active targets: from maya to actar tpc

57
aabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/20 Active Targets: From Maya to ACTAR TPC Riccardo Raabe Instituut voor Kern- en Stralingsfysica K.U.Leuven 6 th DITANET Topical Workshop on Particle Detection Techniques Principle Maya ACTAR TPC Design Tests MM Electronics

Upload: rea

Post on 25-Feb-2016

34 views

Category:

Documents


1 download

DESCRIPTION

Principle. Maya. ACTAR TPC Design. Tests MM. Electronics. Active Targets: From Maya to ACTAR TPC. Riccardo Raabe Instituut voor Kern- en Stralingsfysica K.U.Leuven. 6 th DITANET Topical Workshop on Particle Detection Techniques. Principle. Maya. ACTAR TPC Design. Tests MM. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Active Targets:From Maya to ACTAR TPC

Riccardo RaabeInstituut voor Kern- en Stralingsfysica

K.U.Leuven

6th DITANET Topical Workshopon Particle Detection Techniques

Principle Maya ACTAR TPC Design Tests MM Electronics

Page 2: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Outline

The active target

Motivation and principlePresent devicesConfigurations: physics cases, dynamic ranges

Requirements for the new instruments

Goals and designTests with bulk micromegasElectronics

Principle Maya ACTAR TPC Design Tests MM Electronics

Page 3: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Motivation: reactions with the most exotic beams

Opportunities at the present and future RIBs facilities:SPIRAL2, FAIR, HIE-ISOLDE, RIKEN, FRIB, ISAC2...Use direct and resonant reactions as spectroscopic toolto study the evolution of nuclear structure far from stability

Principle Maya ACTAR TPC Design Tests MM Electronics

Page 4: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Instruments

“Usually” (RIBs):Target is a foilSolid-state detection arrays

Good resolutiononly if gamma-ray detectionlow luminosity

Most exotic (weakest) beams?

Maximizetarget thickness detection efficiency

Principle Maya ACTAR TPC Design Tests MM Electronics

Page 5: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

The active target concept

Time-Projection Chamber (TPC)…

Electrons produced by ionizationdrift to an amplification zoneSignals collected on a segmented“pad” plane 2d-image of the track3rd dimension from the drift timeof the electrons

…+ the detection gas is the target

Large target thicknessand still good resolutionGood efficiency,low detection threshold

Principle Maya ACTAR TPC Design Tests MM Electronics

Page 6: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

pBeam from FRS

Present devices: IKAR and CENBG TPC

IKAR NPA 712 (2002) 247

Hydrogen gas, 10 barMultiple ionization chambersHigh energy beamElastic scattering of halo nuclei

CENBG TPC NIMB 266 (2008) 4606

Mixture 90% Ar + 10% CH4, ≈1 bar

Amplification: GEMPad plane: micro-groove detector(orthogonal strips)2p-emission decay studies

Principle Maya ACTAR TPC Design Tests MM Electronics

Page 7: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Present devices: MayaMaya NIMA 573 (2007) 145

Various gases: C4H10, D2, 4He+2%CF4, from 30 mbar to 1 bar

Amplification: wires and inductionPad plane: hexagonsAdditional detectors for particlesescaping the gas volume

MayaPrinciple ACTAR TPC Design Tests MM Electronics

Page 8: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Maya results: identification of 7H

8He(12C,13N)7H → 3H+4n15.4 MeV/nucleon (SPIRAL)13N (10 MeV) stoppedin 1.3 mg/cm2 carbon

active target

Identification of channel:kinematic reconstruction3H in CsI detectors13N in gas volumeidentification (separate from 12C…)[“easy” because it is the highest Z]

M. Caamaño et al., PRL 99 (2007) 062502

MayaPrinciple ACTAR TPC Design Tests MM Electronics

Page 9: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Maya results: 11Li(p,t)9Li transfer reactionI. Tanihata et al., PRL 101 (2008) 192502

9Li tritons

C4H10 150 mbar (1.7 mg/cm2)

Both particles identified

MayaPrinciple ACTAR TPC Design Tests MM Electronics

Page 10: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Maya results: 11Li(p,t)9Li transfer reactionI. Tanihata et al., PRL 101 (2008) 192502

C4H10 150 mbar (1.7 mg/cm2)

Both particles identified

MayaPrinciple ACTAR TPC Design Tests MM Electronics

Page 11: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Maya results: 11Li(p,t)9Li transfer reactionI. Tanihata et al., PRL 101 (2008) 192502

