HYDRIDE SULFIDE, ION (HBS+)BlH2(G)BORANE (BH2)BlH202(G) DIHYDROXYBORANE (B(OH) 2)BlH3(G) BORANE (BH3)BlH303(CR) BORIC ACID (H3B03)B1H303(G) BORIC ACID (H3B03)BlH4Kl(CR) POTASSIUM TETRAHYDROBORATE (KBH4)BlH4LI1(CR) LITHIUM TETRAHYDROBORATE (LIBH4)BlH4NA1(CR) SODIUM TETRAHYDRODORATE (NABH4)BlIl(G) IODOBORANE (BI)B112(G) DIIODOBORANE (B12)Bl13(G) TRIIODOBORANE (B13)BlKlO2(CR) POTASSIUM BORATE (KBO2)BlKlO2(CR,L) POTASSIUM BORATE (1(802)Bl1(l02(G) POTASSIUM BORATE (1(802)Bl~l02(L) POTASSIUM BORATE (1(802)BlLI102(CR) LITHIUM BORATE (LIBO2)

    BlLI02(RL)LITIUM ORAE (LBSiBlLI102(CR,) LITHIUM BORATE (LIBO2) eBlLI102(G) LITHIUM BORATE (LIBO2)81lN102(L) LITHIUM BORATE (L1802)BlNA102(CR,) SODIUM BORATE (NABO2) '.B l N A 0 2 ( GI O E ( N BBlNA102(CRL) SODIUM BORATE (NABO2)BlN1(CR) BORON NITRIDE (BN)BlN1(G) BORON NITRIDE (BN)8101(G) BORON OXIDE (80)U8102(G) BORON OXIDE (B02)B102-(G) BORON OXIDE, ION (B02-)BlSl(G) BORON SULFIDE (BS)BlTI1(CR) TITANIUM BORIDE (TIB)Bl0H14(CR) DECABORANE (BlOH14)Bl0H14(CR,L) DECABORANE (B10H14) .l0H14(G) DECABORANE (810H14)Bl0H14(L) DECABORANE (810H14)B10017PB2(CR) LEAD BORATE (P82810017)B2(G) BORON (B2)B2BE104(G) BERYLLIUM BORATE (BE(B02)2)B2BE306(CR) BERYLLIUM BORATE (BE3B206)2CL4(G) DICHLOROBORANE ((BCL2)2)B2F4(G) DIFLUOROBORANE ((BF2) 2)B2F401(G) DIFLUOROBORANE OXIDE (O(BF2)2)

    B2H404(CR) DIHYDROXYBORANE ((B(OH)2)2)B2H404(G) DIHYDROXYBORANE ((B(OH)2)2)B2H6(G) DIBORANE (B2H6) ~

  • 7/22/2019 Ada 197603

    82/129

    73B2MG1 (CR) MAGNESIUM BORIDE (MGB2)B201(G) BORON OXIDE (B20)B202(G) BORON OXIDE ((BO)2)B203(CR) BORON OXIDE (B203)B203(CR,L) BORON OXIDE (B203)B203(G) BORON OXIDE (B203) ~B203(L) BORON OXIDE (B203)B2O4PB1(CR) LEAD BORATE (PLL2O4)B2TI1(CR) TITANIUM BORIDE (TIB2)B2TI1(CR,L) TITANIUM BORIDE (TIB2)B2TI1 (L) TITANIUM BORIDE (TIB2)B2ZR1(CR) ZIRCONIUM BORIDE (ZRB2)B2ZR1(CR,L) ZIRCONIUM BORIDE (ZRB2)B2ZR1(L) ZIRCONIUM BORIDE (ZRB2)B3CL303 (G) TRICHLOROBOROXIN (B303CL3)0B3F1H203(G) FLUOROBOROXIN (B3H203F) ,B3F2H103 (G) DIFLUOROBOROXIN (B3H03F2)B3F303(CR) TRIFLUOROBOROXIN (B303F3)B3F303(G) TRIFLUOROBOROXIN (B303F3)mewB3H303(CR) BOROXIN (B3H303)B3H303(G) BOROXIN (B3H303)B3H306(G) BORIC ACID ((HBO2)3)B3H6N3(G) BORAZINE (B2H6N3)B4K207(CR) POTASSIUM BORATE (K2B407)B4K207(CR,L,) POTASSIUM BORATE (K2B407)B4K207(L) POTASSIUM BORATE (K2B407)B4LI207(CR) LITHIUM BORATE (L12B407)B4LI207(CR,L) LITHIUM BORATE (L12B407)B4LI207(L) LITHIUM BORATE (L12B407)B4MG1(CR) MAGNESIUM BORIDE (MGB4)B4NA207(CR) SODIUM BORATE (NA2B407)B4NA207(CR,L) SODIUM BORATE (NA2B407)B4NA207(L) SODIUM BORATE (NA2B407)B407PB1(CR) LEAD BORATE (PLL4O7)B5H9(G) PENTABORANE (B5H9)B5H9(L) PENTABORANE (B5H9)B6K2010(CR) POTASSIUM BORATE (K2B6010)B6LI2010(CR) LITHIUM BORATE (L12B6010)B6NA2O1O(CR) SODIUM BORATE (NA2B6O1C)B601OPB1(CR) LEAD BORATE (PLL6O1O)B8K2013(CR) POTASSIUM BORATE (K2B8013)B8K2013(CR,L) POTASSIUM BORATE (K2B8013)B8K2013(L) POTASSIUM BORATE (K2B8013)B8L12013(CR) LITHIUM BORATE (L12B8013)CA1(CR) CALCIUM, ALPHA (CA)CA1(CR)-B CALCIUM, BETA (CA)CA1(CR,L) CALCIUM (CA)CA1(G) CALCIUM (CA)CA1(L) CALCIUM (CA)CA1(REF) CALCIUM (CA)CA1+(G) CALCIUM, ION (CA+)CA1CL1(G) CALCIUM CHLORIDE (CACL)CAlCL2(CR) CALCIUM CHLORIDE (CACL2)CAlCL2(CR,L) CALCIUM CHLORIDE (CACL2)

  • 7/22/2019 Ada 197603

    83/129

    ----- ~~~~~\ . ... ...

