actions of medicinal plants 1 original by eric yarnell...

73
Actions of Medicinal Plants 1 Original by Eric Yarnell, ND, RH(AHG) Compendium of Pharmacological Actions of Medicinal Plants and Their Constituents Compiled and copyrighted by Eric Yarnell, ND, RH(AHG) Creative Commons 3 Attribution, Non-Commercial Share Alike license: you may adapt or adjust this as long as Dr. Yarnell as cited as the original course and as long as the resulting content is distributed under the same license as this. For more details see https://creativecommons.org/licenses/by-nc-sa/3.0/us/ Last updated 18 Dec 2015 Alphabetic by Action Herbs marked with an asterisk (*) are ecologically threatened; use with caution if at all. Generally organized within each category by relative potency, where this is known (if no potency categories are listed, then they are unknown). Other organizational structures are stated where used. These lists are not complete. I. Abortifacient (Riddle 1991) See also emmenagogue. A. Hedeoma vulgare B. Mentha pulegium C. Tanacetum vulgare II. Acetylcholinesterase inhibitor A. central 1. Potent a) Various Amaryllidaceae alkaloids (Elgorashi, Stafford and van Staden 2004). (1) galantamine (Galanthus nivalis, Narcissus tazetta, Leucojum aestivum) (2) huperzine A (Huperzia serrata) b) physostigmine (Physostigma venenosum) 2. Mild a) Polygonum aviculare (knotweed) (Bill Mitchell, ND) b) Rosmarinus officinalis c) Salvia miltiorrhiza III. Addiction control agent, anti-addiction A. alcoholism (antidipsotropic) 1. Potent a) Pueraria lobata (kuzu, kudzu) 2. Mild a) hyperforin, Hypericum perforatum (St. John’s wort) b) Salvia miltiorrhiza (Chinese sage) c) all nervines B. narcotics, opioids 1. Panax ginseng (Asian ginseng) 2. Piper methysticum (kava)

Upload: vanliem

Post on 30-Jul-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

Actions of Medicinal Plants 1 Original by Eric Yarnell, ND, RH(AHG) Compendium of Pharmacological Actions of Medicinal Plants and Their Constituents

Compiled and copyrighted by Eric Yarnell, ND, RH(AHG)

Creative Commons 3 Attribution, Non-Commercial Share Alike license: you may adapt or adjust this as long as Dr.

Yarnell as cited as the original course and as long as the resulting content is distributed under the same license as this. For more details see https://creativecommons.org/licenses/by-nc-sa/3.0/us/

Last updated 18 Dec 2015

Alphabetic by Action

Herbs marked with an asterisk (*) are ecologically threatened; use with caution if at all. Generally organized within each category by relative potency, where this is known (if no potency categories are

listed, then they are unknown). Other organizational structures are stated where used. These lists are not complete. I. Abortifacient (Riddle 1991)

See also emmenagogue. A. Hedeoma vulgare B. Mentha pulegium C. Tanacetum vulgare

II. Acetylcholinesterase inhibitor

A. central 1. Potent

a) Various Amaryllidaceae alkaloids (Elgorashi, Stafford and van Staden 2004). (1) galantamine (Galanthus nivalis, Narcissus tazetta, Leucojum aestivum) (2) huperzine A (Huperzia serrata)

b) physostigmine (Physostigma venenosum) 2. Mild

a) Polygonum aviculare (knotweed) (Bill Mitchell, ND) b) Rosmarinus officinalis c) Salvia miltiorrhiza

III. Addiction control agent, anti-addiction

A. alcoholism (antidipsotropic) 1. Potent

a) Pueraria lobata (kuzu, kudzu) 2. Mild

a) hyperforin, Hypericum perforatum (St. John’s wort) b) Salvia miltiorrhiza (Chinese sage) c) all nervines

B. narcotics, opioids 1. Panax ginseng (Asian ginseng) 2. Piper methysticum (kava)

Actions of Medicinal Plants 2 Original by Eric Yarnell, ND, RH(AHG) 3. Withania somniferum (ashwagandha)

C. nicotine 1. Avena sativa (oats) 2. Lobelia inflata (lobelia) 3. Piper longum (long pepper)

IV. Adenosine receptor antagonist

A. caffeine V. Adenylate cyclase activator

A. forskolin (Plectranthus barbatus) VI. Aldose reductase inhibitor

A. baicalin (Scutellaria baicalensis) (Zhou & Zhang 1989) B. chlorogenic acid (Varma 1986) C. coumarins

1. esculetin, esculin (Varma 1986) D. ellagic acid (Terashima, et al. 1991)

1. found in Caesalpinia ferrea--see herb monograph E. flavonoids (Chaudhry, et al. 1983; Varma 1986; Varma & Kinoshita 1976)

1. quercetin, myricitrin, those methoxylated at C6 or C8 (Tomás-Barberán, et al. 1986) 2. quercetin, quercitrin, dihydroquercetin, isoquercetin, isoquerceitryl-2-malonate, quercitryl-2-acetatechrysin, apigenin, apiin, naringin, morin, rutin, hyperoside, hesperidin, herperidin chalcone (Varma 1986) 3. nepetrin and other flavonoids from Rosmarinus officinalis and Sideritis spp (Shimizu, et al. 1984) 4. Those from Polygonum hydropiper active in vitro (Haraguchi, et al. 1996).

F. isoliquiritigenin and whole extract (Glycyrrhiza glabra) (Zhou & Zhang 1989) G. isoquercitrin (Camellia sinensis)

VII. 5-Alpha-Hydroxylase inhibitor

A. fatty acids (Serenoa repens) VIII. 5-Alpha-Reductase inhibitor

A. epicatechin-3-gallate and epigallocatechin-3-gallate (Camellia sinensis) B. Epilobium parvifolium C. fatty acids (Serenoa repens) D. isoflavones E. lycopene (downregulates gene) F. Prunus africanum (pygeum) G.

IX. 5-Alpha-Reductase stimulator

A. glycyrrhizin (Glycyrrhiza glabra)

Actions of Medicinal Plants 3 Original by Eric Yarnell, ND, RH(AHG) X. Alteratives (in order by particular organ affinities): see also tonic

A. Circulatory 1. Crataegus spp 2. Ginkgo biloba leaf

B. Gall bladder 1. Fumaria officinalis

C. Endocrine, general 1. Iris versicolor 2. Phytolacca americana 3. Podophyllum peltatum, water extracts (not resin)

D. Hepatic and gastrointestinal 1. Alnus serrulata (tag alder) 2. Arctium lappa 3. Chionanthus virginicus 4. Gonolobus condurango 5. Iris versicolor 6. Mahonia aquifolium 7. Rumex crispus 8. Scrophularia spp 9. Taraxacum officinale radix

E. Immune/systemic 1. Echinacea spp.

F. Kidney 1. Parietaria judaica

G. Lymphatic 1. Calendula officinalis 2. Galium aparine (also urinary tract) 3. Trifolium repens 4. Viola odorata

H. Nervous system 1. Avena sativa 2. Stachys betonica 3. Stillingia sylvatica

I. Rheumatologic/musculoskeletal 1. Guaiacum spp 2. Jeffersonia diphylla 3. Kalmia latifolia (mountain laurel) 4. Sassafras spp 5. Smilax spp 6. Stillingia sylvatica

J. Thyroid 1. Fucus vesiculosus

K. Urinary tract 1. Equisetum arvense

Actions of Medicinal Plants 4 Original by Eric Yarnell, ND, RH(AHG) 2. Galium aparine 3. Urtica dioica

XI. Analeptic, central nervous system stimulant

A. direct 1. caffeine 2. cocaine (Erythroxylum coca) 3. strychnine 4. theobromine 5. theophylline

B. over circulatory reflex

1. camphor 2. lobeline (Lobelia inflata)

XII. Analgesic

A. See also anticholinergics B. central acting

1. Potent a) Aconitum carmichaelii (Sichuan aconite) b) Aconitum napellus (monk’s hood) c) Bryonia cretica (bryony) d) codeine (Papaver somniferum) e) Corydalis yanhusuo (yanhusuo) f) Gelsemium sempervirens (gelsemium) g) morphine (Papaver somniferum) h) opium (Papaver somniferum) i) Pulsatilla vulgaris (pasque flower)

2. Moderate a) Cannabis sativa (marijuana) b) Dicentra formosa (Pacific bleeding heart) c) Piper methysticum (kava) d) salicylates e) Valeriana sitchensis, Valeriana officinalis (valerian)

