active galaxies and related objects. what are active galactic nuclei (agn)? galaxies with a source...

30
Active Galaxies and Related Objects

Upload: ophelia-jade-davis

Post on 17-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Active Galaxies and Related Objects

Page 2: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

What are Active Galactic Nuclei (AGN)? Galaxies with a source of non-stellar emission arising in the

nucleus (excessive UV, IR, radio and X-ray light)

Central Black Hole accreting material from host galaxy (Lynden-Bell 1969)

Quasars – luminous (MB<-23) objects with broad emission lines, distant, many are strong radio sourcesSeyferts – fainter (MB>-23), most identified locally, spiral hosts

Sey 1s – broad emission lines (e.g. H balmer)Sey 2s – narrow emission lines

Starbursts – Extreme starformation & blackhole accretion in the nucleusRadio Galaxies – display excess radio emission and jetsULIRGS – ultra-luminous IR galaxies

Page 3: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Quasars – first detected in 1960s as radio sources with star-like optical counterparts

•MB < -23, strong nonthermal continuum, broad permitted (~104 km/s) and narrow forbidden (~102-3 km/s) emission lines

• Gravitational force required to prevent rapidly moving clouds that produce these broad emission lines from escaping the nucleus ~ 108 – 109 Msun

It was later realized that most quasars were not particularly bright in radio emission - Radio quiet (RQQ)Radio loud (RLQ) - 5-10% of all quasars• RL = log(Lradio/Lopt)• Radio components for RLQs are 1-2 orders of magnitude brighter than radio galaxies (coming up next....)

Page 4: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Quasar host galaxies•difficult to detect due to brightness of AGN•appear to be a mixed bag of galaxy types - from disturbed galaxies to normal E’s and early type spirals.

Page 5: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

QSO spectra reveal some spectral features not associated with the quasar.

These narrow absorption lines are caused by intervening galaxy halos between us and the QSO.

Quasar Spectra: Lyman Alpha Forest

Redshifts of the material will be equal to or less than the QSO.

Occurs as Lyman alpha absorption since this is the lowest excitation level for Hydrogen gas found in these galaxy halos.

Can be used to measure extent of galaxy halos and map out large scale structure.

Page 6: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

SDSS BALQSOs from Trump et al. 2006

Occurs when quasar is viewed along the l.o.s. of intervening, fast-moving material, possibly ejected from the quasar

Quasar Spectra: Broad Absorption Lines (BALs)

BALs shown in red

Page 7: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Seyfert galaxies were first identified by Carl Seyfert in 1943.

He defined this class based on observational characteristics:

Almost all the luminosity comes from a small (unresolved) region at the center of the galaxy – the galactic nucleus.

Nuclei have MB > -23 (arbitrary dividing line between quasars/seyferts)

NGC 4151

Page 8: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Seyfert galaxy spectra fall into two classes•broad & narrow emission line spectra (like quasars – Seyfert type 1)•narrow emission line only spectra (Seyfert type 2)

Seyfert 1s:Broad and narrow lines(BLAGNs)

Seyfert 2s:Only narrow lines(NLAGNs)

Page 9: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

2

Seyfert 1

Broad Line Region• from reverberation mapping• size is few light-days to months across • gas densities > 109 /cm3

• stratified (higher-ionization lines from clouds closer to nucleus)• outer edge defined by dust sublimation radius (1500K)

Obscuring TorusDusty structure that blocks view of inner region

Narrow Line Region • 1017-1019 m (10s to 100s of pc)• lower gas density ~103/cm3 • part of the host galaxy ISM near galaxy center

Central Black HoleRs = 3x1011 m or 2 AU for 108 Msun

Accretion diskUV/visible light from region 1012 - 1013m (X-rays come from a hot corona that surrounds the disk)

Jets – ionized gas from accretion disk spirals along magnetic field lines away from the disk

Structure of AGNs and Unified Theory

Page 10: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Structure of AGNs and Unified Theory

Observer is looking into the center of the accretion disk, viewing motions of gas near blackhole - sees broad emission lines

Seyfert 2

Quasar/Seyfert 1

Observer is looking at blackhole “edge-on” through the surrounding dusty torus - does not see broad emission lines produced by gas near BH

/BL Lac

Page 11: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Seyfert 2 galaxies (Narrow-Line AGN) •can be differentiated from normal emission line galaxies through the flux ratios of certain emission lines. •shape of the underlying ionizing source determines how many photons are available to produce particular emission lines.