    74 *CAlCL2(G) CALCIUM CHLORIDE (CACL2)CAICL2(L) CALCIUM CHLORIDE (CACL2)CAlFl(G) CALCIUM FLUORIDE (CAF)CALF2(CR) CALCIUM FLUORIDE (CAF2)CAIF2(CR,L) CALCIUM FLUORIDE (CAF2)CAIF2(G) CALCIUM FLUORIDE (CAF2)CAIF2(L) CALCIUM FLUORIDE (CAF2)CAIHIOI(G) CALCIUM HYDROXIDE (CAOH) .CAIHIOI+(G) CALCIUM HYDROXIDE, ION (CAOH+)CA1H202(CR) CALCIUM HYDROXIDE (CA(OH)2)CAIH202(G) CALCIUM HYDROXIDE (CA(OH)2)CAlIl(G) CALCIUM IODIDE (CAI)CA1I2(CR) CALCIUM IODIDE (CAI2)CA112(CR,L) CALCIUM IODIDE (CAI2)C-AI2(G) CALCIUM IODIDE (CAI2) ICAlI2(L) CALCIUM IODIDE (CAI2)CA1O1(CR) CALCIUM OXIDE (CAO)CA1O1(CRL) CALCIUM OXIDE (CAO)CA1O1(G) CALCIUM OXIDE (CAO)CAIOI (L) CALCIUM OXIDE (CAO)CAISI(CR) CALCIUM SULFIDE (CAS) ICAlSI(G) CALCIUM SULFIDE (CAS)CA2(G) CALCIUM (CA2)CL1(G) CHLORINE (CL)CL1+(G) CHLORINE, ION (CL+)CL1-(G) CHLORINE, ION (CL-)CLICO1(G) COBALT CHLORIDE (COCL) ICLICS1(CR) CESIUM CHLORIDE (CSCL)CLICS1(CR,L) CESIUM CHLORIDE (CSCL)CLICS1(G) CESIUM CHLORIDE (CSCL)CLICS1(L) CESIUM CHLORIDE (CSCL)CLICU1(CR) COPPER CHLORIDE (CUCL)CLICU1(CR,L) COPPER CHLORIDE (CUCL) ICLICU1(G) COPPER CHLORIDE (CUCL)CLICUI(L) COPPER CHLORIDE (CUCL) ..CLIDI(G) HYDROCHLORIC ACID-D (DCL)CLIDIOI(G) HYPOCHLOROUS ACID-D (DOCL)CLIFE1(G) IRON CHLORIDE (FECL)CLIF.(G) CHLORINE FLUORIDE (CLF) ICLlFILI2(G) LITHIUM CHLORIDE FLUORIDE (LI2CLF)CLIFIMG1(G) MAGNESIUM CHLORIDE FLUORIDE (MGCLF)CLlFlO2Sl(G) SULFURYL CHLORIDE FLUORIDE (SO2CLF)CLlFlO3(G) PERCHLORYL FLUORIDE (CLO3F)CLlF2OIPl(G) PHOSPHORYL CHLORIDE FLUORIDE (POCLF2)CLIF3(G) CHLORINE FLUORIDE (CLF3)CLIF3SI1(G) CHLOROTRIFLUOROSILANE (SICLF3)CLIF5(G) CHLORINE FLUORIDE (CLF5)CLIF5SI(G) SULFUR CHLORIDE FLUORIDE (SCLF5)CLIHGi(G) MERCURY CHLORIDE (HGCL)CLIHI(G) HYDROGEN CHLORIDE (HCL)CLIHIOI(G) HYPOCHLOROUS ACID (HOCL) ICL1H3SI1(G) CHLOROSILANE (SIH3CL)CL1H4NI (CR) AMMONIUM CHLORIDE (N14CLjCLIH4NlO4(CR) AMMONIUM PERCHLORATE (NH4CLO4)

    " "- " ". " ", " ". "..'-".'/ ". ' Z.'_. :.-.''-,''.''.'.'. ". . .. '..' "". , . .-. " < " " / .-" ',./'.".- -..-.-

  • 7/22/2019 Ada 197603

    84/129

    75 .CLlIl(CR) IODINE CHLORIDE (ICL)CLlIJJ(CR,L) IODINE CHLORIDE (ICL)CL1Il(G) IODINE CHLORIDE (ICL)CLlIl(L) IODINE CHLORIDE (ICL)CLlKl(CR) POTASSIUM CHLORIDE (KCL)CLlKlICR,L) POTASSIUM CHLORIDE (KCL)CLlKl(G) POTASSIUM CHLORIDE (KCL)CLiKi (L) POTASSIUM CHLORIDE (KCL)CLlKl04(CR) POTASSIUM PERCHLORATE (KCL04)CLlLI1(CR) LITHIUM CHLORIDE (LICL)CLlLI1(CR,L) LITHIUM CHLORIDE (LICL)CLlLIJIG) LITHIUM CHLORIDE (LICL)CLlLI1(L) LITHIUM CHLORIDE (LICL) '1.CLlLI1O1(G) LITHIUM HYPOCHLORITE (LIOCL)CLlLI104(CR) LITHIUM PERCHLORATE (LICLO4)CLlLI1O4(CR,L) LITHIUM PERCHLORATE (LICLO4)CLlLI1O4(L) LITHIUM PERCHLORATE (LICLO4)CL1MG1(G) MAGNESIUM CHLORIDE (MGCL)CLlMG1+(G) MAGNESIUM CHLORIDE, ION (MGCL+)CLlNA1(CR) SODIUM CHLORIDE (NACL)CLlNA1(CR,L) SODIUM CHLORIDE (NACL)0CLlNA1(G) SODIUM CHLORIDE (NACL)CLlNA1(L) SODIUM CHLORIDE (NACL)CL1NA1O4(CR) SODIUM PERCHLORATE (NACL04) ~vJCL1NI1(G) NICKEL CHLORIDE (NICL)CLlN1Ol(G) NITROSYL CHLORIDE (ONCL)CLlNl02(G) NITRYL CHLORIDE (NO2CL)CLi1l (G) CHLORINE OXIDE (CLO)CL1O1TI1(G) TITANIUM CHLORIDE OXIDE (OTICL)CL1O2(G) CHLORINE OXIDE (CL02) -CLlPB1(G) LEAD CHLORIDE (PBCL)CLlPBI+(G) LEAD CHLORIDE, ION (PBCL+)CLlPl(G) PHOSPHORUS CHLORIDE (PCL)CLlSI1(G) CLOROSILYLIDYNE (SICL)CLlSR1(G) STRONTIUM CHLORIDE (SRCL)CL1Sl(G) SULFUR CHLORIDE (SCL) .jCL1Sl+(G) SULFUR CHLORIDE, ION (SCL+)CLlS2(G) SULFUR CHLORIDE (S2CL)CLlTI1(G) TITANIUM CHLORIDE (TICL)CLlW1(G) TUNGSTEN CHLORIDE (WCL)CL1ZR1(G) ZIRCONIUM CHLORIDE (ZRCL)CLlOW2(G) TUNGSTEN CHLORIDE ((WCL5)2)CL2(REF) CHLORINE (CL2)CL2CO1(CR) COBALT CHLORIDE (COCL2)CL2CO1(CR,L) COBALT CHLORIDE (COCL2)CL2CO1(G) COBALT CHLORIDE (COCL2)CLC1l) COBALT CHLORIDE (COCL2)CL2CS2(G) CESIUM CHLORIDE ((CSCL)2)-CL2CU1(CR) COPPER CHLORIDE (CUCL2)CL2FE1(CR) IRON CHLORIDE (FECL2)CL2FE1(CR,L) IRON CHLORIDE (FECL2)CL2FE1(G)~~r RO CHOIEvFCCL2FE1IL) IRON CHLORIDE (FECL2)CL2F1O1Pl(G) PHOSPHORYL CHLORIDE FLUORIDE (POCL2F)

