ad9444 14-bit, 80 msps, a/d converter data sheet (rev. 0) · dcs mode dfs output mode t/h buffer 14...

40
14-Bit, 80 MSPS, A/D Converter AD9444 Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved. FEATURES 80 MSPS guaranteed sampling rate 100 dB two-tone SFDR with 69.3 MHz and 70.3 MHz 73.1 dB SNR with 70 MHz input 97 dBc SFDR with 70 MHz input Excellent linearity DNL = ±0.4 LSB typical INL = ±0.6 LSB typical 1.2 W power dissipation 3.3 V and 5 V supply operation 2.0 V p-p differential full-scale input LVDS outputs (ANSI-644 compatible) Data format select Output clock available APPLICATIONS Multicarrier, multimode cellular receivers Antenna array positioning Power amplifier linearization Broadband wireless Radar, infared imaging Communications instrumentation GENERAL DESCRIPTION The AD9444 is a 14-bit monolithic, sampling analog-to-digital converter (ADC) with an on-chip, track-and-hold circuit and is optimized for power, small size, and ease of use. The product operates at up to an 80 MSPS conversion rate and is optimized for multicarrier, multimode receivers, such as those found in cellular infrastructure equipment. The ADC requires 3.3 V and 5.0 V power supplies and a low voltage differential input clock for full performance operation. No external reference or driver components are required for many applications. Data outputs are LVDS-compatible (ANSI- 644) or CMOS-compatible and include the means to reduce the overall current needed for short trace distances. FUNCTIONAL BLOCK DIAGRAM CMOS OR LVDS OUTPUT STAGING CLOCK AND TIMING MANAGEMENT AGND DRGND DRVDD VREF CLK+ VIN+ AD9444 VIN– CLK– DCO 05089-001 AVDD1 AVDD2 DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF REFB SENSE REFT Figure 1. Optional features allow users to implement various selectable operating conditions, including data format select and output data mode. The AD9444 is available in a 100-lead surface-mount plastic package (100-lead TQFP/EP) specified over the industrial temperature range (−40°C to +85°C). PRODUCT HIGHLIGHTS 1. High performance: Outstanding SFDR performance for mul- ticarrier, multimode 3G and 4G cellular base station receivers. 2. Ease of use: On-chip reference and track-and-hold. An output clock simplifies data capture. 3. Packaged in a Pb-free, 100-lead TQFP/EP. 4. Clock DCS maintains overall ADC performance over a wide range of clock pulse widths. 5. OR (out-of-range) outputs indicate when the signal is beyond the selected input range.

Upload: others

Post on 21-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

14-Bit, 80 MSPS, A/D Converter

AD9444

Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.

FEATURES

80 MSPS guaranteed sampling rate 100 dB two-tone SFDR with 69.3 MHz and 70.3 MHz 73.1 dB SNR with 70 MHz input 97 dBc SFDR with 70 MHz input Excellent linearity

DNL = ±0.4 LSB typical INL = ±0.6 LSB typical

1.2 W power dissipation 3.3 V and 5 V supply operation 2.0 V p-p differential full-scale input LVDS outputs (ANSI-644 compatible) Data format select Output clock available

APPLICATIONS

Multicarrier, multimode cellular receivers Antenna array positioning Power amplifier linearization Broadband wireless Radar, infared imaging Communications instrumentation

GENERAL DESCRIPTION

The AD9444 is a 14-bit monolithic, sampling analog-to-digital converter (ADC) with an on-chip, track-and-hold circuit and is optimized for power, small size, and ease of use. The product operates at up to an 80 MSPS conversion rate and is optimized for multicarrier, multimode receivers, such as those found in cellular infrastructure equipment.

The ADC requires 3.3 V and 5.0 V power supplies and a low voltage differential input clock for full performance operation. No external reference or driver components are required for many applications. Data outputs are LVDS-compatible (ANSI-644) or CMOS-compatible and include the means to reduce the overall current needed for short trace distances.

FUNCTIONAL BLOCK DIAGRAM

CMOSOR

LVDSOUTPUTSTAGING

CLOCKAND TIMING

MANAGEMENT

AGND DRGND DRVDD

VREF

CLK+

VIN+

AD9444

VIN–

CLK–DCO

0508

9-00

1

AVDD1 AVDD2

DCS MODE

DFS

OUTPUT MODE

T/H

BUFFER14

PIPELINEADC

2

28

2

OR

D13–D0

REF

REFBSENSE REFT

Figure 1.

Optional features allow users to implement various selectable operating conditions, including data format select and output data mode.

The AD9444 is available in a 100-lead surface-mount plastic package (100-lead TQFP/EP) specified over the industrial temperature range (−40°C to +85°C).

PRODUCT HIGHLIGHTS

1. High performance: Outstanding SFDR performance for mul-ticarrier, multimode 3G and 4G cellular base station receivers.

2. Ease of use: On-chip reference and track-and-hold. An output clock simplifies data capture.

3. Packaged in a Pb-free, 100-lead TQFP/EP.

4. Clock DCS maintains overall ADC performance over a wide range of clock pulse widths.

5. OR (out-of-range) outputs indicate when the signal is beyond the selected input range.

Page 2: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 2 of 40

TABLE OF CONTENTS DC Specifications ............................................................................. 3

AC Specifications.............................................................................. 4

Digital Specifications........................................................................ 5

Switching Specifications .................................................................. 6

Explanation of Test Levels........................................................... 7

Absolute Maximum Ratings............................................................ 8

ESD Caution.................................................................................. 8

Definitions of Specifications ........................................................... 9

Pin Configurations and Function Descriptions ......................... 10

Equivalent Circuits ......................................................................... 14

Typical Performance Characteristics ........................................... 15

Theory of Operation ...................................................................... 20

Analog Input and Reference Overview ................................... 20

Clock Input Considerations...................................................... 22

Power Considerations................................................................ 23

Digital Outputs ........................................................................... 23

Timing ......................................................................................... 23

Operational Mode Selection ..................................................... 23

Evaluation Board ........................................................................ 24

LVDS Evaluation Board Schematics ........................................ 25

LVDS Mode Evaluation Board Bill of Materials (BOM) ...... 30

CMOS Evaluation Board Schematics ...................................... 32

CMOS Mode Evaluation Board Bill of Materials (BOM)..... 37

Outline Dimensions ....................................................................... 39

Ordering Guide .......................................................................... 39

REVISION HISTORY

10/04—Revision 0: Initial Version

Page 3: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 3 of 40

DC SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, sample rate = 80 MSPS, 2 V p-p differential input, internal trimmed reference (1.0 V mode), AIN = −0.5 dBFS, DCS on, unless otherwise noted.

Table 1. AD9444BSVZ-80

Parameter Temp Test Level Min Typ Max Unit

RESOLUTION Full VI 14 Bits ACCURACY

No Missing Codes Full VI Guaranteed Offset Error Full VI 6 ±0.3 6 mV Gain Error1 Full VI −3.0 ±0.4 +3.0 % FSR Differential Nonlinearity (DNL)2 Full VI −0.8 ±0.4 +0.8 LSB Integral Nonlinearity (INL)2 25°C I −1.3 ±0.6 +1.3 LSB

Full VI −1.7 +1.7 LSB TEMPERATURE DRIFT

Offset Error Full V 12 µV/°C Gain Error Full V 0.002 %FS/°C

VOLTAGE REFERENCE Output Voltage1 Full VI 0.87 1.0 1.13 V Load Regulation @ 1.0 mA Full V ±2 mV Reference Input Current (External 1.0 V Reference) Full VI 80 125 µA

INPUT REFERRED NOISE 25°C V 1.0 LSB rms ANALOG INPUT

Input Span Full V 2 V p-p Input Common-Mode Voltage Full V 3.5 V Input Resistance3 Full V 1 kΩ Input Capacitance3 Full V 2.5 pF

POWER SUPPLIES Supply Voltage

AVDD1 Full IV 3.14 3.3 3.46 V AVDD2 Full IV 4.75 5.0 5.25 V DRVDD—LVDS Outputs Full IV 3.0 3.6 V DRVDD—CMOS Outputs Full IV 3.0 3.3 3.6 V

Supply Current AVDD1 Full VI 217 240 mA AVDD22 Full VI 71 80 mA IDRVDD2—LVDS Outputs Full VI 55 62 mA IDRVDD2—CMOS Outputs Full V 12 mA

PSRR Offset Full V 1 mV/V Gain Full V 0.2 %/V

POWER CONSUMPTION DC Input—LVDS Outputs Full VI 1.21 1.4 W DC Input—CMOS Outputs Full V 1.07 W Sine Wave Input2—LVDS Outputs Full VI 1.25 W Sine Wave Input2—CMOS Outputs Full V 1.11 W

1 The internal voltage reference is trimmed at final test to minimize the gain error of the AD9444. 2 Measured at the maximum clock rate, fIN = 15 MHz, full-scale sine wave, with a 100 Ω differential termination on each pair of output bits for LVDS output mode and

approximately 5 pF loading on each output bit for CMOS output mode. 3 Input capacitance or resistance refers to the effective impedance between one differential input pin and AGND. Refer to for the equivalent analog input

structure. Figure 6

Page 4: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 4 of 40

AC SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, sample rate = 80 MSPS, 2 V p-p differential input, internal trimmed reference (1.0 V mode), AIN = −0.5 dBFS, DCS on, unless otherwise noted.

Table 2. AD9444BSVZ-80

Parameter Temp Test Level Min Typ Max Unit

SIGNAL-TO-NOISE-RATIO (SNR) fIN = 10 MHz 25°C IV 73.0 74.0 dB

Full IV 72.7 dB fIN = 35 MHz 25°C I 72.4 73.7 dB Full IV 72.3 dB fIN = 70 MHz 25°C IV 72.3 73.1 dB

Full IV 72.0 dB fIN = 100 MHz 25°C V 72.3 dB

SIGNAL-TO-NOISE-AND DISTORTION (SINAD) fIN = 10 MHz 25°C IV 73.0 74.0 dB

Full IV 72.7 dB fIN = 35 MHz 25°C I 72.4 73.7 dB Full IV 72.2 dB fIN = 70 MHz 25°C IV 72.2 73.1 dB

Full IV 72.0 dB fIN = 100 MHz 25°C V 72.3 dB

EFFECTIVE NUMBER OF BITS (ENOB) fIN = 10 MHz 25°C V 12.1 Bits fIN = 35 MHz 25°C V 12.0 Bits fIN = 70 MHz 25°C V 11.9 Bits fIN = 100 MHz 25°C V 11.8 Bits

SPURIOUS-FREE DYNAMIC RANGE (SFDR) fIN = 10 MHz 25°C IV 91 97 dBc

Full IV 87 dBc fIN = 35 MHz 25°C I 91 97 dBc Full IV 87 dBc fIN = 70 MHz 25°C IV 90 97 dBc

Full IV 87 dBc fIN = 100 MHz 25°C V 96 dBc

WORST HARMONIC, SECOND OR THIRD fIN = 10 MHz 25°C IV −97 −91 dBc

Full IV −87 dBc fIN = 35 MHz 25°C I −97 −91 dBc Full IV −87 dBc fIN = 70 MHz 25°C IV −97 −90 dBc

Full IV −87 dBc fIN = 100 MHz 25°C V −96 dBc

WORST SPUR EXCLUDING SECOND OR HARMONICS fIN = 10 MHz 25°C IV −102 −93 dBc

Full IV −93 dBc fIN = 35 MHz 25°C I −103 −93 dBc Full IV −93 dBc fIN = 70 MHz 25°C IV −102 −93 dBc

Full IV −93 dBc fIN = 100 MHz 25°C V −99 dBc

TWO-TONE SFDR fIN = 10.8 MHz @ −7 dBFS, 9.8 MHz @ −7 dBFS 25°C V −102 dBFS fIN = 70.3 MHz @ −7 dBFS, 69.3 MHz @ −7 dBFS 25°C V −100 dBFS

ANALOG BANDWIDTH Full V 650 MHz

Page 5: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 5 of 40

DIGITAL SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, RLVDSBIAS = 3.74 kΩ, unless otherwise noted.