Kewley et al (2006) – red line shows extreme starburst, dashed line separates most AGN from star-forming galaxies

Page 12: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Variability occurs at most wavelengths - X-rays through radioFluctuations originate from a region no more than a ~few light weeks across

• QSOs and Seyfert nuclei have long been recognized as variable• Optical flux changes occur on timescales of months to years• Cause of variability? – instabilities in accretion disk, SN or starbursts, microlensing…..

Variability in AGN

Quasar light curve ~25 yearsSeyfert light curve over ~11 months

Hawkins 2002

Page 13: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Variability in AGN• QSOs and Seyfert nuclei have long been recognized as variable

• 90% to 100% of AGN selected through other means (spectroscopic, color selection, UV excess) are variable when observed over several years (e.g. Schmidt et al. 2010).

• Optical/IR flux changes occur on timescales of months to years• Well modeled by DRW with characteristic timescale and max amplitude at

long timescales (MacLeod et al. 2010)

• Variability likely due to accretion disk instabilities (e.g. Li & Cao 2008)

• Variability amplitude is correlated with several AGN parameters (e.g. Lbol, λ, Mbh)

Fainter AGN have a higher amplitude of variability

(Trevese+ 1994)

(Wilhite et al. 2008)

Page 14: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Blazars

•Strongly variable, highly polarized nonthermal continua, weak/absent emission lines•Variability faster and higher amplitude than normal quasars and Seyferts

•BL Lac - high polarization, emission lines have low equivalent width•OVVs (Optically Violent Variables) - lower polarization, emission line EW decreases as continuum brightens

Spectrum Light Curve

Page 15: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Radio Galaxies•Emit primarily at radio wavelengths (>108 Lsun) (MW emits ~2500 Lsun in radio)•Radio emission is highly polarized synchrotron radiation•Emission lines from many ionization states•Nucleus may not dominate galaxy’s optical emission •Host galaxies are generally Elliptical/S0Radio morphology first classified by Fanaroff & Riley (1974)

•FR I: less luminous, 2-sided jets brightest closest to core and dominate over radio lobes•FR II: more luminous, edge-brightened radio lobes dominate over 1-sided jet (due to Doppler boosting of approaching jet and deboosting of receding jet)

Spectroscopic classification of radio galaxies•NLRGs (Narrow line …): like Seyfert 2s; FR I or II•BLRGs (Broad line …): like Seyfert 1s; FR II only

Page 16: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

FR I - 3C 47 FR II - 3C 449

Page 17: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive
Page 18: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Jet and Core in M87 at optical/radio wavelengths.

The jet is a series of distinct “blobs”, optically thin and brightest at low radio frequencies – L ~ ν-α where 0.7 < α < 1.2ejected by the galaxy nucleus, moving at up to half the speed of lightCore is just ~few pc across, optically thick and brightest at higher frequencies – α = 0

~2 kpc

Page 19: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Superluminal Motion of Jets

For object moving distance r below:x = r cos , y = r sin and t = r/v object m

oving at v

Light from P takes x/c less time to reach us than light emitted from O.

Time the observer sees for object to travel from O to P is tapp = t - x/c tapp = (r/v) - (r/c) cos tapp = (r/v) (1 - cos )

Apparent velocity across sky vapp = y/tapp

vapp = (v sin )/(1 - cos )

radi

o je

t in

3C

273

For v << c, is close to 0 and vapp = v sinFor v close to c, vapp can be >> v and even greater than c.

Page 20: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

(U)LIRG’s - (Ultra) Luminous IR Galaxies•First detected in IRAS all-sky survey (infrared – 12 to 100 microns)•Galaxies that emit most of their light in IR - LIR > 1012 Lsun (1011 Lsun for LIRGS)•Few in local universe; most beyond z > 1•Most luminous are undergoing mergers•IR light is likely a combination of dust reprocessed AGN emission and starbursts (Gas streams converge from different directions causing shocks which compress material and trigger star formation)•Some AGN may manifest as ULIRGs during different stages of evolution.

Nicmos Near-IR Image of IRAS selected ULIRG

Page 21: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Powering Active Galactic Nuclei

(1) A compact central source – blackhole - produces intense gravitational field. MBH = 106 - 109 Msun

(2) Infalling gas forms an accretion disk around the black hole.

(3) As the gas spirals inward, friction heats it to extremely high temperatures; emission from the accretion disk at different radii (T > 104 K) accounts for optical thru soft X-ray continuum.