C4H10 150 mbar (1.7 mg/cm2)

Both particles identifiedMeasure angles kinematic reconstruction

MayaPrinciple ACTAR TPC Design Tests MM Electronics

Page 12: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Maya results: mass of 11LiT. Roger et al., PRC 79 (2009) 031603(R)

C4H10 350 mbar9Li stopped in the detector, 3H in Si at 0 degreesMeasure path length

MayaPrinciple ACTAR TPC Design Tests MM Electronics

Page 13: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Maya results: mass of 11LiT. Roger et al., PRC 79 (2009) 031603(R)

C4H10 350 mbar9Li stopped in the detector, 3H in Si at 0 degreesMeasure path length

MayaPrinciple ACTAR TPC Design Tests MM Electronics

Page 14: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Maya results: Giant Monopole Resonance in 56Ni

Diamond

56Ni50 MeV/u d

Deuterium 1 barShield on beam path!Measure energy and angleof scattered d (at least 10 pads)

C. Monrozeau et al., PRL 100 (2008) 042501

MayaPrinciple ACTAR TPC Design Tests MM Electronics

Page 15: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Requirements with the new physics cases

Various physics cases require different configurations “adaptable” instrument Different facilities: transportableRobust(reproducibleresults, “stable” operation)

ACTAR TPC DesignMayaPrinciple Tests MM Electronics

Page 16: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Requirements with the new physics cases

Detect particles with(very) different charges:dynamic range 103

Increase spatial efficiencydetect multiple tracksImprove (keep) energy andposition resolutionImprove acceptable beam intensityand counting ratesIncrease gain

Work upon…Detector hardwareElectronicsData acquisition software

ACTAR TPC DesignMayaPrinciple Tests MM Electronics

Page 17: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

ConfigurationsACTAR TPC AIP Conf. Proc. 1165 (2009) 339

Cubic geometry (mainly)Amplification: Micromegas, GEMAncillary detectorsIndependent pads, 2x2 mm2

AT-TPC, TACTICCylindrical geometryMagnetic field to confine particles

≈250 mm

E

ACTAR TPC DesignMayaPrinciple Tests MM Electronics

Page 18: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Advantages

Micro-Pattern Gaseous DetectorsUniformity, robustnessEnergy resolution?Flexibilityvary amplification gapcombine MM and GEMs…

Independent padsVary voltage on different areasMultiple tracks

Resonant reactionsInteraction pointRecoil E and angle

Beam

Recoil protonResonance

region

ACTAR TPC DesignMayaPrinciple Tests MM Electronics

Page 19: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Advantages

Micro-Pattern Gaseous DetectorsUniformity, robustnessEnergy resolution?Flexibilityvary amplification gapcombine MM and GEMs…

Independent padsVary voltage on different areasMultiple tracks

Inelastic scatteringInteraction pointBeam countingDifferent configurations

Beam

ACTAR TPC DesignMayaPrinciple Tests MM Electronics

Page 20: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Advantages

Micro-Pattern Gaseous DetectorsUniformity, robustnessEnergy resolution?Flexibilityvary amplification gapcombine MM and GEMs…

Independent padsVary voltage on different areasMultiple tracks

Transfer reactionsInteraction pointRecoil light particleenergy and angle

Beam

Solid-state telescopes

Light recoils

ACTAR TPC DesignMayaPrinciple Tests MM Electronics

Page 21: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Prototype tests (bulk micromegas)

Angular resolutionHe+CF4 (2%)

Tests MM ACTAR TPC DesignMayaPrinciple Electronics

Page 22: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Prototype tests (bulk micromegas)

Angular resolutionHe+CF4 (2%)

Resolution <1.3° FWHM

Tests MM ACTAR TPC DesignMayaPrinciple Electronics

Page 23: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Prototype tests (bulk micromegas)

Angular resolutionHe+CF4 (2%)

Resolution < 1.3° FWHMAcceptable for very short tracks too

Tests MM ACTAR TPC DesignMayaPrinciple Electronics

Page 24: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Prototype tests (bulk micromegas)

Energy resolutionα particles in Ar+CF4(2%) 1100 mbar

Tests MM ACTAR TPC DesignMayaPrinciple Electronics

Page 25: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Prototype tests (bulk micromegas)

Energy resolutionα particles in Ar+CF4(2%) 1100 mbar

Path length: > 0.8 mm

Tests MM ACTAR TPC DesignMayaPrinciple Electronics

Page 26: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Prototype tests (bulk micromegas)

Energy resolutionα particles in Ar+CF4(2%) 1100 mbar

Path length: > 80 keV FWHMCharge: > 80 keV

Tests MM ACTAR TPC DesignMayaPrinciple Electronics

Page 27: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

General Electronics for TPCs – GET

High front-end density

High-rate throughput(selective readout,zero suppression)

High S/N ratio

High dynamic range

Manage time stamp,other detectors, control...