    -A -p r._-

  • 7/22/2019 Ada 197603

    85/129

    76CL2HG1(CR) MERCURY CHLORIDE (HGCL2)CL2HG1(CR,L) MERCURY CHLORIDE (HGCL2)CL2HGI(G) MERCURY CHLORIDE (HGCL2)CL2HG1(L) MERCURY CHLORIDE (HGCL2)CL2HG2(CR) MERCURY CHLORIDE (HG2CL2) "CL2H2SI1(G) DICHLOROSILANE (SIH2CL2)CL2K2 (G) POTASSIUM CHLORIDE ((KCL)2)CL2LI2(G) LITHIUM CHLORIDE ((LICL)2)CL2MG1(CR) MAGNESIUM CHLORIDE (MGCL2)CL2MG1(CR,L) MAGNESIUM CHLORIDE (MGCL2)CL2MG1(G) MAGNESIUM CHLORIDE (MGCL2) -CL2MG1(L) MAGNESIUM CHLORIDE (MGCL2)CL2MO1O2(G) MOLYBDENUM CHLORIDE OXIDE (MOO2CL2)CL2NA2(G) SODIUM CHLORIDE ((NACL)2)CL2NI1(CR) NICKEL CHLORIDE (NICL2)CL2NI1(CR,L) NICKEL CHLORIDE (NICL2)CL2NI1(G) NICKEL CHLORIDE (NICL2)CL2NI1(L) NICKEL CHLORIDE (NICL2)CL201(G) CHLORINE OXIDE (CL2O)CL201TI1(G) TITANIUM CHLORIDE OXIDE (TIOCL2)CL202SI(G) SULFURYL CHLORIDE (S02CL2)CL2O21(CR) TUNGSTEN CHLORIDE OXIDE (WO2CL2)CL2U2Wl(G) TUNGSTEN CHLORIDE OXIDE (WO2CL2)CL2PBI(CR) LEAD CHLORIDE (PBCL2) (W02CL2)CL2PB1(CRL) LEAD CHLORIDE (PBCL2)CL2PB1(L) LEAD CHLORIDE (PBCL2)CL2PB1(G) LEAD CHLORIDE (PBCL2)CL2PB1(G) LEAD CHLORIDE ON (CL2)CL2SI1(G) DICHLOROSILYLENE (SICL2)CL2SR1(CR) STRONTIUM CHLORIDE (SRCL2)CL2SRI(CR,L) STRONTIUM CHLORIDE (SRCL2)CL2SR1(G) STRONTIUM CHLORIDE (SRCL2)CL2SR1(L) STRONTIUM CHLORIDE (SRCL2)CL2Sl (G) SULFUR CHLORIDE (SCL2)CL2SI(L) SULFUR CHLORIDE (SCL2)CL2SI+(G) SULFUR CHLORIDE, ION (SCL2+)CL2S2 (G) SULFUR CHLORIDE (CLSSCL)CL2S2(L) SULFUR CHLORIDE (CLSSCL)CL2TI1(CR) TITANIUM CHLORIDE (TICL2)CL2TI1(G) TITANIUM CHLORIDE (TICL2)CL2WI (CR) TUNGSTEN CHLORIDE (WCL2)CL2WI(G) TUNGSTEN CHLORIDE (WCL2)CL2ZR1(CR) ZIRCONIUM CHLORIDE (ZRCL2)CL2ZR1(CRL) ZIRCONIUM CHLORIDE (ZRCL2)CL2ZR1(G) ZIRCONIUM CHLORIDE (ZRCL2)CL2ZR1(L) ZIRCONIUM CHLORIDE (ZRCL2)CL3CO1(G) COBALT CHLORIDE (COCL3) "-CT.3CJ3 (G) COPPER CHLORIDE ((CUCL)3)CL3FE1(CR) IRON CHLORIDE (FECL3)CL3FE1(CR,L) IRON CHLORIDE (FECL3) ?CL3FE1(G) IRON CHLORIDE (FECL3)CL3FE1(L) IRON CHLORIDE (FECL3)CL3FISI1(G) TRICHLOROFLUOROSILANE (SICL3F)CL3HISI1(G) TRICHLOROSILANE (SIHCL3)

  • 7/22/2019 Ada 197603

    86/129

    77CL3LI3(G) LITHIUM CHLORIDE ((LICL)3)CL3OlPl(G) PHOSPHORYL CHLORIDE (OPCL3)CL3P(G) PHOSPHORUS CHLORIDE (PCL3)CL3PS1(G) THIOPHOSPHORYL CHLORIDE (SPCL3)CL3SI1(G) TRICHLOROSILYL (SICL3)CL3TI1(CR) TITANIUM CHLORIDE (TICL3)CL3TI1(G) TITANIUM CHLORIDE (TICL3) NCL3ZR1(CR) ZIRCONIUM CHLORIDE (ZRCL3) __CL3ZR1(G) ZIRCONIUM CHLORIDE (ZRCL3)CL4CO2(G) COBALT CHLORIDE ((COCL2)2) -CL4FE2(G) IRON CHLORIDE ((FECL2)2)CL4MG2(G) MAGNESIUM CHLORIDE ((MGCL2)2)CL4MO1(CR) MOLYBDENUM CHLORIDE (MOCL4)CL4MO1(CR,L) MOLYBDENUM CHLORIDE (MOCL4)CL4MO1(G) MOLYBDENUM CHLORIDE (MOCL4)CL4MO1(L) MOLYBDENUM CHLORIDE (MOCL4)CL4OWl(CR) TUNGSTEN CHLORIDE OXIDE (OWCL4)CL4OWl(CR,L) TUNGSTEN CHLORIDE OXIDE (OWCL4)CL4OIW1(G) TUNGSTEN CHLORIDE OXIDE (OWCL4)CL4OWl(L) TUNGSTEN CHLORIDE OXIDE (OWCL4)CL4PB1(G) LEAD CHLORIDE (PBCL4)CL4SI1 (G) TETRACHLOROSILANE (SICL4)CL4TI1(CR) TITANIUM CHLORIDE (TICL4) NCL4TI1(CRL) TITANIUM CHLORIDE (TICL4)CL4TI1(G) TITANIUM CHLORIDE (TICL4)CL4TI1(L) TITANIUM CHLORIDE (TICL4)CL4Wl(CR) TUNGSTEN CHLORIDE (WCL4)CL4Wl(G) TUNGSTEN CHLORIDE (WCL4)CL4ZR1(CR) ZIRCONIUM CHLORIDE (ZRCL4)CL4ZR1(G) ZIRCONIUM CHLORIDE (ZRCL4) %CL5MO1(CR) MOLYBDENUM CHLORIDE (MOCL5)CL5MO1(CR,L) MOLYBDENUM CHLORIDE (MOCL5)CL5MO1(G) MOLYBDENUM CHLORIDE (MOCL5)CL5MOI(L) MOLYBDENUM CHLORIDE (MOCL5)CL5NB1(CR) NIOBIUM CHLORIDE (NBCL5)CL5N31(CR,L) NIOBIUM CHLORIDE (NBCL5)CL5NB1(G) NIOBIUM CHLORIDE (NBCL5)CL5NB1(L) NIOBIUM CHLORIDE (NBCLq)CL5P(G) PHOSPHORUS CHLORIDE (PCL5)CL5TA1(CR) TANTALUM CHLORIDE (TACL5)CL5TA1(CR,L) TANTALUM CHLORIDE (TACL5)CL5TA1(G) TANTALUM CHLORIDE (TACL5)CL5TA1(L) TANTALUM CHLORIDE (TACL5)CL5W(CR) TUNGSTEN CHLORIDE (WCL5)CL5W(CR,L) TUNGSTEN CHLORIDE (WCL5)CL5W1(G) TUNGSTEN CHLORIDE (WCL5)CL5W1(L) TUNGSTEN CHLORIDE (WCL5)CL6FE2(G) IRON CHLORIDE ((FECL3)2)CL6MO1(CR) MOLYBDENUM CHLORIDE (MOCL6)CL6MO1(G) MOLYBDENUM CHLORIDE (MOCL6)CL6W(CR) TUNGSTEN CHLORIDE, ALPHA (WCL6)CL6W(CR)-B TUNGSTEN CHLORIDE, BETA (WCL6)CL6W(CR,L) TUNGSTEN CHLORIDE (WCL6)CL6WI(G) TUNGSTEN CHLORIDE (WCL6)