Table 3. AD9444BSVZ-80

Parameter Temp Test Level Min Typ Max Unit

CMOS LOGIC INPUTS (DFS, DCS MODE, OUTPUT MODE) High Level Input Voltage Full IV 2.0 V Low Level Input Voltage Full IV 0.8 V High Level Input Current Full VI +200 µA Low Level Input Current Full VI −10 +10 µA Input Capacitance Full V 2 pF

DIGITAL OUTPUT BITS—CMOS Mode (D0 to D13, OTR)1 DRVDD = 3.3 V

High Level Output Voltage Full IV 3.25 V Low Level Output Voltage Full IV 0.2 V

DIGITAL OUTPUT BITS LVDS Mode (D0 to D13, OTR) VOD Differential Output Voltage2 Full VI 247 545 mV VOS Output Offset Voltage Full VI 1.125 1.375 V

CLOCK INPUTS (CLK+, CLK−) Differential Input Voltage Full IV 0.2 V Common-Mode Voltage Full VI 1.3 1.5 1.6 V Differential Input Resistance Full V 8 10 12 kΩ Differential Input Capacitance Full V 4 pF

1 Output voltage levels measured with 5 pF load on each output. 2 LVDS RTERM = 100 Ω.

Page 6: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 6 of 40

SWITCHING SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, unless otherwise noted.

Table 4. AD9444BSVZ-80

Parameter Temp Test Level Min Typ Max Unit

CLOCK INPUT PARAMETERS Maximum Conversion Rate Full VI 80 MSPS Minimum Conversion Rate Full V 10 MSPS CLK Period Full V 12.5 ns CLK Pulse Width High1 (tCLKH) Full V 4 ns CLK Pulse Width Low1 (tCLKL) Full V 4 ns

DATA OUTPUT PARAMETERS Output Propagation Delay—CMOS (tPD)2 (DX, DCO+) Full IV 3 5.25 8 ns Output Propagation Delay—LVDS (tPD)3 (DX+, DCO+) Full VI 3 5 7.5 ns Pipeline Delay (Latency) Full V 12 Cycles Aperture Delay (tA) Full V ns Aperture Uncertainty (Jitter, tJ) Full V 0.2 ps rms

1 With duty cycle stabilizer (DCS) enabled. 2 Output propagation delay is measured from clock 50% transition to data 50% transition, with 5 pF load. 3 LVDS RTERM = 100 Ω. Measured from the 50% point of the rising edge of CLK+ to the 50% point of the data transition.

N–12 N–11 N N+1

AIN

CLK+

CLK–

DATA OUT

DCO+

DCO–

N

N+1

N–1

tCLKH

tCLKL

1/fS

tPD

12 CLOCK CYCLES

tCPD

0508

9-00

2

Figure 2. LVDS Mode Timing Diagram

Page 7: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 7 of 40

N+1N+2

N–1

tCLKL

12 CYCLES

0508

9-00

3

N

tCLKH

tPD

VIN

CLK+

CLK–

DX

DCO+

DCO–

tDCOPD

N-12 N-11 N-1 N

Figure 3. CMOS Timing Diagram

EXPLANATION OF TEST LEVELS

Test Level Definitions I 100% production tested. II 100% production tested at 25°C and sample tested at specified temperatures. III Sample tested only. IV Parameter is guaranteed by design and characterization testing. V Parameter is a typical value only. VI 100% production tested at 25°C and guaranteed by design and characterization for industrial temperature range.

Page 8: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 8 of 40

ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter With Respect to Min Max Unit

ELECTRICAL AVDD1 AGND −0.3 +4 V AVDD2 AGND −0.3 +6 V DRVDD DGND −0.3 +4 V AGND DGND −0.3 +0.3 V AVDD1 DRVDD −4 +4 V AVDD2 DRVDD −4 +6 V AVDD2 AVDD1 −4 +6 V D0 to D13 DGND –0.3 DRVDD + 0.3 V CLK, MODE AGND –0.3 AVDD1 + 0.3 V VIN+, VIN− AGND –0.3 AVDD2 + 0.3 V VREF AGND –0.3 AVDD1 + 0.3 V SENSE AGND –0.3 AVDD1 + 0.3 V REFT, REFB AGND –0.3 AVDD1 + 0.3 V

ENVIRONMENTAL Storage Temperature –65 +125 °C Operating Temperature Range –40 +85 °C Lead Temperature Range

(Soldering 10 sec) 300 °C

Junction Temperature 150 °C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thermal Resistance

The heat sink of the AD9444 package must be soldered to ground.

Table 6. Package Type θJA θJB θJC Unit 100-Lead TQFP/EP 19.8 8.3 2 °C/W

Typical θJA = 19.8°C/W (heat-sink soldered) for multilayer board in still air.

Typical θJB = 8.3°C/W (heat-sink soldered) for multilayer board in still air.

Typical θJC = 2°C/W (junction to exposed heat sink) represents the thermal resistance through heat-sink path.

Airflow increases heat dissipation effectively reducing θJA. Also, more metal directly in contact with the package leads, from metal traces, through holes, ground, and power planes, reduces the θJA. It is required that the exposed heat sink be soldered to the ground plane.

ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprie-tary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Page 9: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 9 of 40

DEFINITIONS OF SPECIFICATIONS Analog Bandwidth (Full Power Bandwidth) The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB.

Aperture Delay (tA) The delay between the 50% point of the rising edge of the clock and the instant at which the analog input is sampled.

Aperture Uncertainty (Jitter, tJ) The sample-to-sample variation in aperture delay.

Clock Pulse Width and Duty Cycle Pulse width high is the minimum amount of time that the clock pulse should be left in the Logic 1 state to achieve rated performance. Pulse width low is the minimum time the clock pulse should be left in the low state. At a given clock rate, these specifications define an acceptable clock duty cycle.

Differential Nonlinearity (DNL, No Missing Codes) An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Guaranteed no missing codes to 14-bit resolution indicates that all 16384 codes must be present over all operating ranges.

Effective Number of Bits (ENOB) The effective number of bits for a sine wave input at a given input frequency can be calculated directly from its measured SINAD using the following formula

( )6.02

1.76−=

SINADENOB

Gain Error The first code transition should occur at an analog value ½ LSB above negative full scale. The last transition should occur at an analog value 1 ½ LSB below the positive full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.

Integral Nonlinearity (INL) The deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs ½ LSB before the first code transition. Positive full scale is defined as a level 1 ½ LSBs beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line.

Maximum Conversion Rate The clock rate at which parametric testing is performed.

Minimum Conversion Rate The clock rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit.

Offset Error The major carry transition should occur for an analog value ½ LSB below VIN+ = VIN−. Offset error is defined as the deviation of the actual transition from that point.

Out-of-Range Recovery Time The time it takes for the ADC to reacquire the analog input after a transition from 10% above positive full scale to 10% above negative full scale, or from 10% below negative full scale to 10% below positive full scale.

Output Propagation Delay (tPD) The delay between the clock rising edge and the time when all bits are within valid logic levels.

Power-Supply Rejection Ratio The change in full scale from the value with the supply at the minimum limit to the value with the supply at its maximum limit.

Signal-to-Noise and Distortion (SINAD) The ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc.

Signal-to-Noise Ratio (SNR) The ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc.

Spurious-Free Dynamic Range (SFDR) The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious compo-nent may or may not be a harmonic. May be reported in dBc (i.e., degrades as signal level is lowered) or dBFS (always related back to converter full scale).

Temperature Drift The temperature drift for offset error and gain error specifies the maximum change from the initial (25°C) value to the value at TMIN or TMAX.

Total Harmonic Distortion (THD) The ratio of the rms input signal amplitude to the rms value of the sum of the first six harmonic components.

Two-Tone SFDR The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IMD product.

Page 10: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 10 of 40

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

26 27 28 29 30

5554535251

TOP VIEW(Not to Scale)

AD9444

AVD

D1

AVD

D1

AVD

D2

AVD

D2

AVD

D2

5432

76

98

1

1110

16151413

1817

2019

2221

12

2423

25

32 33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 5031 37

AVD

D2

AG

ND C1

AVD

D1

AVD

D1

CLK

+C

LK–

AVD

D1

AVD

D2

AVD

D2

AVD

D1

AVD

D1

(LSB

) D0–

D0+ D1–

D1+

DR

VDD

DR

GN

DD

2–D

2+

80D

13–

79D

12+

78D

12–

77D

11+

76D

11–

75 DRVDD74 DRGND73 D10+72 D10–71 D9+70 D9–69 D8+68 D8–67 DRGND66 D7+65 D7–64 DCO+63 DCO–62 DRVDD61 DRGND60 D6+59 D6–58 D5+57 D5–56 D4+

D4–DRVDDDRGNDD3+D3–

100

99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

DC

S M

OD

EA

GN

DA

VDD

1A

GN

DA

GN

DA

VDD

1A

VDD

1A

VDD

1A

VDD

1A

VDD

1A

VDD

1A

VDD

1A

GN

DA

VDD

1A

GN

DO

R+

OR

–D

RVD

DD

RG

ND

D13

+ (M

SB)

AVDD1DNCDNCDNC

OUTPUT MODEDFS

LVDSBIASAVDD1AVDD1SENSE

VREFAGNDREFTREFBAGND

AVDD1AVDD1AVDD1AVDD2AGND

VIN+VIN–

AGNDAVDD1AVDD1

0508

9-00

4DNC = DO NOT CONNECT

Figure 4. 100-Lead TQFP/EP Pin Configuration in LVDS Mode

Page 11: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 11 of 40

Table 7. Pin Function Descriptions—100-Lead TQFP/EP in LVDS Mode Pin No. Mnemonic Description 1, 8 to 9, 16 to 18, 24 to 27, 34 to 35, 38, 41 to 42, 87, 89 to 95, 98

AVDD1 3.3 V (±5%) Analog Supply.

2 to 4 DNC Do Not Connect. These pins should float.

5 OUTPUT MODE

CMOS Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode, and OUTPUT MODE = 1 (AVDD1) for LVDS outputs.

6 DFS Data Format Select Pin. CMOS control pin that determines the format of the output data. DFS = high (AVDD1) for twos comple-ment, DFS = low (ground) for offset binary format.

7 LVDSBIAS Set Pin for LVDS Output Current. Place 3.7 kΩ resistor terminated to DRGND.

10 SENSE Reference Mode Selection. Connect to AGND for internal 1 V reference, and connect to AVDD2 for external reference.

11 VREF 1.0 V Reference I/O—Function Dependent on SENSE. Decouple to ground with 0.1 µF and 10 µF capacitors.

12, 15, 20, 23, 32, 86, 88, 96 to 97, 99, Exposed Heat Sink

AGND Analog Ground. The exposed heat sink on the bottom of the package must be connected to AGND.

13 REFT Differential Reference Output. Decoupled to ground with 0.1 µF capacitor and to REFB (Pin 14) with 0.1 µF and 10 µF capacitors.