Intelligent triggerL0 externalL1 multiplicityL2 topology

ElectronicsTests MM ACTAR TPC DesignMayaPrinciple

Page 28: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

GET: The AGET chipBased on the AFTER asicAmplification, detection and storagex64: CSA, shaper, discriminator, memory(sampling from 1 MHz to 100 MHz)Highly configurable

ElectronicsTests MM ACTAR TPC DesignMayaPrinciple

Page 29: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Dynamic range

PossibilitiesElectronics (better preamps)Software (different gains on pads)Hardware: mask the beam

TACTIC

ElectronicsTests MM ACTAR TPC DesignMayaPrinciple

Page 30: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Summary

Active targets are very promising instrumentsfor research with exotic beams

Large target thickness with no loss in resolutionLow thresholdsVersatile, different configurations possible

Many parameters to considergas, pressure, electric field, drift velocity, dynamic rangeThe new generation: ACTAR TPC

Improvements in dynamic range, track multiplicity, event rate…Configuration, amplification technologyElectronics and softwareTests and simulation work

ElectronicsTests MM ACTAR TPC DesignMayaPrinciple

Page 31: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

ElectronicsTests MM ACTAR TPC DesignMayaPrinciple

Page 32: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Page 33: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Page 34: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Page 35: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Configurations (physics cases)

Beam

Recoil protonResonance

region

Resonant reactionsEnergy of the beam to reachthe resonance of interestPressure adjusted to stop the beamat the end of the gas volumeDetection of light recoilsscattered forward

Exotic nuclei DetectionActive targets

Resolution of interaction pointDynamic range

Measure: interaction pointidentification recoilE, angle recoil particle

Page 36: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Beam

Configurations (physics cases)

Elastic and inelastic scattering

High pressure for target thicknessand stopping of light recoil particles

Beam leaves the detection volume

Measure E and angle of light recoils

If projectile heavydynamic range has to be large

Exotic nuclei DetectionActive targets

Energy (position) resolutionLow thresholds, dynamic range

Page 37: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Configurations (physics cases)Transfer reactions

(p,d), (d,p), (4He,t), (3He,d), (p,t)…Beam leaves the detection volumeLight recoil at all angles and energies!Pressure adjusted for the productsof interestIdentification light recoilMeasure E, angle of light recoil

(d,p): low energy protonsat backward anglesPopulation of unstable systems:multiple tracks

Beam

Solid-state telescopes

Light recoils

Exotic nuclei DetectionActive targets

Page 38: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Measurements with exotic nuclei

Fragmented and post-accelerated RIBs reaction methods now available on exotic nuclei

Elastic and inelastic scatteringResonant reactionsDirect reactions

Close to driplines:Exotic decayswith ion emission

Charged-particle detection methods are central

Exotic nuclei Active targets Detection

Page 39: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Requirements on detection methods

Low-intensity beams efficiency is keyIdentification of channel particle IDResolution

Reactions: inverse kinematicsHeavy beam on a light target

beam beam-likemagneticspectrometer

light recoilcharge-particle array

Reconstruct kinematics from E and θ of emitted particles(two quantities are sufficient to identify the channnel)

Exotic nuclei Active targets Detection

Page 40: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Reactions: kinematicsExample: transfer reactions

“Universal” kinematic curves placement of detector depends on channel to be detected (Q-value)Kinematic compression resolution, low thresholds

Exotic nuclei Active targets Detection

Page 41: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Configurations

Resolution in E*Light beam:better detect beam-likeparticle (limit on angularresolution)

Heavier beam:better detect light recoil(limit on E resolutionfrom straggling in thetarget)

In general:much worse thandirect kinematics

Exotic nuclei Active targets Detection

Page 42: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

T-REX

Instruments

Charged particle arrays:solid-state telescopes (Si, Si+CsI...)resolution vs. costHow to improve resolution-ray: very good resolutionbut low efficiency, no g.s.-to-g.s.