3. Mild a) Angelica sinensis (danggui) b) Angelica pubescens (danggui) c) Convolvulus fatmensis (Atta and El-Sooud 2004) d) Conyza dioscaridis (Atta and El-Sooud 2004) e) Eschscholzia californica (California poppy) f) Lactuca virosa (wild lettuce) g) Passiflora incarnata (passionflower) h) Plantago major seeds (Atta and El-Sooud 2004) i) Scutellaria lateriflora (skullcap)

Actions of Medicinal Plants 5 Original by Eric Yarnell, ND, RH(AHG) j) usnic acid, diffractaic acid (Phyllanthus corcovadensis)

C. local acting/topic anesthetic 1. Potent

a) Capsicum spp (cayenne), capsaicin b) Conium maculatum (hemlock)—EXTREMELY DANGEROUS, never use internally

2. Moderate a) Atropa belladonna b) Echinacea angustifolia (for throat) c) Spilanthes acmella (paracress) (for throat)

XIII. Angiogenesis inhibitor

Relative potency not clear. A. Allium sativum B. Convolvulus arvensis (bindweed) C. genistein (Glycine max) D. Humulus lupulus, xanthohumol E. Hypericum perforatum, hyperforin F. phytoestrogens (Fotsis, et al. 1998) G. Magnolia liliflora H. Rubus spp, gallic acid I. Salvia miltiorrhiza (Chinese sage) (Kang, et al. 2003) J. Typha spp (cattail) K. Zingiber officinale, [6]-gingerol

XIV. Androgenic

A. chyrsin (Matricaria recutita, Passiflora incarnata) XV. Angiotensin-converting enzyme inhibitor, ACE inhibitor

A. All mild. B. see also diuretic below C. Allium sativum (garlic) D. Lespedeza capitata E. lithospermic acid (Salvia miltiorrhiza) F. Melissa officinalis (Kwon, et al. 2006) G. proanthocyanidins (Crataegus laevigata, Vitis vinifera, Cupressus sempervirens) (Meunier, et al. 1987) H. Rosmarinus officinalis (Kwon, et al. 2006) I. secoiridoid glycosides eg oleuropein, ligstroside, excelcioside, oleoside 11-methyl ester, oleoside (Olea europaea and Olea lancea folium) J. triterpenoids (Ganoderma lucidum) (Morigawa, et al. 1986)

Anodyne: see analgesic XVI. Anthelmintic, anti-amebic, antiparasitic, anti-protozoal

A. By plant or constituent

Actions of Medicinal Plants 6 Original by Eric Yarnell, ND, RH(AHG) 1. Potent

a) ascaridol b) aspidine c) Azadiractha indica (neem) (Jabbar, et al. 2006) d) Cinchona spp (Peruvian bark)—quinine, quinidine, cinchonine, cinchonidine e) Dryopteris filix-mas (male fern) radix (filicin) f) emetine (Cephaelis ipecacuanha) g) Mallotus philippinensis (kalama) (Jabbar, et al. 2006) h) Staphysagria i) Tanacetum vulgaris (tansy)

2. Mild-to-moderate a) Allium sativum (garlic) bulbus (allicin) b) Areca catechu c) Artemisia annua (sweet Annie) herba (artemisinin = qinghaosu) d) Artemisia maritima herba (santonin) e) berberine-containing herbs f) Citrullus colocynthis (colocynth) (Jabbar, et al. 2006) g) Cucurbita pepo (pumpkin) seed h) Cucurbita moschata seed i) lapachol (Tabebuia avellanadae) j) Melia spp k) papain l) Prunus mume (wu mei) m) Punica granatum (pomegranate) n) Quisqualis indica (shi jun zi)

3. Uncertain potency a) Cocculus indicus b) flavaspidinic acid c) Withania somnifera (ashwagandha) (Jabbar, et al. 2006)

B. By parasite

1. Ascaris lumbricoides (roundworm) a) berberine-containing herbs b) Chenopodium ambrosioides (epazote) c) Prunus mume (wu mei) d) Quassia spp e) santonin from Artemisia paucifolia f) Spigelia marylandica g) Turpentine

2. Echinococcus spp a) Mallotus philippinensis (kamala) (Gangwar, et al. 2013)

2. Entamoeba histolytica a) berberine (Mahonia, Berberis, Hydrastis, Coptis, Xanthorrhiza) b) emetine (Cephaelis ipecacuanha)

Actions of Medicinal Plants 7 Original by Eric Yarnell, ND, RH(AHG) c) quinine (Cinchona spp) d) tetrandrine and other alkaloids (Stephania tetrandra)

3. Giardia lamblia a) Allium sativum b) Alpinia galanga c) berberine d) emetine (Cephaelis ipecacuanha) e) epicatechin f) Piper spp g) propolis h) Zingiber zerumbet

4. Hookworms a) Chenopodium ambrosioides oil b) Monarda c) thymol from Thymus vulgaris

5. Leishmania spp (kala azar) (de Carvalho & Ferreira 2001) a) Acanthus illicifolius--India b) Ampelocera edentula--South America c) Anacardium occidentale (cashew) cortex--Brazil d) Annona spinescens--South America? e) Anthostema senegalense--Guinea-Bissau f) Asparagus africanus--Kenya g) berberine (Ghosh, et al. 1985--see berberine file) h) Dictyoloma peruviana--Bolivia i) Dracaena spp (soap tree)--West Africa j) Echinacea purpurea k) Faramea guianensis--Guyana l) Galipea longiflora--South America m) Glycyrrhiza glabra (flavonoid chalcones) n) Guatteria foliosa--South America o) Hedera helix p) Holorrhena curtisii q) Kalanchoe pinnata r) Khaya senegalensis--Guinea-Bissau s) Nycanthes arbor-tristis t) Oxandra espintana u) Pera benensis--Bolivia v) Periandra mediterranea--saponins w) Peschiera van heurkii--Bolivia x) Picrorrhiza kurroa y) Piper aduncum z) Polyalthia macropoda--Malaysia aa) Rollinia emarginata--South America bb) Saracha punctate

Actions of Medicinal Plants 8 Original by Eric Yarnell, ND, RH(AHG) cc) Swertia chirata dd) Vernonia amygdalina--Ethiopia ee) Vernonia brachycalyx--East Africa

6. Naegleria fowleri (Fowler's amoeba) a) artemisinin from Artemisia annua (Cooke, Lallinger & Durack 1987)

7. Plasmodium spp (malaria) (Vasanth, Gopal & Rao 1990) a) Ailanthus altissima b) alkaloids (Stephania tetrandra) c) artemisinin (Artemisia annua) d) Azadiractha indica e) Cochlospermum tinctorium f) echitamine (Alstonia constricta) g) Enicostemma litorrale h) Eucalyptus robusta i) eurycomalactone (Eurycoma longifolia) j) febrifugine (Dichroa febrifuga; chang shan) k) Glycyrrhiza glabra--see disease monograph l) gossypol (Thespepsia populnea) m) Harrisonia perforate n) helenalin (Arnica spp) o) isoquinoline alkaloids eg berberine (Isawa, et al. 1998) p) japonicine (Hypericum japonicum) q) lapachol (Stereospermum suaveolens, Tabebuia spp, etc.) r) Phyllanthus amara--see herb monograph s) Polyalthia nemoralis t) Polygonum multiflorum--see disease monograph u) quassinoids (Brucea javanica, Castela spp, Perriera madagascariensis, Picrasma spp, Picrolemma pseudocoffea, Quassia spp, Simaba cedron, Simaruba glauca, Soulamena tomentosa) v) quinine, quinidine, cinchonine, cinchonidine (Cinchona spp) w) taccalonolides (Tacca plantaginea) x) vinblastine (Catharanthus roseus)

8. Tenia spp (tapeworms) a) Aspidium b) Curcurbita pepo seed c) Punica granatum

9. Trichomonas vaginalis a) Aesculus hippocastanum b) Calendula officinalis c) Echinacea spp d) Eucalyptus comaldensis e) Juniperus communis f) Mentha crispa g) Myrtus communis h) propolis

Actions of Medicinal Plants 9 Original by Eric Yarnell, ND, RH(AHG) i) Zataria multiflora

XVII. Anti-adhesion

A. berberine B. proanthocyanidins (Vaccinium spp)

XVIII. Antiallergenic, anti-allergic, anti-histamine (see also mast cell stabilizer)

A. Potent 1. Ephedra sinica–ephedrine, pseudoephedrine

B. Moderate 1. Glycyrrhiza glabra, G. uralensis

C. Mild 1. Ambrosia spp (ragweed) folium 2. Euphrasia stricta 3. Euphorbia hirta = Chamaesyce hirta 4. Luffa 5. Solidago canadensis (goldenrod) 6. Urtica dioica (nettle) leaf