14 REFB Differential Reference Output. Decoupled to ground with a 0.1 µF capacitor and to REFT (Pin 13) with 0.1 µF and 10 µF capacitors.

19, 28 to 31, 39 to 40

AVDD2 5.0 V Analog Supply (±5%).

21 VIN+ Analog Input—True. 22 VIN− Analog Input—Complement. 33 C1 Internal Bypass Node. Connect a

0.1 µF capacitor from this pin to AGND.

36 CLK+ Clock Input—True. 37 CLK− Clock Input—Complement. 43 D0− (LSB) D0 Complement Output Bit

(LVDS Levels).

Pin No. Mnemonic Description 44 D0+ D0 True Output Bit. 45 D1− D1 Complement Output Bit. 46 D1+ D1 True Output Bit. 47, 54, 62, 75, 83

DRVDD 3.3 V Digital Output Supply (3.0 V to 3.6 V).

48, 53, 61, 67, 74, 82

DRGND Digital Ground.

49 D2− D2 Complement Output Bit. 50 D2+ D2 True Output Bit. 51 D3− D3 Complement Output Bit. 52 D3+ D3 True Output Bit. 55 D4− D4 Complement Output Bit. 56 D4+ D4 True Output Bit. 57 D5− D5 Complement Output Bit. 58 D5+ D5 True Output Bit. 59 D6− D6 Complement Output Bit. 60 D6+ D6 True Output Bit. 63 DCO− Data Clock Output—Complement. 64 DCO+ Data Clock Output—True. 65 D7− D7 Complement Output Bit. 66 D7+ D7 True Output Bit. 68 D8− D8 Complement Output Bit. 69 D8+ D8 True Output Bit. 70 D9− D9 Complement Output Bit. 71 D9+ D9 True Output Bit. 72 D10− D10 Complement Output Bit. 73 D10+ D10 True Output Bit. 76 D11− D11 Complement Output Bit. 77 D11+ D11 True Output Bit. 78 D12− D12 Complement Output Bit. 79 D12+ D12 True Output Bit. 80 D13− D13 Complement Output. 81 D13+ (MSB) D13 True Output Bit. 84 OR− Out-of-Range Complement

Output Bit. 85 OR+ Out-of-Range True Output Bit. 100 DCS MODE Clock Duty Cycle Stabilizer (DCS)

Control Pin, CMOS-Compatible. DCS = low (AGND) to enable DCS (recommended). DCS = high (AVDD1) to disable DCS.

Page 12: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 12 of 40

26 27 28 29 30

5554535251

TOP VIEW(Not to Scale)

AD9444

AVD

D1

AVD

D1

AVD

D2

AVD

D2

AVD

D2

5432

76

98

1

1110

16151413

1817

2019

2221

12

2423

25

32 33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 5031 37

AVD

D2

AG

ND C1

AVD

D1

AVD

D1

CLK

+C

LK–

AVD

D1

AVD

D2

AVD

D2

AVD

D1

AVD

D1

DN

CD

NC

DN

CD

NC

DR

VDD

DR

GN

DD

NC

DN

C

80 79 78 77 76

75 DRVDD74 DRGND73 D672 D571 D470 D369 D268 D167 DRGND66 D0 (LSB)65 DNC64 DCO+63 DCO–62 DRVDD61 DRGND60 DNC59 DNC58 DNC57 DNC56 DNC

DNCDRVDDDRGNDDNCDNC

100

99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

AVDD1DNCDNCDNC

OUTPUT MODEDFSDNC

AVDD1AVDD1SENSE

VREFAGNDREFTREFBAGND

AVDD1AVDD1AVDD1AVDD2AGND

VIN+VIN–

AGNDAVDD1AVDD1

0508

9-00

5

DNC = DO NOT CONNECT

DC

S M

OD

EA

GN

DA

VDD

1

AG

ND

AG

ND

AVD

D1

AVD

D1

AVD

D1

AVD

D1

AVD

D1

AVD

D1

AVD

D1

AG

ND

AVD

D1

AG

ND

OR

D13

(MSB

)D

RVD

DD

RG

ND

D12

D11

D10

D9

D8

D7

Figure 5. 100-Lead TQFP/EP Pin Configuration in CMOS Mode

Page 13: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 13 of 40

Table 8. Pin Function Descriptions—100-Lead TQFP/EP in CMOS Mode Pin No. Mnemonic Description 1, 8 to 9, 16 to 18, 24 to 27, 34 to 35, 38, 41 to 42, 87, 89 to 95, 98

AVDD1 3.3 V (±5%) Analog Supply.

2 to 4, 7, 43 to 46, 49 to 52, 55 to 60, 65

DNC Do Not Connect. These pins should float.

5 OUTPUT MODE

CMOS Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode, and OUTPUT MODE = 1 (AVDD1) for LVDS outputs.

6 DFS Data Format Select Pin. CMOS control pin that de-termines the format of the output data. DFS = high (AVDD1) for twos comple-ment, DFS = low (ground) for offset binary format.

10 SENSE Reference Mode Selection. Connect to AGND for internal 1 V reference, and connect to AVDD2 for external reference.

11 VREF 1.0 V Reference I/O— Function Dependent on SENSE. Decouple to ground with 0.1 µF and 10 µF capacitors.

12, 15, 20, 23, 32, 86, 88, 96 to 97, 99, Exposed Heat Sink

AGND Analog Ground. The exposed heat sink on the bottom of the package must be connected to AGND.

13 REFT Differential Reference Out-put. Decoupled to ground with 0.1 µF capacitor and to REFB (Pin 14) with 0.1 µF and 10 µF capacitors.

14 REFB Differential Reference Out-put. Decoupled to ground with a 0.1 µF capacitor and to REFT (Pin 13) with 0.1 µF and 10 µF capacitors.

19, 28 to 31, 39 to 40

AVDD2 5.0 V Analog Supply (±5%).

21 VIN+ Analog Input—True. 22 VIN− Analog Input—Complement.

Pin No. Mnemonic Description 33 C1 Internal Bypass Node.

Connect a 0.1 µF capacitor from this pin to AGND.

36 CLK+ Clock Input—True. 37 CLK− Clock Input—Complement. 47, 54, 62, 75, 83

DRVDD 3.3 V Digital Output Supply (2.5V to 3.6 V).

48, 53, 61, 67, 74, 82

DRGND Digital Ground.

63 DCO− Data Clock Output— Complement (CMOS Levels).

64 DCO+ Data Clock Output— True.

66 D0 (LSB) D0 Output Bit (LSB) (CMOS Levels).

68 D1 D1 Output Bit. 69 D2 D2 Output Bit. 70 D3 D3 Output Bit. 71 D4 D4 Output Bit. 72 D5 D5 Output Bit. 73 D6 D6 Output Bit. 76 D7 D7 Output Bit. 77 D8 D8 Output Bit. 78 D9 D9 Output Bit. 79 D10 D10 Output Bit. 80 D11 D11 Output Bit. 81 D12 D12 Output Bit. 84 D13 (MSB) D13 Output Bit. 85 OR Out-of-Range Output. 100 DCS MODE Clock Duty Cycle Stabilizer

(DCS) Control Pin, CMOS- Compatible. DCS = low (AGND) to enable DCS (recommended). DCS = high (AVDD1) to disable DCS.

Page 14: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 14 of 40

EQUIVALENT CIRCUITS

X1

AVDD2

3.5V

1kΩ

1kΩ

AVDD2

VIN+

VIN–

SHA

AVDD2

0508

9-00

62.5pF

2.5pF

Figure 6. Equivalent Analog Input Circuit

0508

9-00

7

1.2V

DRVDD DRVDD

K

3.74kΩ ILVDSOUT

LVDSBIAS

Figure 7. Equivalent LVDS BIAS Circuit

DRVDD

DX– DX+

V

V

V

V

0508

9-00

8

Figure 8. Equivalent LVDS Digital Output Circuit

DX

DRVDD

0508

9-00

9

Figure 9. Equivalent CMOS Digital Output Circuit

DCS MODE,OUTPUT MODE,

DFS

VDD

30kΩ

0508

9-01

0

Figure 10. Equivalent Digital Input Circuit, DFS, DCS MODE, OUTPUT MODE

CLK+

12kΩ

10kΩ

150Ω 150Ω

12kΩ

10kΩ

AVDD2

CLK–

0508

9-01

1

Figure 11. Equivalent Sample Clock Input Circuit

Page 15: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 15 of 40

TYPICAL PERFORMANCE CHARACTERISTICS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, sample rate = 80 MSPS, LVDS mode, DCS enabled, TA = 25°C, 2 V p-p differential input, AIN = −0.5 dBFS, internal trimmed reference (nominal VREF = 1.0 V), unless otherwise noted.

–120

–100

–80

–60

–40

–20

0 5 10 15 20 25 30 35 40FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

0508

9-01

2

80MSPS10.1MHz @ –0.5dBFSSNR: 73.9dBENOB: 12.0BITSSFDR: 97dBc

0

Figure 12. 64K Point Single-Tone FFT/80 MSPS/10.1 MHz

–120

–100

–80

–60

–40

–20

0 5 10 15 20 25 30 35 40FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

0508

9-01

3

80MSPS30.3MHz @ –0.5dBFSSNR: 74.0dBENOB: 12.1BITSSFDR: 95dBc

0

Figure 13. 64K Point Single-Tone FFT/80 MSPS/30.3 MHz

–120

–100

–80

–60

–40

–20

0 5 10 15 20 25 30 35 40FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

0508

9-01

4

80MSPS70.3MHz @ –0.5dBFSSNR: 73.3dBENOB: 11.9BITSSFDR: 100dBc

0

Figure 14. 64K Point Single-Tone FFT/80 MSPS/70 MHz

–120

–100

–80

–60

–40

–20

0 5 10 15 20 25 30 35 40FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

0508

9-01

5

80MSPS100.3MHz @ –0.5dBFSSNR: 72.3dBENOB: 11.8BITSSFDR: 96dBc

0

Figure 15. 64K Point Single-Tone FFT/80 MSPS/100 MHz

–120

–100

–80

–60

–40

–20

0 5 10 15 20 25 30 35 40FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

0508

9-01

6

080MSPS125MHz @ –0.5dBFSSNR: 71.2dBENOB: 11.6BITSSFDR: 91dBc

Figure 16. 64K Point Single-Tone FFT/80 MSPS/125 MHz

–120

–100

–80

–60

–40

–20

0 5 10 15 20 25 30 35 40FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

0508

9-01

780MSPS151MHz @ –0.5dBFSSNR: 71.1dBENOB: 11.5BITSSFDR: 87dBc

0

Figure 17. 64K Point Single-Tone FFT/80 MSPS/151 MHz

Page 16: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 16 of 40

65

66

67

68

69

70

71

72

73

74

75

0 20 40 60 80 100 120 140 160 180 200ANALOG INPUT FREQUENCY (MHz)

(dB

)

0508

9-01

8

SNR dB @ +85°C

SNR dB @ –40°C

SNR dB @ +25°C

Figure 18. SNR vs. Analog Input Frequency, 80 MSPS/LVDS Mode 05

089-

01970

75

80

85

90

95

105

0 20 40 60 80 100 120 140 160 180 200ANALOG INPUT FREQUENCY (MHz)

(dB

)

SFDR dBc @ +85°CSFDR dBc @ +25°C

100

SFDR dBc @ –40°C

Figure 19. SFDR vs. Analog Input Frequency, 80 MSPS/LVDS Mode

10

20

30

40

50

60

70

80

90

100

110

120

–100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0ANALOG INPUT AMPLITUDE (dBc)