(4) Some of the gas is driven out into jets focused by magnetic fields.

Page 22: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Consuming 1 – 10 solar masses per year, black hole accretion disk can radiate ~100 – 1000 LMilkyWay.

Some fraction of the infalling mass is converted into energy (the rest goes into building BH mass). Matter is heated to high temps by dissipation in accretion disk and radiates away its gravitational potential energy.

BH radius is Rs=2GM/c2 = 0.25 M8 light hours. What energy is available (via gravitational potential energy) for a mass m falling from far away to the Rs via “direct drop”?

How efficient is AGN energy production?

Emax = GMm/Rs

Substituting equation for Rs

Emax = (1/2)mc2 (~up to half the rest energy)

Energy generation rate (Luminosity) depends on rate of mass infallLmax = (1/2)(dm/dt)c2

Infalling matter must spiral in for most energy to escape…The efficiency of this conversion is typically ~10% (η=0.1) for AGN L = η(dm/dt)c2

Page 23: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

The Eddington Limit – the maximum L for a given black hole mass (any higher and radiation pressure will blow away surrounding, accreting gas)

Force caused by outward flow of photons balances gravitational force of infalling matter (assuming pure ionized H gas)

σeL / (4πr2c) = GMbhmp / r2

LE = 4πcGMbhmp/σe = 3.3x1012L(Mbh/108M)

If L is greater than LE, ionized gas will be accelerated outward and accretion will cease. This leads to a maximum accretion rate for black holes:

ME = LE / ηc2 = 2M/yr (Mbh/108M) (0.1/η)

The Eddington ratio is then m = M / ME or L / LE

.

...

So...can you just shovel in mass at higher and higher rates to create a superluminous AGN?

Page 24: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

The Milky Way’s BlackholeAll galaxies may contain SMBHs at their centers, with their appearance as AGN dependent on the availability of fuel in the vicinity of BH. The Milky Way galaxy is an example of a “starved” SMBH – low Eddington ratio

Radio image (80 pc across) shows feature SgrA and radio filaments

Radio image (10 pc across) shows feature known as SgrA* - thought to be position of SMBH

Investigation of IR stellar motions in central parsec can be used to estimate BH mass

Page 25: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

•Measure proper motions of stars in GC•Adaptive optics at Keck improved ground-based resolution to 0.5” in IR (stellar positions measured to 0.002”)•90 stars identified and proper motions (largest at 1400 km/s!) centered about SgrA* to within 0.1”•Velocities consistent with Keplarian motion (all mass at center)•M = 2.6 +/- 0.2 x 106 Msun

Page 26: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

•Chandra X-ray image of Sgr A* showing nucleus and several thousand other X-ray sources.

•During 2-week observation period, several X-ray flares occurred.

•Rapidity of flares indicates they originate near the Schwarzchild radius of the BH.

•Even during the flares, X-ray emission from the nucleus is relatively weak. Suggests that Sgr A* is a starved black hole, possibly because explosive events in the past have cleared much of the gas from around it.

The Milky Way’s Blackhole – X-ray Emission

Page 27: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Blackhole Mass - Bulge Mass Relation

•clear relationship between mass of spheriodal component of host galaxy and blackhole mass•indicates connection between galaxy formation (star formation) and growth/evolution of central blackhole

(Gebhardt et al. 2000; Ferrarese & Merritt 2000)

Page 28: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

•As small galaxies merge to form larger ones, blackholes may form at the nucleus (ULIRG stage?)

•With plenty of fuel available early on (triggered by merger?), the galaxy light is dominated by emission of the blackhole (Quasar). Feedback from AGN radiation may squelch star formation in the host galaxy (feedback) – setting spheriodal component size

Active Galaxies as part of Galaxy Evolution

•Additional mergers and depletion of fuel may result in powerful radio galaxies and Seyfert galaxies.

•Further fuel depletion results in a normal galaxy with a dormant blackhole at the nucleus.

Page 29: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

(Hopkins et al 2008)

AGN phase triggered as a result of galaxy mergers

Active Galaxies as part of Galaxy Evolution

Page 30: Active Galaxies and Related Objects. What are Active Galactic Nuclei (AGN)?  Galaxies with a source of non-stellar emission arising in the nucleus (excessive

Active Galaxies as part of Galaxy Evolution

Blue Cloud

Red Sequence

Hopkins et al. (2006)