XIX. Anti-androgenic

A. glycyrrhizin (Glycyrrhiza glabra) B. Serenoa repens (saw palmetto)—mild

XX. Anti-anginal

A. See also spasmolytics. B. Moderate

1. Ammi visnaga (khella) 2. Lobelia inflata

C. Mild 1. Allium sativum (garlic) 2. Crataegus laevigata (hawthorn) 3. Salvia miltiorrhiza (dan shen)

XXI. Anti-arrhythmic, antidysrhythmic

A. Not all these herbs are useful or indicated for every type of arrhythmia. B. Potent

1. ajmaline (Rauvolfia serpentina) 2. atropine (Atropa belladonna) 3. Convallaria majalis (lily-of-the-valley) 4. Digitalis purpurea (foxglove) 5. papaverine 6. quinidine, quinine (Cinchona spp) 7. sparteine (Cytisus scoparius)

C. Moderate

Actions of Medicinal Plants 10 Original by Eric Yarnell, ND, RH(AHG) 1. Hylocereus undatus 2. Selenicereus grandiflora

D. Mild 1. Angelica archangelica 2. Angelica sinensis 3. Apocynum spp 4. Crataegus laevigata 5. proanthocyanidins and flavonoids (Crataegus laevigata) 6. tetrandrine and other alkaloids (Stephania tetrandra)

XXII. Antibacterial, antiseptic, antimicrobial

A. see also antimycobacterial below B. see also antibiotic resistance reversal agents C. Moderate to Potent

1. alkaloids, multiple (Abbasoglu, et al. 1991) 2. allicin (Allium sativum) 3. berberine-containing herbs (Hydrastis, Berberis, Mahonia, Coptis, Xanthorrhiza) 4. essential oils (Lis-Balchin, et al. 1997)

a) Juniperus spp (juniper) b) Lavandula spp (lavender) c) Rosmarinus officinalis (rosemary) d) Salvia apiana (white sage) e) Salvia officinalis (sage) f) Santalum spp (sandalwood) g) Thymus vulgaris (thyme)

5. benzethonium chloride (semisynthetic agent in grapefruit seed extract) (Ionescu, et al. 1990) 6. Tanacetum vulgare herba (Izzo, et al. 1995)

D. Mild 1. Allium cepa bulbus (Izzo, et al. 1995) 2. Aloe vera 3. Arctostaphylos pringeli (manzanita) 4. Arctostaphylos uva-ursi (uva-ursi) 5. Cichorium intybum root (Izzo, et al. 1995) 6. coumestrol (Brassica oleracea var. gemmifera, Glycine max, Medicago sativa, Pisum sativum, Phaseolus lunatus, P. vulgaris, Taraxacum officinale, Trifolium pratense, etc.) 7. flavonoids

a) myricetin, datiscetin, kaempferol, quercetin (anti-vancomycin-resistant Enterococcus and methicillin-resistant Staphylococcus aureus) (Xu & Lee 2001)

8. genistein (prunetol, sophoricol, genisteol) (Pueraria lobata, Baptisia tinctoria, Cytisus scoparius, Glycine max, Glycyrrhiza glabra, Medicago sativa, Pueraria lobata, Trifolium pratense, etc.) 9. lapachol (Tabebuia avellanadae) 10. Marrubium vulgare herba (Izzo, et al. 1995) 11. Origanum vulgare herba (Izzo, et al. 1995) 12. Sambucus nigra flos (Izzo, et al. 1995)

Actions of Medicinal Plants 11 Original by Eric Yarnell, ND, RH(AHG) 13. Silybum marianum herba (Izzo, et al. 1995)

E. By microbe

1. Clostridium difficile a) Asarum heterotropoides terpenoids b) 2. Escherichia coli

a) Anthriscus cerefolium herba (Izzo, et al. 1995) b) Fumaria officinalis herba (Izzo, et al. 1995) c) Grossheimia macrocephala herba (Izzo, et al. 1995) d) Hieracium piloselloides herba (Izzo, et al. 1995) e) Malva silvestris folia et flos (Izzo, et al. 1995) f) Tussilago farfara herba (Izzo, et al. 1995)

3. Helicobacter pylori a) Allium sativum (Cellini, et al. 1996) b) Aristolochia paucinervis--see herb monograph c) Camellia sinensis catechins--see herb monograph d) Cinnamomum spp., ethanol extract (Tabak, et al. 1996) e) Coptis chinensis (goldthread) (Zhang, Yang & Yang 1992) f) Corydalis yanhusuo (Zhang, Yang & Yang 1992) g) Magnolia officinalis (Zhang, Yang & Yang 1992) h) Magnolia sieboldii--see herb monograph i) Panax ginseng polysaccharides--see herb monograph j) Panax notoginseng (Zhang, Yang & Yang 1992) k) Pistachia lentiscus (mastic gum) l) Prunus mume (Zhang, Yang & Yang 1992) m) Rheum palmatum (rhubarb) (Zhang, Yang & Yang 1992) n) Terminalia spinosa (Fabry, et al. 1996; Fabry, Okemo & Ansorg 1996) o) Thymus vulgaris, aqueous extract (Tabak, et al. 1996) p) Vaccinium macrocarpon (cranberry)--see herb monograph

XXIII. Antibiotic resistance reversal agents, chemotherapy resistance reversal agents

A. Multidrug resistance protein-1 (MRP-1) inhibitors 1. genistein, other isoflavones (Glycine max)

B. P-glycoprotein inhibitors 1. capsaicin (Capsicum spp) (Nabekura, eta l. 2005) 2. Curcuma longa (Nabekura, eta l. 2005) 3. Feijoa sellowiana pericarpium (Motohashi, et al. 2000) 4. Ficus citrifolia 5. Hypericum perforatum 6. indole-3-carbinol 7. quercetin 8. reserpine (Rauvolfia serpentina) 9. resveratatrol (Nabekura, et al. 2005)

Actions of Medicinal Plants 12 Original by Eric Yarnell, ND, RH(AHG) 10. Rosmarinus officinalis 11. theanine (Camellia sinensis) 12. Zingiber officinale (Nabekura, et al. 2005)

C. Miscellaneous 1. apigenin 2. berberine and flavonoids (Berberis spp) 3. curcumin 4. 3,7-dihydroxyflavone (Liu, et al. 2001) 5. flavone 6. galangin (Liu, et al. 2001) 7. genistein 8. kaempferol 9. verapamil

Anticarcinogenic, anti-cancer, anti-tumor: see antineoplastic and apoptosis modulator XXIV. Anticholinergic

A. Potent (in order from highest to lowest) 1. Atropa belladonna (belladonna) 2. Brugmansia spp (angel trumpet) 3. Datura stramonium (thornapple) 4. Solanum dulcamara (dulcamara, nightshade) 5. Hyoscyamus niger (henbane) 6. Mandragora officinarum (mandrake), other species

B. Moderate 1. Garrya spp (silk tassel)

XXV. Anticoagulant (interfere with clotting cascade)--see also platelet aggregation inhibitors

A. dicoumarol B. heparin C. heparinoids

XXVI. Antidepressant: see thymoleptic XXVII. Anti-diabetic

See also hypoglycemic. Reference throughout, unless otherwise stated, is Bergner 2002-3. A. Insulin Secretagogues

1. Note: Because these herbs may actual worsen the underlying cause, their use is not recommended for insulin-resistant patients. 2. Brickellia californica (prodigiosa)** 3. Capsicum frutescens (cayenne) 4. Gymnema sylvestre (gurmar)—hasn’t shown secretagogue effects clinically

Actions of Medicinal Plants 13 Original by Eric Yarnell, ND, RH(AHG) 5. Ocimum canum (dog basil) (Nyarko, et al. 2002) 6. Panax ginseng (Asian ginseng) radix 7. Syzygium cumini = S. jambolana (jambolan)** 8. Trigonella foenum-graecum (fenugreek) leaf (Devi, et al. 2003) 9. Urtica dioica (stinging nettle) leaf (Farzami, et al. 2003) 10. Theobroma cacao (chococlate) (J Nutr 2003;133(10):3149-52)

** May decrease liver release of glucose.

B. Insulin Sensitizers 1. berberine (Ko, et al. 2005)

a) Another rat study suggested it elevated serum insulin levels, raising the possibility that this constituent is simultaneously an insulin secretagogue (Leng, et al. 2004)

2. Cinnamomum spp (cinnamon) 3. Foeniculum vulgare (fennel) 4. Galega officinalis (goat’s rue), guanidine

a) Presumed insulin sensitizer based on mechanisms of guanidine-derived drugs (eg metformin).