(dB

)

0508

9-02

0

THIRD –dBFS SECOND –dBFS

SFDR –dBFS

THIRD –dBc

SECOND –dBc

SFDR –dBFS

Figure 20. Single-Tone SFDR/Second/Third vs. Analog Input Level, 80 MSPS, AIN = 30.3 MHz

0508

9-02

165

66

67

68

69

70

71

72

73

74

75

0 20 40 60 80 100 120 140 160 180 200ANALOG INPUT FREQUENCY (MHz)

(dB

)

SNR dB @ +85°C

SNR dB @ –40°C

SNR dB @ +25°C

Figure 21. SNR vs. Analog Input Frequency, 80 MSPS/CMOS Mode

0508

9-02

2

0 20 40 60 80 100 120 140 160 180 200ANALOG INPUT FREQUENCY (MHz)

SFDR dBc @ +25°C

SFDR dBc @ –40°C

SFDR dBc @ +85°C

70

75

80

85

90

95

100

105

(dB

)

Figure 22. SFDR vs. Analog Input Frequency, 80 MSPS/CMOS Mode

0508

9-02

310

20

30

40

50

60

70

80

90

100

110

120

–100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0

ANALOG INPUT AMPLITUDE (dBc)

(dB

)

THIRD –dBFSSECOND –dBFS

SFDR –dBFS

THIRD –dBc

SECOND –dBc

SFDR –dBFS

Figure 23. Single-Tone SFDR/Second/Third vs. Analog Input Level 80 MSPS, AIN = 70.30 MHz

Page 17: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 17 of 40

–120

–100

–80

–60

–40

–20

0 5 10 15 20 25 30 35 40FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

0508

9-02

4

0SFDR: 102dBFS

Figure 24. 32K Point Two-Tone FFT 80 MSPS/9.8 MHz/10.8 MHz

–120

–100

–80

–60

–40

–20

0 5 10 15 20 25 30 35 40FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

0508

9-02

50

–110

–90

–70

–50

–30

–10SFDR: –100dBFS

Figure 25. 32K Point Two-Tone FFT 80 MSPS/69.3 MHz/70.3 MHz

70

75

80

85

90

95

100

20 30 40 50 60 70 80 90 100 110SAMPLE RATE (MSPS)

SFD

R (d

B)

0508

9-02

6

Figure 26. SFDR vs. Sample Rate, VIN = 10.3 MHz @ −0.5 dBFS

–120

–100

–80

–60

–40

–20

IMD

(dB

FS)

0508

9-02

7

0

–110

–90

–70

–50

–30

–10

–110 –100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0ANALOG INPUT LEVEL (dBFS)

WORST THIRD-ORDER IMD (dBFS)

SFDR (dBFS)

WORST THIRD-ORDER IMD (dBc)

90dBFS REFERENCE LINE

SFDR (dBc)

Figure 27. Two-Tone SFDR vs. Analog Input Level, AIN = 9.8 MHz/10.8 MHz

–120

–100

–80

–60

–40

–20

SFD

R A

ND

IMD

3 (d

B)

0508

9-02

8

0

–110

–90

–70

–50

–30

–10

–110 –100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0ANALOG INPUT LEVEL (dBFS)

WORST THIRD-ORDER IMD (dBFS)

SFDR (dBFS)

WORST THIRD-ORDER IMD (dBc)

90dBFS REFERENCE LINE

SFDR (dBc)

Figure 28. Two-Tone SFDR vs. Analog Input Level, AIN = 69.3 MHz/70.3 MHz

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 100 110SAMPLE RATE (MSPS)

SFD

R (d

B)

0508

9-02

9

Figure 29. SFDR vs. Sample Rate, VIN = 70.3 MHz @ −0.5 dBFS

Page 18: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 18 of 40

–130

–120

–110

–100

–90

–80

–70

–60

–50

–40

–30

–20

–10

0

0 7.68 15.36 23.04 30.72FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

0508

9-03

0

61.44MSPSTOTAL INPUT SIGNALPOWER: –30dBFS

Figure 30. 64K FFT, 61.44 MSPS, 4 @ WCDMA, IF = 46.08 MHz

–130

–120

–110

–100

–90

–80

–70

–60

–50

–40

–30

–20

–10

0

0 5 10 15 20 25 30 35 40FREQUENCY (MHz)

AM

PLIT

UD

E (d

BFS

)

0508

9–03

1

NPR: 63.1dB

Figure 31. NPR, 80 MSPS/18 MHz Notch

0508

9-03

270

75

80

85

90

95

100

105

20 30 40 50 60 70 80CLOCK DUTY CYCLE (%)

dB

SFDR - DCS OFF (dBFS)

SFDR - DCS ON (dBFS)

SNR - DCS OFF (dB)

SNR - DCS ON (dB)

Figure 32. Single-Tone SNR/SFDR vs. Clock Duty Cycle, FSAMPLE = 80 MSPS, 10.3 MHz @ −0.5 dBFS

0508

9-03

30

2000

4000

6000

8000

10000

12000

8179 8180 8181 8182 8183 8184 8185 8186 8187BIN

FREQ

UEN

CY

Figure 33. Ground Input Histogram 80 MSPS, VIN+ = VIN−, 32K Samples

0508

9-03

450

70

90

110

130

150

170

190

210

230

250

20 30 40 50 60 70 80 90 100 110 120 130SAMPLE RATE (MSPS)

CU

RR

ENT

(mA

) AVDD1 (3.3V)

AVDD2 (5.0V)DRVDD (3.3V)

Figure 34. ISUPPLY vs. Sample Rate, AIN = 10.3 MHz @ −0.5 dBFS

60

65

70

75

80

85

90

95

100

2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9VIN COMMON-MODE (V)

(dB

)

0508

9-03

5

SFDR (dBc)

SNR (dB)

Figure 35. Single-Tone SNR/SFDR vs. VIN Common-Mode Voltage 80 MSPS/10.3 MHz

Page 19: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 19 of 40

0508

9-03

60.951

0.952

0.953

0.954

0.955

0.956

0.957

0.958

0.959

0.960

0.961

–20 0 20 40 60 80TEMPERATURE (°C)

REF

EREN

CE

VOLT

AG

E (V

)

–40

Figure 36. VREF vs. Temperature

–1.00

–0.75

–0.50

–0.25

0

0.25

0.50

0.75

1.00

0 2048 4096 6144 8192 10240 12288 14336 16384OUTPUT CODE

DN

L ER

RO

R (L

SB)

0508

9-03

7

Figure 37. DNL Error vs. Output Code, 80 MSPS, AIN = 15 MHz

0508

9-03

8

–20 0 20 40 60 80TEMPERATURE (°C)

–40–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

GA

IN (%

FS)

Figure 38. Gain vs. Temperature

–1.00

–0.75

–0.50

–0.25

0

0.25

0.50

0.75

1.00

0 2048 4096 6144 8192 10240 12288 14336 16384OUTPUT CODE

INL

ERR

OR

(LSB

)

0508

9-03

9

Figure 39. INL Error vs. Output Code, 80 MSPS, AIN = 15 MHz

Page 20: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 20 of 40

THEORY OF OPERATION The AD9444 architecture is optimized for high speed and ease of use. The analog inputs drive an integrated, high bandwidth, track-and-hold circuit that samples the signal prior to quantiza-tion by the 14-bit pipeline ADC core. The device includes an on-board reference and input logic that accepts TTL, CMOS, or LVPECL levels. The digital output logic levels are user selectable as standard 3 V CMOS or LVDS (ANSI-644 compatible) via the OUTPUT MODE pin.

ANALOG INPUT AND REFERENCE OVERVIEW A stable and accurate 0.5 V voltage reference is built into the AD9444. The input range can be adjusted by varying the refer-ence voltage applied to the AD9444, using either the internal reference or an externally applied reference voltage. The input span of the ADC tracks reference voltage changes linearly. The various reference modes are described in the next few sections.

Internal Reference Connection

A comparator within the AD9444 detects the potential at the SENSE pin and configures the reference into four possible states, which are summarized in Table 9. If SENSE is grounded, the reference amplifier switch is connected to the internal resis-tor divider (see Figure 40), setting VREF to ~1 V. Connecting the SENSE pin to VREF switches the reference amplifier output to the SENSE pin, completing the loop and providing a ~0.5 V reference output. If a resistor divider is connected, as shown in Figure 41, the switch again sets to the SENSE pin. This puts the reference amplifier in a noninverting mode with the VREF output defined as

⎟⎠⎞

⎜⎝⎛ +×=

R1R2

VREF 10.5

In all reference configurations, REFT and REFB drive the A/D conversion core and establish its input span. The input range of the ADC always equals twice the voltage at the reference pin for either an internal or an external reference.

Internal Reference Trim

The internal reference voltage is trimmed during the produc-tion test to adjust the gain (analog input voltage range) of the AD9444. Therefore, there is little advantage to the user supply-ing an external voltage reference to the AD9444. The gain trim is performed with the AD9444’s input range set to 2 V p-p nominal (SENSE connected to AGND). Because of this trim, and because the 2 V p-p analog input range provides maximum ac performance, there is little benefit to using analog input ranges < 2 V p-p. Users are cautioned that the differential nonlinearity of the ADC varies with the reference voltage. Configurations that use < 2 V p-p may exhibit missing codes and, therefore, degraded noise and distortion performance.

10µF+

0.1µF

VREF

SENSE

0.5V

AD9444

VIN–

VIN+

REFT

0.1µF0.1µF 10µF

0.1µF

REFB

SELECTLOGIC

ADCCORE

+

0508

9-04

3

Figure 40. Internal Reference Configuration

0508

9-04

2

10µF+

0.1µF

VREF

SENSE

R2

R1 0.5V

AD9444

VIN–

VIN+

REFT

0.1µF0.1µF 10µF

0.1µF

REFB

SELECTLOGIC

ADCCORE

+

Figure 41. Programmable Reference Configuration

Page 21: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 21 of 40

Table 9. Reference Configuration Summary Selected Mode SENSE Voltage Resulting VREF (V) Resulting Differential Span (V p-p) External Reference AVDD N/A 2 × External Reference Internal Fixed Reference VREF 0.5 1.0 Programmable Reference 0.2 V to VREF

⎟⎠⎞

⎜⎝⎛ +×

R1R2

10.5 (See Figure 41) 2 × VREF

Internal Fixed Reference AGND to 0.2 V 1.0 2.0 External Reference Operation

The AD9444’s internal reference is trimmed to enhance the gain accuracy of the ADC. An external reference may be more stable over temperature, but the gain of the ADC is not likely to be improved. Figure 36 shows the typical drift characteristics of the internal reference in both 1 V and 0.5 V modes.

When the SENSE pin is tied to AVDD, the internal reference is disabled, allowing the use of an external reference. An internal reference buffer loads the external reference with an equivalent 7 kΩ load. The internal buffer still generates the positive and negative full-scale references, REFT and REFB, for the ADC core. The input span is always twice the value of the reference voltage; therefore, the external reference must be limited to a maximum of 1 V.

Analog Inputs

As with most new high speed, high dynamic range ADCs, the analog input to the AD9444 is differential. Differential inputs improve on-chip performance as signals are processed through attenuation and gain stages. Most of the improvement is a result of differential analog stages having high rejection of even-order harmonics. There are also benefits at the PCB level. First, differential inputs have high common-mode rejection of stray signals, such as ground and power noise. Second, they provide good rejection of common-mode signals, such as local oscillator feedthrough. The specified noise and distortion of the AD9444 cannot be realized with a single-ended analog input, so such configurations are discouraged. Contact ADI for recommenda-tions of other 14-bit ADCs that support single-ended analog input configurations.