Exotic nuclei Active targets Detection

Page 43: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Present and future devicesACTAR AIP Conf. Proc. 1165 (2009) 339

Cubic geometry (mainly)Amplification: MicromegasE and T from pads (≈16000 channels)Larger dynamic range(Electronics, pad independence)Multiple tracks

AT-TPC, TACTICCylindrical geometryMagnetic field to confine particles

≈250 mm

Exotic nuclei DetectionActive targets

Page 44: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Detector parameters

Gas and pressure mostlydictated by physics

Electric field: optimize forAmplificationDrift velocityof electrons

Drift velocity:spatial resolution is

δx = vdrift δt

vdrift ≈ 5 to 100 μm/ns δt ≈ 200 to 10 ns

NIM 159 (1979) 213

Exotic nuclei DetectionActive targets

Page 45: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Dynamic range

External detectors are expensive contain particles in gas volumeHigher pressure stronger signal from light ions

butLimit imposedby Eloss of beam particle

3 orders of magnitude difference!

PossibilitiesElectronics (better preamps)Software (different gains on pads)Hardware: mask the beam

Exotic nuclei DetectionActive targets

Page 46: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Measured quantities

EnergyCollected chargePath length (range)

AngleExternal detectorsTrack reconstruction

Exotic nuclei DetectionActive targets

Page 47: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Track reconstruction T. Roger, PhD Thesis

Charge distributiondepends uponamplification technologyand pad shape

Wires GEM

Micromegas

Exotic nuclei Active targets Detection

Page 48: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Simulation of the charge collectionto test reconstruction algorithms

Hyperbolic Secant Squared1. search for maxima along axes2. find centroids3. fit straght line through centroids

Accuracy: 0 to 1 degreesdepending on orientation

Track reconstruction T. Roger, PhD Thesis

Exotic nuclei Active targets Detection

Page 49: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Global Fitting methodFor small charges, not spread(light particles, high energies)

not ok for θ<10 deg

Track reconstruction T. Roger, PhD Thesis

Exotic nuclei Active targets Detection

Page 50: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Energy from collected charge T. Roger, PhD Thesis

IKAR

From pulse analysis:Integral recoil energy TR (EFWHM 90 KeV)

Risetime recoil angle R (FWHM 0.6°)

Time difference anode-cathode vertex point ZV (zFWHM 110 m)

Exotic nuclei Active targets Detection

Page 51: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Energy from range: end point T. Roger, PhD Thesis

Charge profileBragg peak:threshold effects

Threshold at 5% Threshold at 10%

xend = (xlast + xlast–1)/2 + Δ(slope)

Charge fitaccuracy ≈1.5 mm

Exotic nuclei Active targets Detection

Page 52: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Energy from range: reaction vertex T. Roger, PhD Thesis

Large uncertaintiesfor short tracksand small anglesUse charge profile instead

Exotic nuclei Active targets Detection

Page 53: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Particle identification

Energy vs. range Curves and tables (ex. SRIM)Need accurate rangeand a good calibration of padsto extract the dE/dx information

Exotic nuclei Active targets Detection

Page 54: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Calibrations

EnergyInduction: charge in wires with pulserAlignment of pad gainsCalibrated (alpha) source

TimeCalibrate electronics, or“Physics” calibrationusing a known reaction

Exotic nuclei Active targets Detection

Page 55: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Summary

Active targets are very promising instrumentsfor research with exotic beams

Large target thickness with no loss in resolutionLow thresholdsVersatile, different configurations possible

Many parameters to considergas, pressure, electric field, drift velocity, dynamic rangeMeasurements

Track reconstruction: check algorithms against simulationEnergy: from collected charge or from range(→ track reconstruction, energy loss tables)Particle ID from Eloss: limited by spatial resolution and dE/dx on pads

Exotic nuclei Active targets Detection

Page 56: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

ExercisesPressure to stop a beam (resonant)Which energy of beam in case of proton detection(resonant elastic)Which spatial resolution necessary to separate twokinds of particles.Given a kinematic plot, calculate acceptance and E resolutionfor various values of the pressure

Page 57: Active Targets: From Maya to  ACTAR TPC

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Belgium Sevilla – 7 & 8/11/2011

Outline

Exploring exotic nucleiRequirementsTechniques

The active targetPrinciplePresent devicesConfigurations: physics cases, dynamic ranges

Particle detection and identificationAlgorithms for track reconstructionEnergy: charge and rangesParticle identificationCalibrations

Exotic nuclei Active targets Detection