    *-

  • 7/22/2019 Ada 197603

    87/129

    %78

    CL6Wl(L) TUNGSTEN CHLORIDE (WCL6),*.CO1(CR) COBALT (CO)CO1(CR,L) COBALT (CO) I CO1(G) COBALT (CO)CO1(L) COBALT (CO)CO1(REF) COBALT (CO)CO1+(G) COBALT, ION (CO+)CO1-(G) COBALT, ION (CO-) oCOIF2(CR) COBALT FLUORIDE (COF2)COIF2(CR,L) COBALT FLUORIDE (COF2) .VCOIF2 (G) COBALT FLUORIDE (COF2) 'COIF2(L) COBALT FLUORIDE (COF2) /.COlF3(CR) COBALT FLUORIDE (COF3) ..COIOI(CR) COBALT OXIDE (COO)CO1O4SI(CR) COBALT SULFATE (COS04) IC0304(CR) COBALT OXIDE (C0304)CR1(CR) CHROMIUM (CR) kCR1(CR,L) CHROMIUM (CR) *.CR1(G) CHROMIUM (CR) IN.CR1(L) CHROMIUM (CR)CR1(REF) CHROMIUM (CR) CR1+(G) CHROMIUM, ION (CR+)CR1-(G) CHROMIUM, ION (CR-) pCRINI(CR) CHROMIUM NITRIDE (CRN)CRINI (G) CHROMIUM NITRIDE (CRN)CR1O1(G) CHROMIUM OXIDE (CRO)CR1O2(G) CHROMIUM OXIDE (CR02)CR1O3(G) CHROMIUM OXIDE (CR03)CR2NI(CR) CHROMIUM NITRIDE (CR2N)CR203(CR) CHROMIUM OXIDE (CR203)CR203(CR,L) CHROMIUM OXIDE (CR203) -.CR203(L) CHROMIUM OXIDE (CR203)CS1(CR) CESIUM (CS)CS1(CRL) CESIUM (CS)CS1(G) CESIUM (CS)CS1(L) CESIUM (CS)CS1(REF) CESIUM (CS)CS1+(G) CESIUM, ION (CS+)CS1-(G) CESIUM, ION (CS-)CSIFI(CR) CESIUM FLUORIDE (.CSIFI(CR,L) CESIUM FLUORIDE (CSF)CSIFR(G) CESIUM FLUORIDE (CSF)CSlFl(G) CESIUM FLUORIDE (CSF)..'CSIFI (L) CESIUM FLUORIDE (CSF)CSIHIOI(CR ) CESIUM HYDROXIDE (CSOH)CSIHlOI(CR,L) CESIUM HYDROXIDE (CSOH)SIHIOI1(G) CESIUM HYDROXIDE (CSOH) "CSIHIOI(L) CESIUM HYDROXIDE (CSOH)CSIHIOI+(G) CESIUM HYDROXIDE, ION (CSOH+)CS1O1(G) CESIUM OXIDE (CSO)CS2(G) CESIUM (CS2) -CS2F2(G) CESIUM FLUORIDE ((CSF)2)CS2H202(G) CESIUM HYDROXIDE ((CSOH)2)CS201(G) CESIUM OXIDE (CS20)-,CS204S(CR) CESIUM SULFATE, I (CS2SO4)

    IN.

  • 7/22/2019 Ada 197603

    88/129

  • 7/22/2019 Ada 197603

    89/129

    80ClCU1Nl(CR) COPPER CYANIDE (CUCN)ClFl(G) FLUOROMETHYLIDYNE (CF)ClF1+(G) FLUOROMETHYLIDYNE, ION (CF+) 1 ClFlNl(G) CYANOGEN FLUORIDE (FCN)f.ClF1Ol(G) CARBONYL FLUORIDE (COF)ClF2(G) DIFLUOROMETHYLENE (CF2)ClF2+(G) DIFLUOROMETHYLENE, ION (CF2+)ClF2O1(G) CARBONIC DIFLUORIDE (COF2)ClF3(G) TRIFLUOROMETHYL (CF3)ClF3+(G) TRIFLUOROMETHYL, ON (CF3+)ClF31l(G) TRIFLUORIODOMETHANE (CIF3) ~.ClF4(G) TETRAFLUOROMETHANE (CF4)C1F401(G) TRIFLUOROMETHYL HYPOFLUORITE (CF3OF)ClF8Sl(G) PENTAFLUORO(TRIFLUOROMETHYL) SULFUR (CF3SF5)C1Hl(G) METHYLIDYNE (CH)ClHl+(G) METHYLIDYNE, ION (CH+)ClH].CLl(G) CHLOROMETHYLENE (CHCL)ClHlCL1F2 (G) CHLORODIFLUOROMETHANE (CHCLF2)ClHlCL2Fl(G) DICHLOROFLUOROMETHANE (CHCL2F)C1HlCL3 (G) TRICHLOROMETHANE (CHCL3)ClHlFl(G) FLUOROMETHYLENE (CHF)ClHlFlOl(G) FORMYL FLUORIDE (HCOF) '-~AClHlF3(G) TRIFLUOROMETHANE (CHF3)ClHlNl(G) HYDROGEN CYANIDE (HCN)ClHlNlOl(G) HYDROGEN ISOCYANATE (HNCO)ClHlO1(G) FORMYL (HCO)C1H1O1+(G) FORMYL, ION (HCO+)ClH1Pl(G) METHINOPHOSPHIDE (CHP)ClH2(G) METHYLENE (CH2)C1H2CL1F1 (G) CHLOROFLUOROMETHANE (CH2CLF)ClH2CL2(G) DICHLOROMETHANE (CH2CL2)