5. Grifola frondosa (maitake) 6. Hibiscus spp (Sachdewa & Khemani 2003) 7. Momordica charantia (bitter melon) 8. Ocimum tenuiflorum (holy basil) 9. Panax ginseng (Asian ginseng) rootlets 10. Panax quinquefolius (American ginseng)

C. Unknown Mechanism

1. Vaccinium spp (blueberry, bilberry) folium 2. Oplopanax horridus (devil’s club) 3. Phaseolus vulgaris (bean) 4. Polygonatum multiflora

D. Other Mechanisms

1. Allium cepa (onion), allyl propyl disulfide a) Mechanism: competes for binding sites on enzymes that degrade insulin in liver

Abdominal obesity (diabetes, hypoglycemic, hypocholesteremic): Eleutherococcus senticosus diabetes (Baranov, 1982) Ocimum sanctum hypoglycemic and hypolipidaemic (Williamson, 2002) Panax quinquefolium hypoglycemic (Assinewe et al., 2003) Rhodiola rosea antihyperglycemic activity (Wagner et al., 1994) Tinospora cordifolia hypoglycemic (Willamson, 2002) Memory enhancing actions of Asiasari radix extracts via activation of insulin receptor and extracellular signal regulated kinase (ERK) I/II in rat hippocampus. Brain Research 974:193-201.

Actions of Medicinal Plants 14 Original by Eric Yarnell, ND, RH(AHG) The effect of nerobol and ecdysterone on insulin-dependent processes linked normally and in insulin resistance. Probl Endokrinol (Mosk) 35(5):77-81. Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: a closer look. J Ethnopharmacol. 2000 Oct;72(3):345-93. Wild ginseng prevents the onset of high-fat diet induced hyperglycemia and obesity in ICR mice. Arch Pharm Res. 2004 Jul;27(7):790-6. A novel insulin-releasing substance, phanoside, from the plant Gynostemma pentaphyllum. J Biol Chem 2004;279(40):41361-7. Use of natural plant exudates (Sanguis Draxonis) for sustained oral insulin delivery with dramatic reduction of glycemic effects in diabetic rats. J Control Release 2004;97(3):467-75. Dynamical influence of Cordyceps sinensis on the activity of hepatic insulinase of experimental liver cirrhosis. Hepatobiliary Pancreat Dis Int 2004;3(1):99-101. The insulinotropic activity of a Nepalese medicinal plant Biophytum sensitivum: preliminary experimental study. J Ethnopharmacol 2001;78(1):89-93. (Oxalidaceae) Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J Agric Food Chem 2000;48(3):849-52. XXVIII. Anti-diarrheal

See also astringent.

A. Astringents 1. tannins 2. Uzara spp. 3. Vaccinium myrtillus (bilberry) dried fruit (NOT fresh)

B. Polysaccharides 1. carob (Ceratonia silliquia) 2. mucilage 3. pectin 4. rice

C. Motility slowing agents 1. Papaver somniferum

XXIX. Anti-emetic

A. Potent 1. Aconitum napellus 2. cocaine (Erythoxylon coca)

Actions of Medicinal Plants 15 Original by Eric Yarnell, ND, RH(AHG) 3. scopolamine (Datura spp)

B. Mild-to-Moderate 1. Alpinia galanga 2. Magnolia officinalis (hou po) bark 3. Matricaria recutita (chamomile) 4. Mentha spp (mints) 5. Pimpinella anisum (anise) 6. Zingiber officinalis

XXX. Anti-estrogenic

A. indoles (Brassicaceae vegetables) B. isoflavonoids, isoflavones (Glycine max (soy)

1. daidzein 2. genistein

C. lignans (Linum usitatissimum) D. quercetin

1. ligand interaction with estrogen receptors thus interferes with estradiol binding XXXI. Anti-fibrotic, anticirrhosis

A. bromelain B. Centella asiatica (gotu kola) C. colchicine (Colchicum autumnale) D. Salvia miltiorrhiza (Chinese sage) E. Schisandra chinensis (wu wei zi) F. silymarin (Silybum marianum) G. sho-saiko-to and saiko-keishi-to formulae (Bupleurum falcatum, Scutellaria baicalensis, etc.) H. tetrandrine (Stephania tetrandra)

XXXII. Antifungal

A. by plant 1. fungicidal

a) berberine (Hydrastis canadensis, Berberis spp., etc.) b) biochanin A (pratensol) (Baptisia tinctoria, Medicago sativa, Trifolium pratense, etc.) c) coumestrol (Brassica oleracea var. gemmifera, Glycine max, Medicago sativa, Pisum sativum, Phaseolus lunatus, P. vulgaris, Taraxacum officinale, Trifolium pratense, etc.) d) naphthoquinones (Tabebuia avellenadae, Chilopsis linearis)

2. fungistatic a) biochanin A (pratensol) (Baptisia tinctoria, Medicago sativa, Trifolium pratense, etc.) b) genistein (prunetol, sophoricol, genisteol) (Baptisia tinctoria, Cytisus scoparius, Glycine max, Glycyrrhiza glabra, Medicago sativa, Pueraria lobata, Trifolium pratense, etc.)

3. possibly fungicidal or fungistatic a) Aloe vera b) daidzein (Genista tinctoria, Glycine max, Pueraria lobata, Pueraria psuedohirsuta, Trifolium pratense, etc.)

Actions of Medicinal Plants 16 Original by Eric Yarnell, ND, RH(AHG) c) protoanemonin (Martin, San Roman & Dominguez 1990)

4. Allium sativum (garlic) 5. berberine-containing herbs 6. naphthoquinones from Diospyros 7. Echinacea spp 8. Hyssopus tincture 9. Larrea tridentata (chaparral) (Zamora 1984) 10. Melaleuca alternafolia (tea tree) 11. Origanum spp volatile oil 12. Thuja occidentalis, Thuja plicata 13. Thymus vulgaris oleum

B. By organism

1. Candida albicans a) Terminalia spinosa (Fabry, et al. 1996)

2. Cryptococcus neoformans a) Allium sativum (Davis, Shen & Cai 1990) b) catechin (Levitz, et al. 1995)

XXXIII. Anti-gastritis and anti-ulcer (peptic)

A. Potent 1. atropine (Atropa belladonna) 2. Capsicum frutescens (cayenne) 3. Symphytum officinale (comfrey)

B. Mild-to-Moderate 1. Aloe vera gel 2. azulene (Matricaria recutita) 3. Calendula officinalis 4. Curcuma longa 5. demulcents 6. Glycyrrhiza glabra (licorice) (flavonoids, glycyrrhetinic acid) including DGL 7. Theobroma cacao (chocolate)

XXXIV. Antigonadotropic

A. Actaea racemosa B. Lithospermum officinale C. Rheum raponticum D. Vitex agnus-castus

XXXV. Antigout

A. Potent 1. colchicine (Colchicum autumnale) 2. demecolcine (Colchicum autumnale)

B. Mild

Actions of Medicinal Plants 17 Original by Eric Yarnell, ND, RH(AHG) 1. Apium graveolens (celery) 2. other diuretic herbs

XXXVI. Anti-metastatic

A. Allium spp B. modified citrus pectin C. Playtocodon grandiflorum D. proanthocyanidins E. sulforaphane F. Withania somnifera, withanolides

XXXVII. Anti-migraine

A. Cannabis sativa B. Clematis spp C. hydrogenated secale alkaloids D. Petasites hybridus (butterbur) E. Tanacetum parthenium (feverfew)

XXXVIII. Antimycobacterial (Newton, et al. 2000)

A. Adhatoda vasica B. Allium sativum (allicin) C. Aloe vera (aloe) D. Bidens pilosa E. Cetraria islandica (Iceland moss) F. Ferula communis G. Galipea officinalis (Angustura bitters) H. Geum macrophyllum I. glycyrrizin J. Guaiacum officinale K. Humulus lupulus (hops) L. Inula helenium M. Myroxolon balsamum var pereirae N. Physalis angulata (Pietro, et al. 2000)

XXXIX. Antineoplastic see also apoptosis modulator, antimetastatic

A. artemisinin B. bullatin, bullatacin, other Annonaceous acetogenins

1. inhibit NADH oxidase in plasma membrane of cancerous cells C. benzyl isothiocyanate (broccoli, cabbage) D. betulinic acid E. Cymbopogon citratus (lemongrass) (Vinitketkumnuen, et al. 1996) F. diindolylmethane (DIM)

Actions of Medicinal Plants 18 Original by Eric Yarnell, ND, RH(AHG) 1. Natural metabolite of indole-3-carbinol, inhibits estrogen-dependent breast cancer cells by binding the aryl hydrocarbon receptor (Chen, et al. 1998). 2. Induces apoptosis in cancer cells independent of p53 (Ge, et al. 1996).