With the 1 V reference (nominal value, see the Internal Refer-ence Trim section), the differential input range of the AD9444’s analog input is nominally 2 V p-p or 1 V p-p on each input (VIN+ or VIN−).

3.5V

VIN+

VIN–

1Vp-p

DIGITAL OUT = ALL 1s DIGITAL OUT = ALL 0s

0508

9-04

5

Figure 42. Differential Analog Input Range for VREF = 1 V

The AD9444 analog input voltage range is offset from ground by 3.5 V. Each analog input connects through a 1 kΩ resistor to the 3.5 V bias voltage and to the input of a differential buffer. The internal bias network on the input properly biases the buffer for maximum linearity and range (see the Equivalent Circuits section). Therefore, the analog source driving the AD9444 should be ac-coupled to the input pins. The recom-mended method for driving the analog input of the AD9444 is to use an RF transformer to convert single-ended signals to differential (see Figure 44). Series resistors between the output of the transformer and the AD9444 analog inputs help isolate the analog input source from switching transients caused by the internal sample-and-hold circuit. The series resistors, along with the 1 kΩ resisters connected to the internal 3.5 V bias, must be considered in impedance matching the transformers input. For example, if RT were set to 51 Ω and RS were set to 33 Ω, along with a 1:1 impedance ratio transformer, the input would match a 50 Ω source with a full-scale drive of 10.0 dBm. The 50 Ω impedance matching can also be incorporated on the secondary side of the transformer, as shown in the evaluation board sche-matic (see Figure 47 and Figure 59).

0508

9-04

60.1µF

RT AD9444AIN

AINRS

RSADT1–1WTANALOGINPUT

SIGNAL

Figure 43. Transformer-Coupled Analog Input Circuit

Page 22: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 22 of 40

CLOCK INPUT CONSIDERATIONS Any high speed ADC is extremely sensitive to the quality of the sampling clock provided by the user. A track-and-hold circuit is essentially a mixer, and any noise, distortion, or timing jitter on the clock is combined with the desired signal at the A/D output. For that reason, considerable care was taken in the design of the clock inputs of the AD9444, and the user is advised to give careful thought to the clock source.

Typical high speed ADCs use both clock edges to generate a variety of internal timing signals and, as a result, may be sensitive to the clock duty cycle. Commonly a 5% tolerance is required on the clock duty cycle to maintain dynamic perform-ance characteristics. The AD9444 contains a clock duty cycle stabilizer (DCS) that retimes the nonsampling edge, providing an internal clock signal with a nominal 50% duty cycle. As shown in Figure 32, noise and distortion performance are nearly flat for a 30% to 70% duty cycle with the DCS enabled. The DCS circuit locks to the rising edge of CLK+ and optimizes timing internally. This allows for a wide range of input duty cycles at the input without degrading performance. Jitter in the rising edge of the input is still of paramount concern and is not re-duced by the internal stabilization circuit. The duty cycle con-trol loop does not function for clock rates less than 30 MHz nominally. The loop has a time constant associated with it that needs to be considered in applications where the clock rate can change dynamically, which requires a wait time of 1.5 µs to 5 µs after a dynamic clock frequency increase (or decrease) before the DCS loop is relocked to the input signal. During the time period the loop is not locked, the DCS loop is bypassed, and the internal device timing is dependant on the duty cycle of the input clock signal. In such an application, it may appropriate to disable the duty cycle stabilizer. In all other applications, enabling the DCS circuit is recommended to maximize ac performance.

The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the duty cycle stabi-lizer, and logic high (AVDD1 = 3.3 V) disables the controller.

The AD9444 input sample clock signal must be a high quality, extremely low phase noise source to prevent degradation of performance. Maintaining 14-bit accuracy places a premium on the encode clock phase noise. SNR performance can easily degrade by 3 dB to 4 dB with 70 MHz analog input signals when using a high jitter clock source. (See AN-501, Aperture Uncertainty and ADC System Performance, for complete details.) For optimum performance, the AD9444 must be clocked differentially. The sample clock inputs are internally biased to ~2.2 V, and the input signal is usually ac-coupled into

the CLK+ and CLK− pins via a transformer or capacitors. Figure 44 shows one preferred method for clocking the AD9444. The clock source (low jitter) is converted from single-ended-to-differential using an RF transformer. The back-to-back Schottky diodes across the transformer secondary limit clock excursions into the AD9444 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9444 and limits the noise presented to the sample clock inputs.

If a low jitter clock is available, another option is to ac couple a differential ECL/PECL signal to the encode input pins, as shown in Figure 46.

0508

9-04

7

0.1µFAD9444

CLK+

CLK–HSMS2812

DIODES

CLOCKSOURCE

ADT1–1WT

Figure 44. Crystal Clock Oscillator, Differential Encode

0508

9-04

8

0.1µF

AD9444ENCODE

ENCODE

0.1µF

VT

VT

ECL/PECL

Figure 45. Differential ECL for Encode

Jitter Considerations

High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input frequency (fINPUT) and rms amplitude due only to aperture jitter (tJ) can be calculated using the following equation.

SNR = 20 log[2πfINPUT × tJ]

In the equation, the rms aperture jitter represents the root-mean square of all jitter sources, which includes the clock input, analog input signal, and ADC aperture jitter specification. IF undersampling applications are particularly sensitive to jitter, see Figure 46.

The clock input should be treated as an analog signal in cases where aperture jitter may affect the dynamic range of the AD9444. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter, crystal-controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or other meth-ods), it should be retimed by the original clock at the last step.

Page 23: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 23 of 40

INPUT FREQUENCY (MHz)

SNR

(dB

c)

140

75

70

65

60

55

50

45

100010010

0508

9-04

9

0.2ps

0.5ps

1.0ps

1.5ps

2.0ps2.5ps3.0ps

Figure 46. SNR vs. Input Frequency and Jitter

POWER CONSIDERATIONS Care should be taken when selecting a power source. The use of linear dc supplies is highly recommended. Switching supplies tend to have radiated components that may be received by the AD9444. Each of the power supply pins should be decoupled as closely to the package as possible using 0.1 µF chip capacitors.

The AD9444 has separate digital and analog power supply pins. The analog supplies are denoted AVDD1 (3.3 V) and AVDD2 (5 V) and the digital supply pins are denoted DRVDD. Although the AVDD1 and DRVDD supplies may be tied together, best performance is achieved when the supplies are separate. This is because the fast digital output swings can couple switching current back into the analog supplies. Note that both AVDD1 and AVDD2 must be held within 5% of the specified voltage.

The DRVDD supply of the AD9444 is a dedicated supply for the digital outputs, in either LVDS or CMOS output modes. When in LVDS mode, the DRVDD should be set to 3.3 V. In CMOS mode, the DRVDD supply may be connected from 2.5 V to 3.6 V to be compatible with the receiving logic.

DIGITAL OUTPUTS LVDS Mode

The off-chip drivers on the chip can be configured to provide LVDS-compatible output levels via Pin 5 (OUTPUT MODE). LVDS outputs are available when OUTPUT MODE is CMOS logic high (or AVDD1 for convenience) and a 3.74 kΩ RSET resistor is placed at Pin 7 (LVDSBIAS) to ground. Dynamic performance, including both SFDR and SNR, is maximized when the AD9444 is used in LVDS mode, and designers are encouraged to take advantage of this mode. The AD9444 out-puts include complimentary LVDS outputs for each data bit (DX+/DX−), the overrange output (OR+/OR−), and the output data clock output (DCO+/DCO−). The RSET resistor current is ratioed on-chip, setting the output current at each output equal to a nominal 3.5 mA (11 × ). A 100 Ω differential termina-

tion resistor placed at the LVDS receiver inputs results in a nominal 350 mV swing at the receiver. LVDS mode facilitates interfacing with LVDS receivers in custom ASICs and FPGAs that have LVDS capability for superior switching performance in noisy environments. Single point-to-point net topologies are recommended with a 100 Ω termination resistor as close to the receiver as possible. It is recommended to keep the trace length less than 1 inch to 2 inches and to keep differential output trace lengths as equal as possible.

SETRI

CMOS Mode

In applications that can tolerate a slight degradation in dynamic performance, the AD9444 output drivers can be configured to interface with 2.5 V or 3.3 V logic families by matching DRVDD to the digital supply of the interfaced logic. CMOS outputs are available when OUTPUT MODE is CMOS logic low (or AGND for convenience). In this mode, the output data bits are single-ended CMOS, DX, as is the overrange output, OR. The output clock is provided as a differential CMOS signal, DCO+/DCO−. Lower supply voltages are recommended to avoid coupling switching transients back to the sensitive analog sections of the ADC. The capacitive load to the CMOS outputs should be minimized, and each output should be connected to a single gate through a series resistor (220 Ω) to minimize switching transients caused by the capacitive loading.

TIMING The AD9444 provides latched data outputs with a pipeline delay of 12 clock cycles. Data outputs are available one propagation delay (tPD) after the rising edge of CLK+. Refer to Figure 2 and Figure 3 for detailed timing diagrams.

OPERATIONAL MODE SELECTION Data Format Select

The data format select (DFS) pin of the AD9444 determines the coding format of the output data. This pin is 3.3 V CMOS compatible, with logic high (or AVDD1, 3.3 V) selecting twos complement, and DFS logic low (AGND) selecting offset binary format. Table 10 summarizes the output coding.

Output Mode Select

The OUPUT MODE pin controls the logic compatibility, as well as the pinout of the digital outputs. This pin is a CMOS compatible input. With OUTPUT MODE = 0 (AGND), the AD9444 outputs are CMOS-compatible and the pin assignment for the device is defined in Table 8. With OUTPUT MODE = 1 (AVDD1, 3.3 V), the AD9444 outputs are LVDS-compatible and the pin assignment for the device is defined in Table 7.

Duty Cycle Stabilizer

The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the DCS, and logic high (AVDD1, 3.3 V) disables the controller.

Page 24: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 24 of 40

Table 10. Digital Output Coding

Code VIN+ − VIN− Input Span = 2 V p-p (V)

VIN+ − VIN− Input Span = 1 V p-p (V)

Digital Output Offset Binary (D9••••••D0)

Digital Output Twos Complement (D9••••••D0)

16383 1.000 0.500 11 1111 1111 1111 01 1111 1111 1111 8192 0 0 10 0000 0000 0000 00 0000 0000 0000 8191 −0.000122 −0.000061 01 1111 1111 1111 11 1111 1111 1111 0 −1.00 −0.5000 00 0000 0000 0000 10 0000 0000 0000

EVALUATION BOARD Evaluation boards are offered to configure the AD9444 in either CMOS or LVDS mode. Each represents a recommended configuration for using the device over a wide range of sample rates and analog input frequencies. These evaluation boards provide all the support circuitry required to operate the ADC in its various modes and configurations. Complete schematics and layout plots follow and demonstrate the proper routing and grounding techniques that should be applied at the system level.

It is critical that signal sources with very low phase noise (< 1 ps rms jitter) be used to realize the ultimate performance of the converter. Proper filtering of the input signal, to remove harmonics and lower the integrated noise at the input, is also necessary to achieve the specified noise performance.