    C1H2F2(G) DIFLUOROMETHANE(CF2C1H2O1(G) FORMALDEHYDE (H2CO)C1H3(G) METHYL (CH3)ClH3CLl(G) CHLOROMETHANE (CH3CL)ClH3CL3SI1(G) TRICHLOROMETHYLSILANE (SICH3CL3)ClH3Fl(G) FLUOROMETHANE (CH3F)C1H3F3SI1(G) TRIFLUOROMETHYLSILANE (SICH3F3)ClH4(G) METHANE (CH4)ClIlNl(G) CYANOGEN IODIDE (CNI)ClK1N1(CR) POTASSIUM CYANIDE (KCN)ClK1Nl(CR,L) POTASSIUM CYANIDE (KCN)ClKlNl(G) POTASSIUM CYANIDE (KCN)ClKlNl(L) POTASSIUM CYANIDE (KCN) ---ClK203(CR) POTASSIUM CARBONATE (K2C03)ClK203(CR,L) POTASSIUM CARBONATE (K2C03)C1K203(L)POTASSIUM CARBONATE(KC3ClL1203(CR) LITHIUM CARBONATE (L12C03)ClL1203(CR,L) LITHIUM CARBONATE (L12C03) :ClL1203(L) LITHIUM CARBONATE (L12C03)ClMG1O3(CR) MAGNESIUM CARBONATE (MGCO3)ClNA2O3(CR) SODIUM CARBONATE (NA2CO3)C1NA2O3(CR,L) SODIUM CARBONATE (NACO3)C1NA203(L) SODIUM CARBONATE (NA2CO3)

  • 7/22/2019 Ada 197603

    90/129

    81ClNl G) CYANOGEN (CN)ClN1+(G) CYANOGEN, ION (CN+)ClNl-(G) CYANIDE (CN-)ClNlNA1(CR) SODIUM CYANIDE (NACN)ClNlNA1(CR,L) SODIUM CYANIDE (NACN)ClNlNAI(G) SODIUM CYANIDE (NACN)ClNlNA1(L) SODIUM CYANIDE (NACN)ClNlOlIG) NCO RADICAL (NC1O1)1N2 (G) CNN RADICAL (CNN)C1N2(G)-B NCN RADICAL (NCN)ClOl(G) CARBON MONOXIDE (CO)ClOlSl(G) CARBON OXIDE SULFIDE (COS)C102(G) CARBON DIOXIDE (C02)C102-(G) CARBON DIOXIDE, ION (C02-)C1PlJ(G) CARBON PHOSPHIDE (CP) 0ClSI1(CR) SILICON CARBIDE, ALPHA (SIC)ClSI1(CR)-B SILICON CARBIDE, BETA (SIC)ClSI1(G) SILICON CARBIDE (SIC)ClS12 (G) SILICON CARBIDE (S12C)ClSlIG) CARBON SULFIDE (CS)C152 (G) CARBON DISULFIDE (CS2)CITA1(CR) TANTALUM CARBIDE (TAC)ClTA1(CR,L) TANTALUM CARBIDE (TAC)ClTA1(L) TANTALUM CARBIDE (TAC)ClTI1(CR) TITANIUM CARBIDE (TIC)C1TI1(CR,L) TITANIUM CARBIDE (TIC)CITI1(L) TITANIUM CARBIDE (TIC)ClZR14CR) ZIRCONIUM CARBIDE (ZRC)ClZR1(CR,L) ZIRCONIUM CARBIDE (ZRC)ClZR1(L) ZIRCONIUM CARBIDE (ZRC)C2(G) CARBON (C2)C2-(G) CARBON, ION (C2-)C2BE1(G) BERYLLIUM CARBIDE (BEC2)C2CL2(G) DICHLOROETHYNE (C2CL2)C2CL4(G) TETRACHLOROETHENE (C2CL4)C2CL6(G) HEXACHLOROETHANE lC2CL6)C2CR3(CR) CHROMIUM CARBIDE (CR3C2)C2F2(G) DIFLUOROETHYNE (C2F2)C2F3Nl(G) TRIFLUOROACETONITRILE (CF3CN)C2F4(G) TETRAFLUOROETHENE (C2F4)C2F6(G) HEXAFLUOROETHANE (C2F6)C2Hl(G) ETHYNYL (C2H) ~C2HlCLI(G) CHLQROETHYNE (C2HCL) ~C2H1Fl(G) FLUOROETHYNE (C2HF) *C2H2(G) ETHYNE (C2H2)C2H4(G) ETHENE (C2H4)C2H401(G) OXIRANE (C2H40)C2K2N2(G) POTASSIUM CYANIDE ((KCN)2)C2LI2(CR) LITHIUM CARBIDE (L12C2)C2MG1(CR) MAGNESIUM CARBIDE (MGC2)C2N1(G) CNC RADICAL (C2N)C2N2(G) ETHANEDINITRILE ((CN)2)C2N2NA2(G) SODIUM CYANIDE ((NACN)2)C201 (G) CCO RADICAL (C20)

  • 7/22/2019 Ada 197603

    91/129

  • 7/22/2019 Ada 197603

    92/129

    83FE1O1(G) IRON OXIDE (FEO)FE1O1(L) IRON OXIDE (FEO)FE1O4SI(CR) IRON SULFATE (FESO4)FEISI(CR) IRON SULFIDE, TROILITE (FES)FEISI(CR,L) IRON SULFIDE, TROILITE (FES)FElSl(G) IRON SULFIDE (FES)FEISI(L) IRON SULFIDE (FES) .-FEIS2 (CR) IRON SULFIDE, MARCASITE (FES2)FElS2(CR)-B IRON SULFIDE, PYRITE (FES2)FE214(G) IRON IODIDE ((FEI2)2)FE2012S3(CR) IRON SULFATE (FE2(SO4)3)FE203 (CR) IRON OXIDE, HEMATITE (FE203)FE304(CR) IRON OXIDE, MAGNETITE (FE304)F1(G) FLUORINE (F)FI+(G) FLUORINE, ION (F+)FI-(G) FLUORINE, ION (F-)FIFE1(G) IRON FLUORIDE (FEF)FIHG1(G) MERCURY FLUORIDE (HGF)FIHI(G) HYDROGEN FLUORIDE (HF)FIHIOI(G) HYPOFLUOROUS ACID (HOF)FlHlO3Sl(G) FLUOROSULFURIC ACID (HSO3F) .FIH3SI1(G) FLUOROSILANE (SIH3F) ,.F1I(G) IODINE FLUORIDE (IF) _FIKI (CR) POTASSIUM FLUORIDE (KF)FIKI(CR,L) POTASSIUM FLUORIDE (KF)FiKl(G) POTASSIUM FLUORIDE (KF)FIKI(L) POTASSIUM FLUORIDE (MF) IFILI1(CR) LITHIUM FLUORIDE (LIF)FlLI1(CR,L) LITHIUM FLUORIDE (LIF)F1LI1(G) LITHIUM FLUORIDE (LIF)FILI1(L) LITHIUM FLUORIDE (LIF) "FILI1O1(G) LITHIUM HYPOFLUORITE (LIOF)FIMG1(G) MAGNESIUM FLUORIDE (MGF)FIMG1+(G) MAGNESIUM FLUORIDE, ION (MGF+)F1MO1(G) MOLYBDENUM FLUORIDE (MOF)FINA1(CR) SODIUM FLUORIDE (NAF)FINA1(CR,L) SODIUM FLUORIDE (NAF)FINA1(G) SODIUM FLUORIDE (NAF)FINA1(L) SODIUM FLUORIDE (NAF)FIN1(G) FLUOROIMIDOGEN (NF)FINIOI(G) NITROSYL FLUORIDE (ONF)FlNIO2(G) NITRYL FLUORIDE (NO2F)FlNIO3(G) FLUORINE NITRATE (FONO2)F1O1(G) OXYGEN FLUORIDE (OF)F1O1TI1(G) TITANIUM FLUORIDE OXIDE (OTIF) IF102(G) OXYGEN FLUORIDE (02F)FIPB1(G) LEAD FLUORIDE (PBF)FIPI(G) PHOSPHORUS FLUORIDE (PF)F1PI+(G) PHOSPHORUS FLUORIDE, ION (PF+)FIPI-(G) PHOSPHORUS FLUORIDE, ION (PF-)FIPISI(G) THIOPHOSPHORYL FLUORIDE (PSF) P F1SI1(G) FLUOROSILYLIDYNE (SIF)FISR1(G) STRONTIUM FLUORIDE (SRF)FISR1+(G) STRONTIUM FLUORIDE, ION (SRF+)