G. catechin 1. stimulates deactivation of aflatoxin B1 by glutathione

H. eleutherosides (Eleutherococcus senticosus) I. esculetin (Artemisia capillaris, Citrus limonia, Ceratostigma willmottianum)

1. stimulates apoptosis in leukemia cells (Chu, et al. 2001) J. eugenol

1. stimulates deactivation of aflatoxin B1 by glutathione K. flavonoids (Kuo 1996) L. garam masala (mix of Piper nigrum, cloves, Cinnamomum, mace, nutmeg, bay, cardamom, cumin and Zingiber) (Rao & Hashim 1995) M. indole-3-carbinol (Brassicaceae family vegetables)

1. Ultimately upregulates 2 hydroxylase pathway for estrogen catabolism, thereby decreasing the amount of estrogen that goes through 16alpha hydroxylase pathyway. 16alpha hydroxy metabolites are responsible for the toxic effects of estrogen—the 2 hydroxy metabolites are far less toxic.

N. limonenes (from lemon) 1. inhibits isoprenylation of a certain cellular growth-associated proteins subset

O. morin (Chlorophora tinctoria) P. naringin

1. stimulates deactivation of aflatoxin B1 by glutathione Q. Panax ginseng R. phenethyl isothiocyanate (PETIC) (cabbage, fermented cabbage products, turnips)

1. inhibits lung cancer in rodents by sacrificial metabolism by P450 which inhibits other chemicals from being broken down by it

S. polysaccharides (Echinacea spp.) T. saponins (Konoshima 1996) U. Tabebuia avellanadae V. tangeretin (from tangerines)

1. has IGF-1-like property of improving E cadherin cell binding W. tannins, catechins (Camellia sinensis) X. vanillin

1. stimulat es deactivation of aflatoxin B1 by glutathione Y. Cytostatic

1. colchicine (Colchicum) 2. etoposide 3. podophyllin 4. vinblastine, vincristine (Catharanthus roseus)

Z. Cytotoxic (anti-tumor) 1. ajoene (Allium sativum) 2. Allium ascalonicum (shallots) 3. Allium cepa 4. allicin (Allium sativum)

Actions of Medicinal Plants 19 Original by Eric Yarnell, ND, RH(AHG) 5. flavones, also effective in multidrug-resistant cell lines (Choi, eta l. 1999)

AA. Review of Taxus, Podophyllum, Camptotheca, Catharanthus and drugs derived from them (Mantle, Lennard & Pickering 2000).

Plant, Fungus, Lichen Constituent Action Reference

Taxus brevifolia (Pacific yew) paclitaxel tubulin polymerization promoter

Schiff, et al. 1979

Taxus brevifolia (Pacific yew) paclitaxel Bcl-2 inhibitor Haldar, et al. 1996

Catharanthus roseus (Madagascar periwinkle)

vinblastine tubulin polymerization inhibitor

Jordan, et al. 1991

Catharanthus roseus (Madagascar periwinkle)

vincristine tubulin polymerization inhibitor

Jordan, et al. 1991

XL. Antioxidant

A. chlorogenic acid (apricot, Echinacea spp., grapes, potato) B. curcumin C. Ginkgo biloba D. fisetin

1. protects LDL from oxidation E. flavonoids

1. protect LDL from oxidation (Viana, et al. 1996) F. hispidulin

1. weakly scavenges superoxide radicals G. miscellaneous (Anderson, Mantle & Thomas 1996) H. morin (Chlorophora tinctoria)

1. protects LDL from oxidation 2. weakly scavenges superoxide radicals

I. quercetin 1. protects LDL from oxidation 2. scavenges superoxide radicals

J. Rosmarinus officinalis K. rutin

1. powerful superoxide radical scavenger L. Solanum tuberosum (potato, esp. russet): quercetin (in the skin), flavone aglycones, chlorogenic acid, glutathione, patatin (water-soluble glycoprotein) M. Vaccinium myrtillus N. Vitis vinifera O. In order of potency from strongest to weakest (Halliwell, et al. 1995):

1. Rosmarinus

Actions of Medicinal Plants 20 Original by Eric Yarnell, ND, RH(AHG) 2. Salvia 3. Thymus 4. Origanum 5. Zingiber 6. Curcuma 7. Capsicum 8. Laurus

Anti-parasitic: see anthelmintic above Anti-platelet aggregation: see platelet aggregation inhibitor Antiprotozoal: see anthelmintic above XLI. Antipruritic, anti-itch

A. capsaicin (Capsicum frutescens) B. Cimicifuga dahurica rhizome (Tohda, et al. 2000) C. Cnidium monirrieri fruit (Tohda, et al. 2000) D. Forsythia suspensa fruit (Tohda, et al. 2000) E. Patrinia villosa root (Tohda, et al. 2000) F. Schizonepeta tenuifolia flowering top (Tohda, et al. 2000) G. Scrophularia ningpoensis root (Tohda, et al. 2000) H. Stellaria media

XLII. Antipsoriatic

A. Aloe vera gel B. anthranol C. furanocoumarin (psoralen w/ UV light) D. Isatis tinctoria E. khellin (Ammi visnaga, w/ UV light) F. Mahonia aquifolium

XLIII. Antipyretic: see febrifuge XLIV. Antirheumatic

A. topical 1. camphor 2. capsaicin (Capsicum spp.) 3. Eucalyptus 4. Lavandula officinalis 5. mustard oils 6. Pinus volatile oil 7. Rosmarinus volatile oil

Actions of Medicinal Plants 21 Original by Eric Yarnell, ND, RH(AHG) XLV. Antiseizure, anti-epileptic

A. All nervines to some degree. B. Acorus calamus C. Avena sativa milky oat D. Passiflora incarnata

Antispasmodic: see spasmolytic XLVI. Antitussive (cough suppressant), relaxing expectorant

A. codeine (Papaver somniferum) B. emetine (Caephalis ipecacuanha) C. Lobelia inflata (high-dose) D. noscapin E. Prunus serotina bark (not fruit) F. Tussilago farfara

Anti-thyroid: see thyrostatic XLVII. Anti-varicose veins, venotropic

A. All are roughly equal in potency. B. Collinsonia canadensis C. escin (Aesculus hippocastanum) D. flavonoids (Vaccinium myrtillus) E. Hamamelis virginica F. heparinoids G. Melilotus (coumarin) H. Ruscus aculeatus I. rutin

XLVIII. Antivenom

A. Extensive listing of antivenomous plants from Colombia tested on mice (Otero, et al. 2000). B. Echinacea spp

XLIX. Antivertiginous

A. atropine (Atropa belladonna) B. scopolamine (Datura stramonium) C. Zingiber officinalis

L. Antiviral

A. acemannan or acetylated mannose (Aloe vera) B. catechin C. curcumin (Curcuma longa) D. Eleutherococcus senticosus (eleuthero) E. Eucalyptus

Actions of Medicinal Plants 22 Original by Eric Yarnell, ND, RH(AHG) F. hypericin, pseudohypericin (Hypericum perforatum) G. lapachol (Tabebuia avellanadae) H. Ligusticum porteri (osha) I. Lomatium spp J. Phyllanthus amarus K. polysaccharides (Echinacea angustifolia, E. purpurea)—hyaluronidase inhibitor L. quercetin M. quinine (Cinchona) N. Salvia officinalis

Table . In Vitro Antiviral Botanicals and Constituents Botanical or Constituent Virus Inhibited Reference

3-methyl-but-2-enyl caffeate (from Populus nigra & propolis)

HSV

5,7,4'-trihydroxy-8-methoxyflavone (from Scutellaria baicalensis)

influenza A and B

Allium sativum (garlic) CMV HSV-1 and –2

CMV (Guo, et al. 1993)

Astragalus membranaceous Coxsackie type B

castanospermine (from Australian tree Castanospermum australe and Brazilian trees Alexa canaracunensis (tunadi) and Clathrotropis macrocarpa)

HIV

catechin polio, parainfluenza 3, RSV, HSV 1, influenza

influenza (Mantani, et al. 2001)

Cetraria islandica HIV

curcumin (from Curcuma longa) HIV-1

delta-9-tetrahydrocannabinol HSV 1 & 2 HSV 1 & 2 (Blevins & Dumic 1980)

Echinacea purpurea influenza, vesicular stomatitis

apigenin (a flavonoid) HSV 1

Actions of Medicinal Plants 23 Original by Eric Yarnell, ND, RH(AHG) glycyrrhizic acid (from Glycyrrhiza glabra)

vaccinia, HSV 1, vesicular stomatitis, HBV, HCV, HEV, HIV, Newcastle disease SARS virus Marburg virus

Houttuynia cordata HSV, influenza, HIV Hayashi, Kamiya & Hayashi 1995

hypericin (from Hypericum perforatum and other spp.)