The evaluation boards are shipped with an ac to 6 V dc power supply. The evaluation boards include low dropout regulators to generate the various dc supplies required by the AD9444 and its support circuitry. Separate power supplies are provided to iso-late the DUT from the support circuitry. Each input configura-tion can be selected by proper connection of various jumpers (see Figure 47 to Figure 50 and Figure 59 to Figure 61).

Both the LVDS and CMOS versions of the evaluation board are compatible with the high speed ADC FIFO evaluation kit (part number HSC-ADC-EVALA-SC). The kit includes a high speed data capture board that provides a hardware solution for captur-ing up to 32Ksamples of high speed ADC output data in a FIFO memory chip (user upgradeable to 256K samples). Software is provided to enable the user to download the captured data to a PC via the USB port. This software also includes a behavioral model of the AD9444 and many other high speed ADCs.

Behavioral modeling of the AD9444 is also available at www.analog.com/ADIsimADC. The ADIsimADC™ software supports virtual ADC evaluation using ADI proprietary behavioral modeling technology. This allows rapid comparison between the AD9444 and other high speed ADCs, with or without hardware evaluation boards.

The AD9444 LVDS evaluation board includes an on-board, LVDS-to-CMOS translator, but the user may choose to remove the translator and terminations to access the LVDS outputs directly.

The CMOS evaluation board includes a buffer for the output data and the DCO output clock of the AD9444.

Page 25: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 25 of 40

LVDS EVALUATION BOARD SCHEMATICS

C400.1µF

100Ω

OPTIONAL

15 20 23

9796

86

12 21 2216

95

24 25

2627

34929394

28293031

4039

19

4142

35

38

9091

87

189

64 63

4344

7273

767778798081 45

46

4950

51525556575859606566686970716

88

8485

48

53616774

82

47

546275

83

3233

100

893637

101

987 141310

99

11 172 3 4 5 81

VCC

GN

DR

91k

Ω

R12

R15

VCC

GN

DR3

3.8kΩ

5432

678

P5

DR

BN

DR

NE2

4EX

TREF

D2_CND2_TN

D3_

CN

D3_

TN

D4_

CN

D4_

TND

5_C

ND

5_TN

D6_

CN

D6_

TN

D7_

CN

D7_

T/D

0_YN

D8_

C/D

1_YN

D8_

T/D

2_YN

D9_

C/D

3_YN

D9_

T/D

4_YN

D10

_C/D

5_YN

D10

_T/D

6_YN

GN

DC

39

10µF

GN

D

DOR_T/DOR_YN

E41

E25

E27

E26

VCC

GN

D

E38

E40

H4MTHOLE6

E39

GND

GN

D

C30.1µF

C90.1µF

C86

0.1µ

F

R1

3.8kΩ

GN

D

ENCBENC

DRVDD

DR

VDD

DR

VDD

DR

VDD

DRVDD

GND

GN

D

GN

D

GN

D

GN

D

GND

DOR_C/D13_YN

D1_TND1_CND13_T/D12_YN

D13_C/D11_YND12_T/D10_YND12_C/D9_YND11_T/D8_YND11_C/D7_YN

D0_TND0_CN

VCC

VCC

VCC

VCC

VCC

VCCVCC

5V

5V

5V

VCC

VCCVCC

VCC

VCC

VCC

VCC

VCC

GN

D

GNDGND

GN

D

GN

D

GN

D

C13

20pF

33ΩR35

R2833Ω

R13

xxC910.1µF

GN

D

E20

EXTR

EF

GND

VDLGND

DRVDDGND

VCC

5V

GND

GN

D

VCC

GN

D

GNDGND

EPADA

D94

44U

1PI

N D

EFIN

ITIO

NS

LVD

S/C

MO

S

R4

36Ω

1

H3MTHOLE6

H1MTHOLE6

H2MTHOLE6

AVD

D1

DN

CD

NC

DN

CO

UTP

UT

MO

DE

DFS

LVD

SBIA

S/D

NC

AVD

D1

AVD

D1

SEN

SEVR

EFA

GN

DR

EFT

REF

BA

GN

DA

VDD

1A

VDD

1A

VDD

1A

VDD

2A

GN

DVI

N+

VIN

–A

GN

DA

VDD

1A

VDD

1

VCC

VCC

VCCVCCVCCVCCVCC

GND

GND

1kΩ

1kΩ

GN

DR

14

1kΩ

E1E2E3

GN

D

VCC

C12

0.1µ

F

C5

0.1µ

F

J4 GN

D

R5

xx

GN

D

T5A

DT1

-1W

T1 5 3

6 2 4N

C TIN

B

GN

D

AN

ALO

G

L1E1

5R

636

Ω

R2

3.8kΩ

C5110µF

C20.1µF

C240.1µF

GN

DGND

0508

9-05

0

AD

T1-1

WT

PRI

SEC

NC

ENC

ENC

B

R39XX

GN

D

GN

DJ5

50ΩR7

C260.1µF

C360.1µF

XTA

LIN

PUT

12

356

T3

13

2

CR2

C42

0.1µ

F

GN

D

50ΩR8

XTALINPUTB

GN

D

4

GN

DJ1

DR

VDD

DR

GN

DD

10+

D10

–D

9+D

9–D

8+D

8–D

RG

ND

D7+

D7–

DC

O+

DC

O–

DR

VDD

DR

GN

DD

6+D

6–D

5+D

5–D

4+D

4–D

RVD

DD

RG

ND

D3+

D3–

D13–D12+D12–D11+D11–

DCS MODAGNDAVDD1AGNDAGNDAVDD1AVDD1

AVDD1AVDD1AVDD1AVDD1AVDD1

AGNDAVDD1AGNDOR+OR–DRVDDDRGNDD13+ (MSB)

AVDD1AVDD1

AVDD2AVDD2AVDD2AVDD2

AGNDC1

AVDD1AVDD1

CLK+CLK–

AVDD1

AVDD2AVDD2

AVDD1AVDD1

(LSB) D0–D0+D1–D1+

DRVDDDRGND

D2–D2+

OU

TVC

C

VEE

~OU

T

OU

TPU

TO

UTP

UTB

VCC

GN

DN

CE/

D

JN00

158

+

FOR

VEC

TRO

N X

TAL

FOR

VF

XTA

L

GN

D

XTA

LIN

PUTB

XTA

LIN

PUT

E52

C92

0.1µ

FC

4410

µFE4

7

R38

XX

R27XX

R37XX

R20XX

R17 XX

R19

XX

R18 XX

456

321

U2

814 7

U6

ECLO

SC

R36XX

R40

XX

C93

0.1µ

F

E46

VXTA

L

GN

D

GN

D

GN

D

XTA

LOU

TB

XTA

LOU

T

XTA

LOU

TXT

ALO

UTB

5V VCC

GN

D

GN

D

GN

DVX

TAL

VXTA

L

VXTA

L

VXTA

L

VXTA

L

1

ENC

OD

E

GN

D

+

GN

DTO

UT

TOU

TB

OPT

ION

AL

ENC

OD

E C

IRC

UIT

SEN

CO

DE

Figure 47. LVDS Mode Evaluation Board Schematic

Page 26: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 26 of 40

IN

OUT OUT1

3.3V

C110µF

C5710µF

3

4 2

1

ADP3338U4

GN

D

GN

D

VDL

VDL

GN

D

VIN

GND

+

+

IN

OUT OUT1

3.3V

C3410µF

C8810µF

3

4 2

1

ADP3338U3

GN

D

GN

D

DR

VDD

DR

VDD

GN

D

VIN

GND

+

+

IN

OUT OUT1

3.3V

C610µF

C8710µF

3

4 2

1

ADP3338U15

GN

D

GN

D

VCC

VCC

GN

D

VIN

GND

+

+

IN

OUT OUT1

5V

C410µF

C8910µF

3

4 2

1

ADP3338U14

GN

D

GN

D

5V5V

GN

D

VIN

GND

+

+

PJ-102A

C3310µF

1

3

2

P4

GN

DG

ND

VIN

+

1

3

2

0508

9-05

1

POWER OPTIONS

Figure 48. LVDS Mode Evaluation Board Schematic (Continued)

0508

9-05

2

+ C6410µF

C750.1µF

VCC

GND

+ C6510µF

C470.1µF

C230.1µF

C220.1µF

C210.1µF

C200.1µF

DRVDD

GND

EXTREF

GND

+

C460.1µF

C610.1µF

C600.1µF

C500.1µF

C480.1µF

C270.1µF

C280.1µF

C300.1µF

C320.1µF

C350.1µF

C430.1µF

C90XX

VCC

GND

C18XX

C19XX

C29XX

C38XX

C37XX

C31XX

C15XX

C16XX

C17XX

C14XX

C11XX

C10XX

C69XX

C70XX

C45XX

C49XX

C59XX

DRVDD

GND

+ C5610µF

C850.1µF

C530.1µF

C520.1µF

C580.1µF

5V

GND

C71XX

C72XX

C73XX

C62XX

5V

GND

C5510µF

P19GND

Figure 49. LVDS Mode Evaluation Board Schematic (Continued)

Page 27: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 27 of 40

P1

P3

P5

P7

P9

P11

P13

P15

P17

P19

P21

P23

P25

P27

P29

P31

P33

P35

P37

P39

P2

P4

P6

P8P10

P12

P14

P16

P18

P20

P22

P24

P26

P28

P30

P32

P34

P36

P38

P40

P1

P3

P5

P7

P9

P11

P13

P15

P17

P19

P21

P23

P25

P27

P29

P31

P33

P35

P37

P39

P2

P4

P6

P8

P10

P12

P14

P16

P18

P20

P22

P24

P26

P28

P30

P32

P34

P36

P38

P40

P3C40MS

GND

PWR

74VCX86

+

RSO16ISO220

R8

R7

R6

R5

R4

R3

R1

R2

RSO16ISO220

8

7

6

5

4

3

1

2

16

15

14

13

12

11

10

9

RZ4

8

7

6

5

4

3

1

2

16

15

14

13

12

11

10

9

RZ5

7

14

11

8

6

3

U10

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

P6C40MS

D13O

D11O

D9O

D7O

D6O

D5O

D2O

D1O

D0O

D3O

D4O

D8O

D10O

D12O

ORO

D11_C/D7_YN

D10_C/D5_YN

D9_C/D3_YN

D8_C/D1_YN

D7_CN

DRBN

D6_CN

D5_CN

D0_CN D0_TN

D1_TN

D2_TN

D3_TN

D4_TN

D5_TN

D6_TN

DRN

D7_T/D0_YND8_T/D2_YN

D9_T/D4_YN

D10_T/D6_YND11_T/D8_YN

D12_T/D10_YND13_T/D12_YN

DRO

D0O

D1O

D3O

D4O

D5O

D6O

D2O

DOR_C/D13_YN DOR_T/DOR_YN

D13_C/D11_YND12_C/D9_YN

D1_CN

D2_CN

D3_CN

D4_CN

GND

GND

GND GND

GND

GND

GND GND

GND

GND

D7O

D8O

D9O

D10O

D11O

D12O

D13O

ORO

E34

E43E32

VDL

GND

GND5VCC6VCC5GND4

ENDD4YD3YD2YD1YENCC4YC3YC2YC1Y

GND3VCC4VCC3GND2

B4YB3YB2YB1YENBA4YA3YA2YA1YENA

GND1VCC2VCC1GND

D4BD4AD3BD3AD2BD2AD1BD1AC4BC4AC3BC3AC2BC2AC1BC1AB4BB4AB3BB3AB2BB2AB1BB1AA4BA4AA3BA3AA2BA2AA1BA1A

3334353637383940414243444546474849505152535455565758596061626364

3231302928272625242322212019181716151413121110987654321

U7SN75LVDS386

DOR_C/D13_YN

D13_C/D11_YN

D12_C/D9_YN

D11_C/D7_YN

D10_C/D5_YN

D9_C/D3_YN

D8_C/D1_YN

D3_CN

DOR_T/DOR_YN

D13_T/D12_YN

D12_T/D10_YN

D11_T/D8_YN

D10_T/D6_YN

D9_T/D4_YN

D8_T/D2_YN

D7_T/D0_YND7_CN

DRNDRBN

D6_TND6_CN

D5_CND5_TN

D4_TND4_CND3_TN

D2_TND2_CND1_TND1_CND0_TND0_CN

DRP

VDLVDL

GND

GND

GND

VDL

VDL

GNDVDLVDLGND

VDL

VDL

VDLVDLGND

R8

R7

R6

R5

R4

R3

R1

R2

4Y

3Y

2Y

1Y12459

101213

1A1B2A2B3A3B4A4B

C7610µF

C970.1µF

C820.1µF

C800.1µF

810.1µF

VDL

GND

GND

00

R53XORN

GND

00

R52

GND

VDL

DRO

0508

9-05

3

Figure 50. LVDS Mode Evaluation Board Schematic (Continued)