  • 7/22/2019 Ada 197603

    93/129

    84FISI(G) SULFUR FLUORIDE (SF)FISI+(G) SULFUR FLUORIDE, ION (SF+)FISI-(G) SULFUR FLUORIDE, ION (SF-)FITII(G) TITANIUM FLUORIDE (TIF) ,FIWI(G) TUNGSTEN FLUORIDE (WF)FIZR1(G) ZIRCONIUM FLUORIDE (ZRF)FlOMO2(G) MOLYBDENUM FLUORIDE ((MOF5)2)FIOS2(G) SULFUR FLUORIDE (S2F10)F15MO3(G) MOLYBDENUM FLUORIDE ((MOF5)3)F2(REF) FLUORINE (F2)F2FE1(CR) IRON FLUORIDE (FEF2)F2FE1(CR,L) IRON FLUORIDE (FEF2)F2FE1(G) IRON FLUORIDE (FEF2)F2FE1(L) IRON FLUORIDE (FEF2)F2HG1(CR) MERCURY FLUORIDE (HGF2) IF2HG1(CR,L) MERCURY FLUORIDE (HGF2)F2HG1(G) MERCURY FLUORIDE (HGF2) . .F2HGI(L) MERCURY FLUORIDE (HGF2)F2HG2(CR) MERCURY FLUORIDE (HG2F2) H2F2HIKI(CR) POTASSIUM FLUORIDE (K(HF2))F2HIKI(CR,L) POTASSIUM FLUORIDE (K(HF2))F2HIKI (L) POTASSIUM FLUORIDE ( ( F2 ) .F2H2(G) HYDROGEN FLUORIDE ((HF)2)F2H2SI1(G) DIFLUOROSILANE (SIH2F2)F2KI-(G) POTASSIUM FLUORIDE, ION (KF2-) % F2K2(G) POTASSIUM FLUORIDE ((KF)2)F2LI1-(G) LITHIUM FLUORIDE, ION (LIF2-) IF2LI2(G) LITHIUM FLUORIDE ((LIF)2)F2MG1(CR) MAGNESIUM FLUORIDE (MGF2) vF2MG1(CR,L) MAGNESIUM FLUORIDE (MGF2) ,%F2MG1(G) MAGNESIUM FLUORIDE (MGF2) %-MF2MG1(L) MAGNESIUM FLUORIDE (MGF2) ,F2MG1+(G) MAGNESIUM FLUORIDE, ION (MGF2+)F2MO1(G) MOLYBDENUM FLUORIDE (MOF2) ,F2NA1-(G) SODIUM FLUORIDE, ION (NAF2-)F2NA2(G) SODIUM FLUORIDE ((NAF)2)F2NI(G) DIFLUOROAMIDOGEN (NF2) .F2N2(G) NITROGEN FLUORIDE, CIS (FNNF)F2N2(G)-B NITROGEN FLUORIDE, TRANS (FNNF)F201(G) OXYGEN FLUORIDE (OF2)F2O1SI1(G) DIFLUOROOXOSILANE (OSIF2) "F2O1SI(G) THIONYL FLUORIDE (OSF2)F2O1TI1(G) TITANIUM FLUORIDE OXIDE (OTIF2)F202SI(G) SULFURYL FLUORIDE (S02F2)F2PB1(CR) LEAD FLUORIDE, ALPHA (PBF2)F2PB1(CR)-B LEAD FLUORIDE, BETA (PBF2) "F2PBI(CR,L) LEAD FLUORIDE (PBF2)F2PBI(G) LEAD FLUORIDE (PBF2)F2PB1(L) LEAD FLUORIDE (PBF2)F2PI1(G) PHOSPHORUS FLUORIDE (PF2)F2PI+(G) PHOSPHORUS FLUORIDE, ION (PF2+Z IF2PI-(G) PHOSPHORUS FLUORIDE, ION (PF2-)

    F2Pl-(G)PHOSPHORUS FLUORIDE, ION (PF2-)F2SI1(G) DIFLUOROSILYLENE (SIF2)F2SR1(CR) STRONTIUM FLUORIDE (SRF2)

    | -

    .-:.._........ . . . . . .... .. .. . .,., ,.,. ,..,.,- -,. , ., .. ,. .-.