HIV, HSV 1 & 2, vesicular stomatitis, parainfluenza vaccinia, CMV

CMV (Barnard, et al. 1992)

Hyssopus officinalis (aqueous extract) Newcastle disease, HSV

lantadenes from Lantana camara (lantana)

EBV

lapachol (from Tabebuia spp.) polio, vesicular stomatitis

Larrea tridentata HSV

Maprounea africana HIV

Melissa officinalis (aqueous extract) Newcastle disease, parainfluenzae 1, 2, 3

Melissa officinalis polyphenols HSV, vaccinia

Melissa officinalis tannins Newcastle disease, mumps

Mentha x piperita (aqueous extract) Newcastle disease, HSV, vaccinia

Origanum majorana (aqueous extract)

Newcastle disease, HSV

Paeonia suffruticosa HSV, anti-attachment HSV (Hsiang, et al. 2001)

procyanidin HSV 1

propolis (from Populus spp. via bees) influenza, HBV, HSV 1, vaccinia, Newcastle disease

HSV 1 (Ambros, et al. 1994)

quercetin rabies, HSV 1, other herpes viruses

Rheum officinale HSV, anti-attachment HSV (Hsiang, et al. 2001)

Salvia cyprea (aqueous extract) Newcastle disease, HSV

SP-303 from Croton lechleri HSV 1 & 2, influenza, parainfluenza, HAV, HBV, RSV

RSV (Gilbert, et al. 1993)

Actions of Medicinal Plants 24 Original by Eric Yarnell, ND, RH(AHG) Swertia franchetiana HIV

Thymus serpyllum (aqueous extract) Newcastle disease, HSV Abbreviations: CMV = cytomegalovirus, HIV = human immunodeficiency virus, HSV = herpes simplex virus, RSV = respiratory syncytial virus, HAV = hepatitis A virus, HBV = hepatitis B virus, HCV = hepatitis C virus, HEV = hepatitis E virus Table . Herbs or Constituents With Proven Efficacy in Human Viral Infections Herb or constituent Disease

Melissa officinalis herpes simplex infection (Wöhlbling & Leonhardt 1994)

glycyrrhizin (from Glycyrrhiza glabra) chronic viral hepatitis (Suzuki, et al. 1985)

silymarin (from Silybum marianum) viral hepatitis (Berenguer & Carrasco 1977; Poser 1971) LI. Anxiolytic

A. apigenin (Matricaria recutita) B. Hypericum perforatum C. Melissa officinalis D. Nepeta cataria E. Passiflora incarnata F. Piper methysticum---kavalactones G. Scutellaria lateriflora H. Valeriana spp

LII. Aphrodisiac

A. Crocus sativus (saffron) B. Mucuna pruriens C. Pausinystalia yohimbe D. Ptychopetalum olacoides E. Turnera diffusa = T. aphrodisiaca F. Withania somnifera (ashwaganda)

LIII. Apoptosis Modulator

A. allicin (Allium sativum) (Thatte, Bagadey & Dahanukar 2000) B. bryonolic acid (Trichosanthes kirilowii) (Thatte, Bagadey & Dahanukar 2000) C. crocin (Crocus sativus) (Thatte, Bagadey & Dahanukar 2000) D. Semicarpus anacardium (Thatte, Bagadey & Dahanukar 2000) E. sho-saikoto formula (Thatte, Bagadey & Dahanukar 2000) F. Viscum album (Thatte, Bagadey & Dahanukar 2000), injectable form only

Actions of Medicinal Plants 25 Original by Eric Yarnell, ND, RH(AHG) LIV. Aromatase inhibitor

Aromatase converts androstenedione to estrone that can then be converted to estradiol in peripheral tissues. A. coumestrol B. enterodiol and its precursors lignans, O-demethylsecoisolariciresinol (ODSI), demethoxysecoisolariciresinol (DMSI) and didemethylsecoisolariciresinol (DDSI) C. enterolactone and its precursor lignans 3'-demethoxy-3O-demethylmatairesinol (DMDM) and didemethoxymatairesinol (DDMM) D. flavonoids (Kellis & Vickery 1984) E. kaempferol F. luteolin G. phytoestrogens (Adlercreutz, et al. 1993) H. Urtica dioica root

LV. Astringent; Tannin-rich plants

A. All relatively equally effective. B. Pure astringents

1. Agrimonia eupatorium (agrimony) 2. Fragaria vesca (wild strawberry) 3. Geranium (cranesbill, alum root) 4. Geum macraophylla 5. Hamamelis virginiana (witch hazel) 6. Polygonum bistorta (bistort) 7. Potentilla spp (cinquefoil) 8. Quercus spp (oak) 9. Rubus spp (blackberry, raspberry, salmonberry, etc.)

C. Antimicrobial astringents 1. GI affinity

a) Anemopsis californica (yerba mansa) b) Geranium maculatum (cranesbill) c) Hydrastis canadensis (goldenseal) d) Juglans cinerea (butternut) e) Juglans nigra (walnut)

2. Respiratory affinity a) Cinnamomum spp (cinnamon, cassia)—powder or properly-made tea only

3. Urinary tract affinity a) Arbutus menziesii (madrone) b) Arctostaphylos uva-ursi (uva-ursi) c) Arctostaphylos columbiana etc. (manzanita)

D. Aromatic astringents 1. Myrica cerifera (bayberry), now Morella

E. Hormone balancing astringents 1. Alchemilla spp (lady’s mantle) 2. Mitchella repens (partridge berry) 3. Punica granatum (pomegranate)

Actions of Medicinal Plants 26 Original by Eric Yarnell, ND, RH(AHG) 4. Trillium spp (beth root)

F. Relaxing 1. Camellia sinensis (green tea)—can be stimulating to highly caffeine-sensitive people 2. Rosa spp (rose)

G. Stimulant 1. Camellia sinensis (black tea) 2. Coffea arabica (coffee) 3. Cola nitida (cola) 4. Ephedra sinica (ma huang) 5. Ephedra nevadensis (Mormon tea)—mild 6. Paullinia cupana (guaraná) 7. Theobroma cacao (chocolate)

H. Abies (fir) I. Alnus (Alder) J. Betula (Birch) K. Ceanothus (Red Root) L. Fraxinus (Ash) M. Guaiacum (Lignum Vitae) N. Heuchera (American Alum Root) O. Jatropha cineria (Sangre de Drago) P. Krameria (Rhatany) Q. Ligustrum (Privet) R. Orobanche (Broomrape) S. Prunus (Wild or Choke Cherry) T. Rheum (Rhubarb) U. Rhus (Sumach) V. Rumex hymenosepalus (Cañaigre) W. Vaccinium (Blue-/Huckle-/Bilberry) X. Xanthium (Cocklebur)

LVI. ATPase (Na+/K+-ATPase) inhibitor

A. cardiac glycosides (Convallaria, Digitalis, Apocynum, Urginea, Stropanthus, Nerium) B. digoxin, digitoxin, ouabain (Digitalis purpurea)

LVII. 11-beta-hydroxysteroid dehydrogenase inhibitors

11-beta-HSD (especially type 2) normally converts active cortisol to inactive cortisone in the kidney. A. glycyrrhizic acid (Glycyrrhiza glabra) B. (+)- and (--)-gossypol (Gossypium spp)

LVIII. 5-beta-reductase inhibitor (catabolizes cortisol)

A. glycyrrhizin (Glycyrrhiza glabra) LIX. Bitters

Actions of Medicinal Plants 27 Original by Eric Yarnell, ND, RH(AHG) A. alkaloids

1. berberine and cogeners a) Berberis haematocarpa (algerita) b) Berberis vulgaris (barberry) c) Coptis chinensis (Chinese goldthread) d) Hydrastis canadensis (goldenseal) e) Mahonia aquifolium (Oregon grape) f) Mahonia repens (creeping barberry) g) Xanthorhiza simplicissima (goldroot)

2. quinine (Cinchona spp) B. citrus flavanones (Citrus spp (bitter orange) C. iridoids or sesquiterpene lactones

1. Achillea millefolium (yarrow) 2. Anemopsis californica (yerba mansa) 3. Artemisia absinthium (wormwood) 4. Chionanthus virginicus (fringetree) 5. Cnicus benedictus (blessed thistle) 6. Fraxinus americana (white ash) 7. Gentiana lutea (yellow gentian) 8. Humulus lupulus (hops) 9. Marrubium vulgare (horehound) 10. Menyanthes trilobata (bogbean) 11. Rumex crispus (yellow dock) 12. Swertia chirata (chiretta) 13. Swertia radiata (deer's ears) 14. Taraxacum officinale (dandelion) 15. Verbena spp (vervain)