Page 28: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 28 of 40

0508

9-05

7

Figure 51. LVDS Mode Evaluation Board Layout, Primary Side

0508

9-05

8

Figure 52. LVDS Mode Evaluation Board Layout, Secondary Side

0508

9-05

9

Figure 53. LVDS Mode Evaluation Board Layout, Ground Plane 1

0508

9-06

0

Figure 54. LVDS Mode Evaluation Board Layout, Ground Plane 2

0508

9-06

1

Figure 55. LVDS Mode Evaluation Board Layout, Power Plane 1

0508

9-06

2

Figure 56. LVDS Mode Evaluation Board Layout, Power Plane 2

Page 29: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 29 of 40

0508

9-06

3

Figure 57. LVDS Mode Evaluation Board Layout, Primary Silkscreen

0508

9-06

4

Figure 58. LVDS Mode Evaluation Board Layout, Secondary Silkscreen

Page 30: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 30 of 40

LVDS MODE EVALUATION BOARD BILL OF MATERIALS (BOM) Table 11. Item Qty. REFDES Description Manufacturer MFG_PART_NO

1 1 AD9444PCB PCB, AD9444 LVDS Engineering Evaluation Board PCSM AD9444LVDSCUSTREVC

2 16 C1, C4, C6, C33, C34, C39, C44, C55 to C57, C64, C65, C76, C87 to C89

Capacitors, Tantalum, SMT BCAPTAJC, 10 µF, 16 V, 10% KEMET T491C106K016AS

3 38 C2, C3, C5, C9, C12, C20 to C24, C26 to C28, C30, C32, C35, C40, C42, C43, C46 to C48, C50, C52, C53, C58, C60, C61, C75, C80 to C82, C85, C86, C91 to C93, C97

Capacitors, 0.1 µF 10 V Ceramic X5R 0402 Panasonic ECJ-0EB1A104K

4 1 C51 Capacitor, Ceramic 10 µF 6.3 V X5R 0805 KEMET C0805C106K9PACTU

5 1 CR2 Diode, Dual Schottky HSMS2812, SOT-23, 30 V, 20 mA Panasonic MA716-(TX) 6 17 E1 to E3, E24,

to E27, E32, E34, E38, E39, E40, E41, E43, E46, E47, E52

40-Pin Breakable Header 3M 2340-611TN

7 2 J1, J4 Connector, Gold, Male, Coaxial, SMA, Vertical Johnston Comp. 142-0701-201

8 1 L1 10 nH Inductor Coilcraft 0603CJ-10NXGBU 9 1 P3 Header, 40-Pin, Male, 40-Pin Right Angle Samtec TSW-120-08-T-D-RA

10 1 P4 Power Jack Swithcraft RAPC722 11 1 R3 Resistor, 3.6 kΩ 1/16 W 1% 0402 SMD Panasonic ERJ-2GEJ362X

12 2 R4, R6 Resistor, 36 Ω 1/16 W 5% 0402 SMD Panasonic ERJ-2GEJ360X 13 1 R8 Resistor, 49.9 Ω 1/16 W 1% 0402 SMD Panasonic ERJ-2RKF49R9X

14 4 R9, R12, R14, R15

Resistor, 1.00 kΩ 1/16 W 1% 0402 SMD Panasonic ERJ-2RKF1001X

15 2 R28, R35 Resistor, 33 Ω 1/16 W 5% 0402 SMD Panasonic ERJ-2GEJ330X

16 3 R39, R52, R53

Resistor, 0 Ω 1/16 W 5% 0402 SMD Panasonic ERJ-2GE0R00X

17 2 RZ4, RZ5 22 Ω Resistor Array, 16 Term CTS Corp. 742163220JTR 18 2 T3, T5 Transformer, ADT1-1WT, CD542, ADT1-1WT Mini-Circuits ADT1-1WT

19 1 U1 14-Bit, 80 MSPS ADC ADI AD9444BSVZ-80 20 3 U3, U4, U15 3.3 V Voltage Regulator ADI ADP3338-3.3 V

21 1 U14 5 V Voltage Regulator ADI ADP3338-5.0 V 22 1 U6 Clock Oscillator, 80 MHz CTS Reeves MX045-80

23 1 U7 LVDS-to-CMOS Translator with 100 Term Texas Instruments SN75LVDT386DGG 24 1 U10 2 Input XOR Gate Fairchild 74VCX86M

25 4 U6 Pin Sockets, Closed End AMP 5-330808-3

Page 31: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 31 of 40

Item Qty. REFDES Description Manufacturer MFG_PART_NO

26 24 C10, C11, C13, to C19, C29, C31, C36 to C38, C45, C49, C59, C62, C69, C70 to C73, C901

Capacitors, Select 10 V Ceramic X5R 0402 Panasonic

27 1 J51 Connector, Gold, Male, Coaxial, SMA, Vertical Johnston Comp. 142-0701-201

28 2 P5, P61 Power Connectors Weiland 29 1 R1, R2, R5,

R7, R131 Resistors, Select 1/16 W 1% 0402 SMD Panasonic

30 1 R17 to R20, R27, R36 to R38, R401

Resistors, Select 1/16 W 1% 0402 SMD Panasonic

31 5 U21 XO Select Vectron

1 Parts not placed.

Page 32: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 32 of 40

CMOS EVALUATION BOARD SCHEMATICS

C400.1µF

100Ω

OPTIONAL

15 20 23

9796

86

12 21 2216

95

24 25

2627

34929394

28293031

4039

19

4142

35

38

9091

87

189

64 63

4344

7273

767778798081 45

46

4950

51525556575859606566686970716

88

8485

48

53616774

82

47

546275

83

3233

100

893637

101

98

7 141310

9911 172 3 4 5 81

VCC

GN

DR

12

1kΩ

R9

1kΩ

R21

VCC

GN

DR3

3.8kΩ

CO

UTB

CO

UT

E24

EXTR

EF

D7T

/D0Y

D8C

/D1Y

D8T

/D2Y

D9C

/D3Y

D9T

/D4Y

D10

C/D

5YN

D10

T/D

6YN

GN

DC

39

10µF

GN

D

DORT/DORY

E41

E25

E27

E26

VCC

E38

E40

H4MTHOLE6

E39

GND

GN

D

C30.1µF

C90.1µF

R1

3.8kΩ

GN

D

ENCBENC

DRVDD

DR

VDD

DR

VDD

DRVDD

GND

GN

D

GN

D

GN

D

GN

D

GND

DORC/D13Y

D13T/D12YND13C/D11YND12T/D10YND12C/D9YND11T/D8YND11C/D7YN

VCC

VCC

VCC

VCC

VCC

VCCVCC

5V

5V

5V

VCC

VCCVCC

VCC

VCC

VCC

VCC

VCC

GN

D

GNDGND

GN

D

GN

D

GN

D

C13

20pF

33ΩR35

R2833Ω

R13

xx

C910.1µF

GN

D

E20

EXTR

EF

GN

D

VCC

GN

D

GNDGND

EPAD

AD

9444

U1

PIN

DEF

INIT

ION

SLV

DS/

CM

OS

R4

36Ω

H3MTHOLE6

H1MTHOLE6

H2MTHOLE6

VCC

VCC

VCCVCCVCCVCCVCC

GND

GND

1kΩ

GN

DR

15

1kΩ

E1E2E3

GN

D

VCC

C12

0.1µ

F

C5

0.1µ

F

J4 GN

D

R5 xx

GN

D

T5A

DT1

-1W

T1 5 3

6 2 4N

C TIN

B

GN

D

AN

ALO

G

L110

NH

E15

R6

36Ω

R2

3.8kΩ

C5110µF

C780.1µF

C20.1µF

GN

DGND

0508

9-05

4

DR

VDD

CT

EXTE

RN

AL

REF

EREN

CE

INPU

T

AD

T1-1

WT

PRI

SEC

NC

ENC

ENC

B

R39XX

GN

D

GN

DJ5

50ΩR7

C260.1µF

C360.1µF

XTA

LIN

PUT

12

356

T3

13

2

CR2

C42

0.1µ

F

GN

D

50ΩR8

XTA

LIN

PUTB

GN

D

4

GN

DJ1

OU

TVC

C

VEE

~OU

T

OU

TPU

TO

UTP

UTB

VCC

GN

DN

CE/

D

JN00

158

+

FOR

VEC

TRO

N X

TAL

FOR

VF

XTA

L

GN

D

XTA

LIN

PUTB

XTA

LIN

PUT

E52

C92

0.1µ

FC

4410

µFE4

7

R38

XX

R27XX

R37XX

R20XX

R17 XX

R19

XX

R18 XX

456

321

U2

814 7

U6

ECLO

SC

R36XX

R40

XX

C93

0.1µ

F

E46

VXTA

L

GN

D

GN

D

GN

D

XTA

LOU

TB

XTA

LOU

T

XTA

LOU

TXT

ALO

UTB

5V VCC

GN

D

GN

D

GN

DVX

TAL

VXTA

L

VXTA

L

VXTA

L

VXTA

L

1

DR

VDD

DR

GN

D D6

D5

D4

D3

D2

D1

DR

GN

DD

0 (L

SB)