  • 7/22/2019 Ada 197603

    94/129

  • 7/22/2019 Ada 197603

    95/129

    .5

    %%86 ~/

    F5S1 G) SULFUR FLUORIDE (SF5) SF5Sl+(G) SULFUR FLUORIDE, ION (SF5+) SF5S1-(G) SULFUR FLUORIDE, ION (SF5-) 0F6H6(G) HYDROGEN FLUORIDE (H6F6)F6MO1(G) MOLYBDENUM FLUORIDE (MOF6)F6MO1(L) MOLYBDENUM FLUORIDE (MOF6)F6S1(G) SULFUR FLUORIDE (SF6)F6Sl-(G) SULFUR FLUORIDE, ION (SF6-)F6Wl(G) TUNGSTEN FLUORIDE (WF6)F6Wl(L) TUNGSTEN FLUORIDE (WF6)F7H7(G) HYDROGEN FLUORIDE (H7F7)F71l (G) IODINE FLUORIDE (IF7)GAl (CR) GALLIUM (GA)GA1(CR,L) GALLIUM (GA)GA1(G) GALLIUM (GA)GAl(L) GALLIUM (GA)GA1(REF) GALLIUM (GA) 'GA1+(G) GALLIUM, ION (GA+) :.~GA1-(G) GALLIUM, ION (GA-)HEl (REF) HELIUM (HE)HE1+(G) HELIUM, ION (HE+) 1HFl (CR) HAFNIUM, ALPHA (HF) .NHF1(CR)-B HAFNIUM, BETA (HF)HF1(CR,L) HAFNIUM (HF)HFl (G) HAFNIUM (HF)HF1(L) HAFNIUM (HF)HFl (REF) HAFNIUM (HF)HFl+(G) HAFNIUM, ION (HF+)HF1-(G) HAFNIUM, ION (HF-)HGl(CR,L) MERCURY (HG)HGl(G) MERCURY (HG)HGl (REF) MERCURY (HG)HG1+ (G) MERCURY, ION (HG+)HGlIl(G) MERCURY IODIDE (HGI)HGl12(CR) MERCURY IODIDE (HG12)HGl12(CR,L) MERCURY IODIDE (HG12)HGl 12(G) MERCURY IODIDE (HG12)HGl12(L) MERCURY IODIDE (HG12)HGlO1(CR) MERCURY OXIDE (HGO) 1 HG101(G) MERCURY OXIDE (HGO)HG212(CR)~~~% ECRHG212(CR) MERCURY IODIDE (HG212)HG2 12(CL) MERCURY IODIDE (HG212)HG1(L HYROGEN (H)D (G22Hl(G) HYDROGEN, IO(H) )SHl-(G) HYDROGEN, ION (H-)HlH(G) MERURY,HDIDE (HH)HlHG(G)MECR HYDR IDIDE (HI)H11351(G) HYRODENSIANE (1HI3)Hl13SC1) PIOTASSIMNYDIE (R)HlKl(G) POTASSIUM HYDRIDE (KH)HlKlO(C) POTASSIUM HYDROIDE (OH)HlKlO1(CR) POTASSIUM HYDROXIDE (KOH)HlKlO1(G),L POTASSIUM HYDROXIDE (KOH)

    Hl~ll(G OTSSIM HDROXDE KOH

  • 7/22/2019 Ada 197603

    96/129

    87HIKIOI(L) POTASSIUM HYDROXIDE (KOH)HlKlOl+(G) POTASSIUM HYDROXIDE, ION (KOH+)HILI1(CR) LITHIUM HYDRIDE (LIH) IHILI1(CR,L) LITHIUM HYDRIDE (LIH)HILI (G) LITHIUM HYDRIDE (LIH)HILI1(L) LITHIUM HYDRIDE (LIH)HlLI1O1(CR) LITHIUM HYDROXIDE (LIOH)HILI1O1(CR,L) LITHIUM HYDROXIDE (LIOH)H1LI1O1(G) LITHIUM HYDROXIDE (LIOH)HILI1O1(L) LITHIUM HYDROXIDE (LIOH)HILI1O1+(G) LITHIUM HYDROXIDE, ION (LIOH+)HIMG1(G) MAGNESIUM HYDRIDE (MGH) IIMG1O1(G) MAGNESIUM HYDROXIDE (MGOH)HIMG1O1+(G) MAGNESIUM HYDROXIDE, ION (MGOH+)HINA1(CR) SODIUM HYDRIDE (NAH)

    HINA1(G) SODIUM HYDRIDE (NAH) rHINA1O1(CR) SODIUM HYDROXIDE (NAOH) AHINA1O1(CR,L) SODIUM HYDROXIDE (NAOH)HINAIO1(G) SODIUM HYDROXIDE (NAOH)HINA1O1(L) SODIUM HYDROXIDE (NAOH)HINA1O1+(G) s;DIUM HYDROXIDE, ION (NAOH+)HINI(G) IMIDOGEN (NH)HINIOI(G) NITROSYL HYDRIDE (HNO)HlNlO2(G) NITROUS ACID, CIS (HONO)HIN1O2(G)-B NITROUS ACID, TRANS (HONO)HIN1O3(G) NITRIC ACID (HONO2)HIOI(G) HYDROXYL (OH)H1O1+(G) HYDROXYL, ION (OH+)H1D1-(G) HYDROXYL, ION (OH-)H1O1SR1(G) STRONTIUM HYDROXIDE (SROH)HIOSR1+(G) STRONTIUM HYDROXIDE, ION (SROH+)H102 (G) HYDROPEROXO (HOO)HIPB1(G) LEAD HYDRIDE (PBH)HIP1(G) PHOSPHINIDENE (PH)HISI1(G) SILYLIDYNE (SIH) ""HISI1+(G) SILYLIDYNE, ION (SIH+)HISI(G) MERCAPTO (HS) .HIZR1(G) ZIRCONIUM HYDRIDE (ZRH)H1008SI(CR,L) SULFURIC ACID, TETRAHYDRATE (H2SO4.4H20) -H15010.5SI(CR,L) SULFURIC ACID, HEMIHEXAHYDRATE (H2SO4.6.5H20 -H2(REF) HYDROGEN (H2)H2+(G) HYDROGEN, ION (H2+)H2-(G) HYDROGEN, ION (H2-)H212SII1(G) DIIODOSILANE (SIH212)H2K202(G) POTASSIUM HYDROXIDE ((KOH)2)H2LI202(G) LITHIUM HYDROXIDE ((LIOH)2)H2MG1(CR) MAGNESIUM HYDRIDE (MGH2)H2MG1O2(CR) MAGNESIUM HYDROXIDE (MG(OH)2)H2MG1O2(G) MAGNESIUM HYDROXIDE (MG(OH)2)H2MO104(G) MOLYBDIC ACID (02MO(OH)2)H2NA202(G) SODIUM HYDROXIDE ((NAOH)2)H2NI(G) AMIDOGEN (NH2)H2N2(G) DIAZENE, CIS (HNNH)H201(FL) WATER, 500 BAR (H20)

    -' j _', .~e,'-i .i ', ' ,' ,' . ' _' .". '. ", .i_". .-- " " -- ,-.%, - %,'. , , .m' " * % '% % ". - % ". " % " - % . ' ._', ' . ." _'