D. quassinoids 1. Picrasma excelsa (Jamaica quassia) 2. Quassia amara (Surinam quassia)

E. aromatic bitters (non-bitter tasting digestive stimulants) 1. Acorus calamus (calamus) 2. Alpinia galanga (galangal) 3. Angelica archangelica (garden angelica) 4. Capsicum spp (cayenne) 5. Curcuma longa (turmeric) 6. Zingiber officinale (ginger)

Blood builder: see bone marrow stimulant LX. Bone marrow stimulant, anti-pancytopenic, blood builder

A. Adaptogens: most if not all of them probably have this action B. Angelica sinensis C. Astragalus membranaceus

Actions of Medicinal Plants 28 Original by Eric Yarnell, ND, RH(AHG) D. berbamine (Berberis spp) E. Cordyceps pilulosa F. Panax ginseng G. Panax quinquefolius

LXI. Bradykinin inhibitor

A. Chenopodium ambrosioides B. Zingiber officinale

LXII. Bronchodilator

A. Potent 1. Datura stramonium 2. ephedrine (Ephedra sinica) 3. lobeline (Lobelia inflata)

B. Mild-to-Moderate 1. forskolin (Plectranthus forskohlii) 2. spasmolytics, general

LXIII. Broncholytic

A. atropine (Atropa belladonna) B. caffeine (Camellia sinensis) C. ephedrine (Ephedra sinica) D. khellin (Ammi visnaga) E. papaverine (Papaver somniferum) F. theophylline (Camellia sinensis)

LXIV. Calcium channel blocker, calcium channel antagonist

A. Angelica sinensis B. apigenin (Apium graveolens, Ginkgo biloba) C. Foeniculum vulgare D. khellin (Ammi visnaga) E. Pimpinella anisum F. tetrandrine and other alkaloids (Stephania tetrandra)

LXV. cAMP-phosphodiesterase inhibitor (cyclic AMP phosphodiesterase inhibitor)

A. caffeine B. dihydrofuranocoumarins (Angelica sinensis) C. flavonoids (Crataegus oxyacantha, Citrus reticulata, Iris florentina)--see herb monographs D. glycyrrhizin (Glycyrrhiza glabra) E. miscellaneous (Nikaido, et al. 1981; Nikaido, et al. 1989; Ohmoto, et al. 1988; Nikaido, et al. 1988) F. papaverine G. quercetin H. silymarin (Silybum marianum) I. Sophora flavescens (Ohmoto, et al. 1986)

Actions of Medicinal Plants 29 Original by Eric Yarnell, ND, RH(AHG) J. theophylline K. Viscum album (European mistletoe), butanol extract, probably due to flavonoids, phenol carboxylic acids, phenylpropanes and lignans

LXVI. Cardiovascular circulation stimulant

A. choline B. nicotinic acid C. quinidine D. theobromine E. theophylline

Carminative: see spasmolytic LXVII. Cholagogue or choleretic

All bitters are also cholagogue and/or choleretic to some degree.

A. Berberis spp B. chelidonine (Chelidonium) C. curcumin (Curcuma longa) D. cynarin (Cynara scolymus) E. Mahonia spp F. Peumus boldo G. Taraxacum officinale

LXVIII. Chronotropic

A. negative (slows HR) 1. digoxin (Digitalis purpurea) 2. reserpine (Rauvolfia serpentina)

LXIX. Circulatory stimulant, cerebral

A. escin (Aesculus hippocastanum) B. Ginkgo biloba C. hydrogenated secale alkaloids D. Rosmarinus officinalis

LXX. Circulatory stimulant, peripheral

A. Potent 1. Capsicum frutescens 2. Rauvolfia serpentina (raubasine, ajmaline) 3. Zanthoxylum spp 4. Zingiber officinale

B. Mild 1. Crataegus laevigata 2. Ginkgo biloba

Actions of Medicinal Plants 30 Original by Eric Yarnell, ND, RH(AHG) 3. Rosmarinus officinalis

LXXI. Contraceptives

A. Azadirachta indica (neem) B. genistein (prunetol, sophoricol, genisteol) (Baptisia tinctoria, Cytisus scoparius, Glycine max, Glycyrrhiza glabra, Medicago sativa, Pueraria lobata, Trifolium pratense, etc.) C. Gossypium (cotton), antisperm D. Montanoa tomentosa (zoapatle), antisperm E. Tripterygium wilfordii, antisperm F. Vicoa indica (banjauri), Asteraceae

1. female antifertility in monkeys (Rao AJ, Ravindra N, Moudgal NR (1997) Ind Acad Sci 71:918) LXXII. Coronary artery dilator

A. adenosine B. Crataegus laevigata C. daidzein (Genista tinctoria, Glycine max, Pueraria lobata, Pueraria psuedohirsuta, Trifolium pratense, etc.) D. visnadine (Ammi visnaga)

LXXIII. Corrigent, corrigen, flavor enhancer

A. Eriodictyon angustifolia (yerba santa) B. Foeniculum vulgare (fennel) C. Glycyrrhiza glabra (licorice) D. miraculin—makes other things taste sweet E. Pimpinella anisum (anise) F. Rosa spp glycerite G. Citrus flavors

1. Melissa officinalis (lemonbalm) 2. Nepeta cataria (catnip)

H. Pungents 1. Cinnamomum spp (cinnamon) 2. Syzygium spp (clove) 3. Zingiber officinale (ginger)

I. Sugar-substitutes, botanical sweeteners 1. abrusosides (Abrus precatorius) 2. glycyrrhizin (Glycyrrhiza glabra) 3. periandrin V (Periandra dulcis) 4. polypodosides (Polypodium glycyrrhiza) 5. pterocaryosides (Pterocarya paliurus) 6. Sassafras albidum (sassafras)—root beer 7. steviosides (Stevia rebaudiana)

LXXIV. Cyclooxygenase inhibitor

A. COX-1 and COX-2 1. allicin (Allium sativum, A. cepa)

Actions of Medicinal Plants 31 Original by Eric Yarnell, ND, RH(AHG) 2. Atracylodes lancea 3. salicylic acid

B. COX-2 specific 1. apigenin (Rosmarinus officinalis, Matricaria recutita) 2. Camellia sinensis 3. carnosol (Rosmarinus officinalis, Ocimum sanctum) 4. cerebrosides (Phytolacca americana) 5. curcumin 6. essential fatty acids 7. Glycyrrhiza glabra (Herold, et al. 2003) 8. humulone (Humulus lupulus) 9. Inula britannica--see Inula monograph 10. kaempferol (Liang, et al. 1999) 11. oleanic acid (Mutoh, et al. 2000) 12. parthenolides (Tanacetum parthenium) 13. Plantago lanceolata (Herold, et al. 2003) 14. Tripterygium wilfordii 15. tryptanthin (Isatis tinctoria) 16. ursolic acid (Rosmarinus officinalis, Ocimum sanctum) (Ringbom, et al. 1998) 17. wogonin, other flavonoids (Scutellaria baicalensis) 18. zerumbone (Zingiber zerumbet)--see Zingiber monograph

LXXV. Decongestant

A. Armoracia rusticana (horseradish) B. Balsamorrhiza sagittata (balsam leaf) C. Bidens pilosa (tickseed) D. Ephedra sinica (ma huang) E. Eriodictyon californica (yerba santa) F. Eucalyptus spp G. Grindelia spp (gumweed) H. Lycium pallidum (wolfberry) I. Propolis J. Zingiber officinale (ginger)

LXXVI. Demulcent, Emollient, Mucilaginous, Bulk-Forming Laxative

A. Althaea officinalis (marshmallow) B. Alcea rosea (hollyhock) C. Astragalus gummifer (tragacanth, shiraz gum, gum dragon, gum elect), also A. barchycalyx and A. tragacanthus D. Borago officinalis (borage) leaf E. Cetraria islandica (Iceland moss) F. Chondrus crispus (Irish moss) G. glycerin H. Glycyrrhiza glabra (licorice)

Actions of Medicinal Plants 32 Original by Eric Yarnell, ND, RH(AHG) I. Inula helenium (elecampane) J. Linum usitatissimum (flax) K. Lobaria pulmonaria (lung lichen) L. Malva neglecta (cheeseweed) M. Plantago lanceolata (lance-leaf plantain), Plantago major (broadleaf plantain) N. Plantago ovatum (psyllium, ispaghula) O. Sphaeralcea spp (globemallow) P. Symphytum officinale (comfrey) Q. Tilia spp (linden) * must be fresh R. Tussilago farfara (Eastern coltsfoot) S. Ulmus fulva (slippery elm) T. Verbascum thapsus (mullein) U. Zea mays (corn)

LXXVII. Diaphoretic

Actions: capillary vasodilating, immune stimulating (increased cytokines -> fever), direct effects on hypothalamus? Should be administered as hot teas or to patients in hot baths. Compare febrifuge.