DN

CD

CO

+D

CO

–D

RVD

DD

RG

ND

DN

CD

NC

DN

CD

NC

DN

CD

NC

DR

VDD

DR

GN

DD

NC

DN

C

AVDD1AVDD1

AVDD2AVDD2AVDD2AVDD2

AGNDC1

AVDD1AVDD1

CLK+CLK–

AVDD1

AVDD2AVDD2

AVDD1AVDD1

DNCDNCDNCDNC

DRVDDDRGND

DNCDNC

AVD

D1

DN

CD

NC

DN

CO

UTP

UT

MO

DE

DFS

LVD

SBIA

SA

VDD

1A

VDD

1SE

NSE

VREF

AG

ND

REF

TR

EFB

AG

ND

AVD

D1

AVD

D1

AVD

D1

AVD

D2

AG

ND

VIN

+VI

N–

AG

ND

AVD

D1

AVD

D1

C96

0.1µ

F

5432

678

P5

GND

VDLGND

DRVDDGND

VCC

5V

GND

1

+

GN

DTO

UT

TOU

TB

PRI

SEC

OPT

ION

AL

ENC

OD

E C

IRC

UIT

SEN

CO

DE

GN

D

DCS MODEAGNDAVDD1AGNDAGNDAVDD1AVDD1AVDD1AVDD1AVDD1AVDD1AVDD1AGNDDRVDDAGNDOR(MSB) D13DRVDDDRGNDD12D11D10D9D8D7

Figure 59. CMOS Mode Evaluation Board Schematic

Page 33: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 33 of 40

IN

OUT OUT1

3.3V

C110µF

C5710µF

3

4 2

1

ADP3338U8

GN

D

GN

D

VDL

VDL

GN

D

VIN

GND

+

+

IN

OUT OUT1

3.3V

C3410µF

C8810µF

3

4 2

1

ADP3338U3

GN

D

GN

D

DR

VDD

DR

VDD

GN

D

VIN

GND

+

+

IN

OUT OUT1

3.3V

C610µF

C8710µF

3

4 2

1

ADP3338U15

GN

D

GN

D

VCC

VCC

GN

D

VIN

GND

+

+

IN

OUT OUT1

5V

C410µF

C8910µF

3

4 2

1

ADP3338U14

GN

D

GN

D

5V5V

GN

D

VIN

GND

+

+

PJ-102A

C3310µF

1

3

2

P4

GN

DG

ND

VIN

+

1

3

2

0508

9-05

5

Figure 60. CMOS Mode Evaluation Board Schematic (Continued)

Page 34: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 34 of 40

P1

P3

P5

P7

P9

P11

P13

P15

P17

P19

P21

P23

P25

P27

P29

P31

P33

P35

P37

P39

P2

P4

P6

P8

P10

P12

P14

P16

P18

P20

P22

P24

P26

P28

P30

P32

P34

P36

P38

P40

P3C40MS

GND

PWR

U474VCX86

+

RSO16ISO220

R8

R7

R6

R5

R4

R3

R1

R2

8

7

6

5

4

3

1

2

16

15

14

13

12

11

10

9

RZ4

8

7

6

5

4

3

1

2

16

15

14

13

12

11

10

9

RZ5

7

14

11

8

6

3

U10

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

D13M

D11M

D9M

D7M

D6M

D5M

D2M

D1M

D0M

D3M

D4M

D8M

D10M

D12M

ORM

DRM

D0M

D1M

D3M

D4M

D5M

D6M

D2M

GND GND

GND

GND

D7M

D8M

D9M

D10M

D11M

D12M

D13M

ORM

E30

E32E31

VDL

GND

U5SN74LVCH16373A

R8

R7

R6

R5

R4

R3

R1

R2

4Y

3Y

2Y

1Y12459

101213

1A1B2A2B3A3B4A4B

C6610µF

C250.1µF

C410.1µF

C240.1µF

VDL

GND

GND

00

R16XORZIN

GATE2

00

R42

GND

VDL

DRM

0508

9-05

6

RSO16ISO220

R8

R7

R6

R5

R4

R3

R1

R2

RSO16ISO

8

7

6

5

4

3

1

2

16

15

14

13

12

11

10

9

RZ4

8

7

6

5

4

3

1

2

16

15

14

13

12

11

10

9

RZ1

R8

R7

R6

R5

R4

R3

R1

R2

220RZ2

D7T/D0Y

D8C/D1Y

D8T/D2Y

D9C/D3Y

D9T/D4Y

D10C/D5Y

D10T/D6Y

D11C/D7Y

D11T/D8Y

D12C/D9Y

D12T/D10Y

D13C/D11Y

D13T/D12Y

DORC/D13Y

DORT/DORY

XOR2IN

4746

4443

4140

38373635

3332

3029

2726

45

39

34

28

48

25

42

31

23

56

89

11121314

1617

1920

2223

4

10

15

21

7

18

1

24

1D11D2

1D31D4

1D51D6

1D71D8

1Q11Q2

1Q31Q4

1Q51Q6

1Q71Q8

2D12D2

2D32D4

2D52D6

2D72D8

2Q12Q2

2Q32Q4

2Q52Q6

2Q72Q8

GND

LE1

LE2

VCC

OE1

OE2

VCC

VCC

VCC

GND

GND

GND GND

GND

GNDGND

Q = OUTPUTD = INPUT

GND

VDL

GND

GND

GND

XOR2IN

VDL

GND

GND

VDL

GND

GND

VDL

GND

GND

RSO16ISO220RZ5

00

R14DRM

00R41

GATE

C680.1µF

C670.1µF

630.01µF

E45

E49E42

VDL

GND

00

R50

NOT PLACED

COUTB

COUT

Figure 61. CMOS Mode Evaluation Board Schematic (Continued)

Page 35: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 35 of 40

0508

9-06

5

Figure 62. CMOS Mode Evaluation Board Layout, Primary Side 05

089-

066

Figure 63. CMOS Mode Evaluation Board Layout, Secondary Side

0508

9-06

7

Figure 64. CMOS Mode Evaluation Board Layout, Ground Plane 1

0508

9-06

8

Figure 65. CMOS Mode Evaluation Board Layout, Ground Plane 2

0508

9-06

9

Figure 66. CMOS Mode Evaluation Board Layout, Power Plane 1

0508

9-07

0

Figure 67. CMOS Mode Evaluation Board Layout, Power Plane 2

Page 36: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 36 of 40

0508

9-07

1

Figure 68. CMOS Mode Evaluation Board Layout, Primary Silkscreen

0508

9-07

2

Figure 69. CMOS Mode Evaluation Board Layout, Secondary Silkscreen

Page 37: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 37 of 40

CMOS MODE EVALUATION BOARD BILL OF MATERIALS (BOM) Table 12. Item Qty. REFDES Description Manufacturer MFG_PART_NO

1 1 AD9444PCB PCB, AD9444 LVDS Evaluation Board PCSM AD9444LVDSCUSTREVC

2 16 C1, C4, C6, C33, C34, C39, C44, C55 to C57, C64 to C66, C87 to C89

Capacitors, Tantalum, SMT BCAPTAJC, 10 µF, 16 V, 10% KEMET T491C106K016AS

3 32 C2, C3, C5, C9, C12, C20 to C23, C26 to C28, C30, C32, C35, C40, C42, C43, C46 to C48, C50, C52, C53, C58, C60, C61, C75, C78, C85, C91, C92

Capacitors, 0.1 µF 10 V Ceramic X5R 0402 Panasonic ECJ-0EB1A104K

4 5 C24, C25, C41, C67, C68

Capacitors, 0.1 µF 16 V Ceramic X7R 0603 Panasonic ECJ-1VB1C104K

5 1 C51 Capacitor, Ceramic 10 µF 6.3 V X5R 0805 KEMET C0805C106K9PACTU 6 1 CR2 Diode, Dual Schottky HSMS2812, SOT-23, 30 V, 20 mA Panasonic MA716-(TX)

7 20 E1 to E3, E24 to E27, E30 to E32, E38 to E42, E45 to E47, E49, E52

40-Pin Breakable Header 3M 2340-611TN

8 2 J1, J4 Connector, Gold, Male, Coaxial, SMA, Vertical Johnston Comp. 142-0701-201 9 1 L1 10 nH O402 Inductor Coilcraft 0402CS-10NX_B_

10 1 P3 Header, 40-Pin, Male, 40-Pin Right Angle Samtec TSW-120-08-T-D-RA 11 1 P4 Power Jack Swithcraft RAPC722

12 1 R3 Resistor, 3.6 kΩ 1/16 W 1% 0402 SMD Panasonic ERJ-2GEJ362X 13 2 R4, R6 Resistors, 36 Ω 1/16 W 5% 0402 SMD Panasonic ERJ-2GEJ360X

14 1 R8 Resistor, 49.9 Ω 1/16 W 1% 0402 SMD Panasonic ERJ-2RKF49R9X 15 4 R9, R12, R15, R21 Resistors, 1.00 kΩ 1/16 W 1% 0402 SMD Panasonic ERJ-2RKF1001X

16 2 R14, R50 Resistors, 0 Ω 1/10 W 5% 0603 SMD Panasonic ERJ-3GEY0R00V 17 2 R28, R35 Resistors, 33 Ω 1/16 W 5% 0402 SMD Panasonic ERJ-2GEJ330X

18 1 R39 Resistor, 0 Ω 1/16 W 5% 0402 SMD Panasonic ERJ-2GE0R00X 19 4 RZ1 to RZ3, RZ6 220 Ω Resistor Array, 16 Term CTS Corp. 742163221JTR

20 2 T3, T5 Transformer, ADT1-1WT, CD542, ADT1-1WT Mini-Circuits ADT1-1WT 21 1 U1 14-Bit, 80 MSPS ADC ADI AD9444BSVZ-80

22 4 U3, U8, U15 3.3 V Voltage Regulator ADI ADP3338-3.3 V 23 1 U14 5 V Voltage Regulator ADI ADP3338-5.0 V

24 1 U5 16-Bit Flip Flop Fairchild 74LVTH162374 25 4 U6 Pin Sockets, Closed End AMP 5-330808-3

Page 38: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 38 of 40

Item Qty. REFDES Description Manufacturer MFG_PART_NO

26 26 C10, C11, C13, C14 to C19, C29, C31, C36 to C37, C38, C45, C49, C59, C62,C69, C70 to C73, C90, C93, C961

Capacitors, Select 10 V Ceramic X5R 0402 Panasonic

27 1 J51 Connector, Gold, Male, Coaxial, SMA, Vertical Johnston Comp. 142-0701-201 28 15 R1,R2,R5,R7, R13,

R17 to R20, R27, R36 to R401

Resistors, Select 1/16 W 1% 0402 SMD Panasonic

29 3 R16, R41, R421 Resistors, Select 1/16 W 5% 0603 SMD Panasonic

30 1 C631 Capacitor, Select 10 V Ceramic X5R 0603 Panasonic 31 1 U41 XOR 74VCX86D Fairchild 74VCX86D

32 2 P5, P61 Power Connectors Weiland

1 Parts not placed.

Page 39: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 39 of 40

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-026AED-HDNOTES1. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED.2. THE PACKAGE HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNAL TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE

SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS.3. THE EXPOSED HEAT SINK SOLDERED TO THE GROUND PLANE IS REQUIRED FOR THE 100-LEAD TQFP/EP.

1

2526 50

7610075

51

14.00 SQ16.00 SQ

0.270.220.17

0.50 BSC

1.051.000.95

0.150.05

0.750.600.45

SEATINGPLANE

1.20MAX

1

252650

76 10075

51

6.50NOM7°

3.5°0°

COPLANARITY0.08

0.200.09

TOP VIEW(PINS DOWN)

BOTTOM VIEW(PINS UP)

CONDUCTIVEHEAT SINK

Figure 70. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP] (SV-100-1)

Dimensions shown in millimeters

ORDERING GUIDE Model Temperature Range Package Description Package Outline AD9444BSVZ-801 –40°C to +85°C 100-Lead TQFP_EP SV-100-1 AD9444-CMOS/PCB CMOS Mode Evaluation Board AD9444-LVDS/PCB LVDS Mode Evaluation Board

1 Z = Pb-free part.

Page 40: AD9444 14-Bit, 80 MSPS, A/D Converter Data Sheet (Rev. 0) · DCS MODE DFS OUTPUT MODE T/H BUFFER 14 PIPELINE ADC 2 28 2 OR D13–D0 REF SENSE REFT REFB Figure 1. p tional fe aures

AD9444

Rev. 0 | Page 40 of 40

NOTES

© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05089–0–10/04(0)