  • 7/22/2019 Ada 197603

    97/129

    88H201(FL)-B WATER, 5000 BAR (H20)H201(G) WATER (H20)H201(L) WATER (H20)H201(L,G) WATER, 1 BAR (H20)H201(L,G)-B WATER, 10 BAR (H20)H201(L,G)-C WATER, 100 BAR (H20)H202(G) HYDROGEN PEROXIDE (HOOH)H2O2SR1(CR) STRONTIUM HYDROXIDE (SR(OH)2)H202SRI(CR,L) STRONTIUM HYDROXIDE (SR(OH)2)H202SR1(G) STRONTIUM HYDROXIDE (SR(OH)2)H202SR1(L) STRONTIUM HYDROXIDE (SR(OH)2)H204Sl(CRL) SULFURIC ACID (02S(OH)2)H204Sl(G) SULFURIC ACID (02S(OH)2)H204WI(CR) TUNGSTIC ACID (02W(OH)2)H204WI(G) TUNGSTIC ACID (02W(OH)2)H2PI(G) PHOSPHINO (PH2)H2SI(G) HYDROGEN SULFIDE (H2S)H2TI1(CR) TITANIUM HYDRIDE (TIH2)H31ISI1(G) IODOSILANE (SIH3I)H3NI(G) AMMONIA (NH3)H301+(G) HYDRONIUM, ION (H30+)H304PI(CR) PHOSPHORIC ACID (H3PO4)H304Pl(CR,L) PHOSPHORIC ACID (H3PO4)..H304PI(L) PHOSPHORIC ACID (H3PO4)H3Pl(G) PHOSPHINE (PH3)H41lNl(CR) AMMONIUM IODIDE (NH4I)H4N2(G) HYDRAZINE (N2H4)H4N2(L) HYDRAZINE (N2H4)H405SI(CR,L) SULFURIC ACID, MONOHYDRATE (H2SO4.H20)H4SI1(G) SILANE (SIH4)H606S(CR,L) SULFURIC ACID, DIHYDRATE (H2SO4.2H20) %H807Sl(CR,L) SULFURIC ACID, TRIHYDRATE (H2S04.3H20)ll(G) IODINE (I)II+(G) IODINE, ION (I+)II-(G) IODINE, ION (I-)IIKI(CR) POTASSIUM IODIDE (KI)IlKl(CRL) POTASSIUM IODIDE (RI)IIKI(G) POTASSIUM IODIDE (KI)IIKI(L) POTASSIUM IODIDE (KI)IILI1(CR) LITHIUM IODIDE (LII)IILI1(CR,L) LITHIUM IODIDE (LII)IILI1(G) LITHIUM IODIDE (LII)IILI1(L) LITHIUM IODIDE (LII)I1MG1(G) MAGNESIUM IODIDE (MGI)IIMOI(G) MOLYBDENUM IODIDE (MOI)IINA1(CR) SODIUM IODIDE (NAI)IINA1(CR,L) SODIUM IODIDE (NAI)IINA1(L) SODIUM IODIDE (NAI)IINIOI(G) NITROSYL IODIDE (ONI)I1PB1(G) LEAD IODIDE (PBI)IISI1(G) IODOSILYLIDYNE (SII)I1qR1(G) STRONTIUM IODIDE (SRI)I1TI1(G) TITANIUM IODIDE (TIT)IIZR1(G) ZIRCONIUM IODIDE (ZRI)

  • 7/22/2019 Ada 197603

    98/129

    r

    8912(CR) IODINE (12)12(CR,L) IODINE (12)12(G) IODINE (12)12(L) IODINE (12)12(REF) IODINE (12)12K2(G) POTASSIUM IODIDE ((KI)2)12LI2(G) LITHIUM IODIDE ((LII)2) ,0I2MG1(CR) MAGNESIUM IODIDE (MGI2)I2MG1(CR,L) MAGNESIUM IODIDE (MGI2)12MG1(G) MAGNESIUM IODIDE (MGI2)I2MG1(L) MAGNESIUM IODIDE (MGI2)12MO1(CR) MOLYBDENUM IODIDE, ALPHA (M012)12MB1(G) LAD IODIDE (12)12PB1(CR) LEAD IODIDE (PB12)I2PB1(CR,L) LEAD IODIDE (PBI2)I2PB1(G) LEAD IODIDE (PB12)12PB1(L) LEAD IODIDE (PB12)12SI1(G) DIIODOSILYLENE (S112)12SR1(CR) STRONTIUM IODIDE (SR12)12SR1(CR,L) STRONTIUM IODIDE (SR12)12SR1(G) STRONTIUM IODIDE (SR12)12SR1(L) STRONTIUM IODIDE (SR12)12TI1(CR) TITANIUM IODIDE (T112)12TI1(G) TITANIUM IODIDE (T112)12ZR1(CR) ZIRCONIUM IODIDE (ZRI2)12ZR1(CR,L) ZIRCONIUM IODIDE (ZRI2)I2ZR1(G) ZIRCONIUM IODIDE (ZRI2)12ZR1(L) ZIRCONIUM IODIDE (ZRI2)13MO1(CR) MOLYBDENUM IODIDE (M013)13MO1(G) MOLYBDENUM IODIDE (M013)13SI1(G) TRIIODOSILYL (S113)13TI1(CR) TITANIUM IODIDE (T113)13TI1(G) TITANIUM IODIDE (T113)I3ZR1(CR) ZIRCONIUM IODIDE (ZRI3)I3ZR1(G) ZIRCONIUM IODIDE (ZRI3)14MOI (CR) MOLYBDENUM IODIDE (M014)14MO1(G) MOLYBDENUM IODIDE (M014) ,i14PB1(G) LEAD IODIDE (PB14)14SI1(CR) TETRAIODOSILANE (SII4)14SI1(CR,L) TETRAIODOSILANE (S114)14SI1(G) TETRAIODOSILANE (S114)14SI1(L) TETRAIODOSILANE (S114)14TI1(CR) TITANIUM IODIDE (T114)14TI1(CR,L) TITANIUM IODIDE (T114)14TI1(G) TITANIUM IODIDE (T114)14TI1(L) TITANIUM IODIDE (T114)I4ZR1(CR) ZIRCONIUM IODIDE (ZRI4)14ZR1(G) ZIRCONIUM IODIDE (ZRI4)KR1(REF) KRYPTON (KR)KR1+(G) KRYPTON, ION (KR+)KI(CR) POTASSIUM (K)KI(CR,L) POTASSIUM (K)

  • 7/22/2019 Ada 197603

    99/129

  • 7/22/2019 Ada 197603

    100/129

    91MG1(CR) MAGNESIUM (MG)MG1(CR,L) MAGNESIUM (MG) A-MG1(G) MAGNESIUM (MG)MG1(L) MAGNESIUM (MG)MG1(REF) MAGNESIUM (MG)MG1+(G) MAGNESIUM, ION (MG+)MGINI(G) MAGNESIUM NITRIDE (MGN)MG1O1(CR) MAGNESIUM OXIDE (MGO)MG1O1(CRL) MAGNESIUM OXIDE (MGO)MG1OIR(G) MAGNESIUM OXIDE (MGO)MG1O1(L) MAGNESIUM OXIDE (MGO)MG1O3SI1(CR) MAGNESIUM SILICATE (MGSI3)MG1O3SI1(CR,L) MAGNESIUM SILICATE (MGSIO3)MG1O3SI1(L) MAGNESIUM SILICATE (MGSIO3)MG1O3TI1(CR) MAGNESIUM TITANIUM OXIDE (MGTIO3)MG1O3TI1(CR,L) MAGNESIUM TITANIUM OXIDE (MGTIO3) :sMG1O3TI1(L) MAGNESIUM TITANIUM OXIDE (MGTIO3)MG104SI(CR) MAGNESIUM SULFATE (MGSO4) :MG1O4S1(CR,L) MAGNESIUM SULFATE (MGSO4) -MG1O4SI(L) MAGNESIUM SULFATE (MGSO4)MG1O4WI(CR) MAGNESIUM TUNGSTEN OXIDE (MGWO4)MG1O5TI2(CR) MAGNESIUM TITANIUM OXIDE (MGTI205)MG1O5TI2(CR,L) MAGNESIUM TITANIUM OXIDE (MGTI205)MG105T