A. Stimulating (for patient who is lying still, groaning, can’t move)

1. Neutral a) Achillea millefolium (yarrow) b) Zanthoxylum spp (prickly ash)

2. Warming (note: all are eaten in the tropics commonly as they ultimately lead to cooling) a) Alpinia galanga (galangal) b) Asarum canadense (wild ginger) c) Capsicum frutescens (cayenne) d) Cinnamomum spp (cinnamon, cassia) e) Piper nigra (black pepper), P. longum (long pepper) f) Syzygium aromaticum (clove) g) Zingiber officinale (ginger)

B. Relaxing (for patient who is shivering, in fetal position, or should be in bed but it very active) 1. Aristolochia serpentaria (snakeweed) * caution aristolochic acid (Cook says it is stimulating) 2. Asclepias tuberosa (pleurisy root) 3. Chamaemelum (Anthemis) nobilis (Roman chamomile) 4. Corallorhiza odontorhiza (coral root) 5. Encelia farinosa (brittlebush, incienso) 6. Ephedra sinica * sufficiently high doses are vasoconstricting 7. Eupatorium perfoliatum (boneset) * caution very bitter, give as tincture in tea 8. Matricaria recutita (chamomile) 9. Melissa officinalis (lemonbalm) 10. Mentha x piperita (peppermint), M. pulegium (European pennyroyal), M. spicata (spearmint) 11. Monarda fistulosa (bee balm, wild bergamot)

Actions of Medicinal Plants 33 Original by Eric Yarnell, ND, RH(AHG) 12. Nepeta cataria (catnip) 13. Pilocarpus jaborandi (jaborandi) * caution potentially very toxic 14. Salvia officinalis (sage) * only as hot tea (cold tea is anti-secretory) 15. Sambucus spp (elder) flower 16. Symphyotricum (Aster) novae-angliae (New England aster) flower, not astringent 17. Tilia cordata (lime flower, linden) 18. Verbena spp (vervain) * as tincture in tea (tea tastes awful) 19. Verbesina encelioides (áñil de muerto)

C. Sebaceous (from Cook’s Physio-Medical Dispensatory, for patients with oily sweat) 1. Arctium lappa (burdock) seed 2. Celastrus scandens (American bittersweet) 3. Helianthus annuum (sunflower) seed

LXXVIII. Diuretic, aquaretic See also angiotensin-converting enzyme inhibitor A. Multiple herbs shown to be diuretic in animals in very high doses (Ribeiro, et al. 1988; Cáceres, et al. 1987). B. Diuretics

1. cardioactive glycosides (Convallaria majalis, Urginea, Apocynum spp) 2. methylxanthines (caffeine, theobromine, theophylline) 3. Moringa oleifera in large doses in rats (Cáceres, et al. 1992). 4. Stephania tetrandra

C. Aquaretics 1. Potent

a) Apium graveolens (celery) b) Juniperus communis (juniper) c) Levisticum officinale (lovage) d) Petroselinum crispum (parsley) e) Solidago canadensis (goldenrod)

2. Mild a) Agathosma betulina (buchu) b) Chimaphila umbellata (pipsissewa), very mild c) Equisetum arvense (horsetail) d) Galium aparine (cleavers) e) Hydrangea arborescens (seven barks) f) Orthosiphon stamineus (Java tea) g) Taraxacum officinale (dandelion) leaf h) Urtica dioica leaf

LXXIX. Emetic

A. Brassica alba (white mustard) B. Cephaelis ipecacuanha C. Lobelia inflata

Actions of Medicinal Plants 34 Original by Eric Yarnell, ND, RH(AHG) D. Sanguinaria canadensis E. Urginea maritima

LXXX. Emmenagogues

A. Achillea millefolium (yarrow) B. Caulophyllum thalictroides (blue cohosh) C. Chamaelirium luteum (false unicorn root) D. Hedeoma pulegoides (American pennyroyal) E. Leonurus cardiaca (motherwort) F. Mentha pulegoides (European pennyroyal) G. Mitchella repens (partridge berry) H. Ruta graveolens (rue)

LXXXI. Epidermal growth factor receptor inhibitor

A. hypericin (Hypericum perforatum) LXXXII. Escharotic

See also vesicant.

A. Sanguinaria canadensis (bloodroot) LXXXIII. Estradiol 2-hydroxylase induction (turns estradiol --> 2-hydroxyestradiol)

A. indole-3-carbinol (broccoli, cabbage) LXXXIV. Expectorant

A. Relaxing expectorants: Antispasmodic, indicated for patients with spasmodic, usually nonproductive coughs

1. Angelica archangelica 2. Grindelia spp 3. Hyssopus officinalis 4. Pilosella officinarum 5. Pimpinella anisum 6. Prunus serotina 7. Verbascum thapsus

a) Also contains saponins and thus can act like a stimulating expectorant, and contains complex carbohydrates and thus can act like a demulcent. Thus, depending on the form and dose administered, this herb could be used for any type of cough.

B. Stimulating expectorants: induce coughing, tend to loosen mucus, indicated for patients with wet or productive coughs

1. Alkaloid-containing a)

2. Cardiac glycosides-containing a) Asclepias tuboersa

Actions of Medicinal Plants 35 Original by Eric Yarnell, ND, RH(AHG) 3. Saponin-containing

a) Aralia californica b) Bellis perennis

Table. Summary of Botanical Expectorants (in alphabetical order) Stimulating Expectorants Relaxing Expectorants Mixed Expectorants

Aralia californicaa Angelica archangelica Inula helenium

Asclepias tuberosac Drosera rotundifolia Marrubium vulgare

Aspidosperma quebrachob Grindelia spp

Bellis perennisa Hyssopus officinalis

Cephaelis ipecacuanhab Pilosella officinarum

Glycyrrhiza glabraa Pimpinella anisum

Hedera helixa Prunus serotina

Lobelia inflatab (high doses relax) Tussilago farfara

Polygala senegaa Verbascum thapsus

Primula verisa

Sanguinaria canadensisb

Saponaria officinalisa

Stillingia sylvaticab

Trifolium pratensea

Urginea maritimac Stimulating Expectorant Types: a = saponin-containing, b = alkaloid-containing, c = cardiac glycoside-containing Source: Yarnell E. Natural Pulmonology (Healing Mountain Publishing), forthcoming. Note some expectorants may have overlapping actions—for example, Lobelia is also quite antispasmodic and Glycyrrhiza is also demulcent. LXXXV. Febrifuge

Actively inhibits fever (suppressive), use cautiously. Compare to diaphoretic. A. Potent

1. Aconitum spp (aconite) 2. Cinchona spp (Peruvian bark), quinine

Actions of Medicinal Plants 36 Original by Eric Yarnell, ND, RH(AHG) 3. Gelsemium sempervirens (yellow jessamine) 4. Piscidia piscipula (Jamaica dogwood) 5. Veratrum album, V. viride (false hellebore)

B. Moderate 1. Salicylate-containing

a) Betula alba (birch) b) Filipendula ulmaria (meadowsweet) * actually mild/gentle c) Populus tremuloides (aspen) d) Salix alba (willow)

2. Monotropa uniflora (ghost pipe, Indian pipe) * for fever with pain LXXXVI. Fibrinolytic

A. see also thrombolytic below B. allicin (Allium sativum, Allium cepa)

1. cyclooxygenase and lipoxygenase inhibition C. bromelain D. guggulsterones (Commiphora mukul)--mild E. ginsenosides (Panax ginseng)

1. via stimulation of urokinase F. legumes (Gupta & Chatterjee 1982)

Fungicidal: see anti-fungal Fungistatic: see anti-fungal LXXXVII. Galactagogue (Pradhan and Agrawal 1986)

A. Asparagus racemosa (shatavari)--shatavarin-I B. Bryenia patens (kamboji) and Leptadenia reticulata (jeevanti) formula (Patel, Parikh & Patel 1982) C. Physostigma venenosum D. Pilocarpus jaborandi E. Pimpinella anisum F. Ricinus communis leaf topically G. Silybum marianum (milk thistle) folium H. Urtica dioica (nettle) folium (Bingel & Farnsworth 1994) I. Vitex agnus-castus (chaste tree)

LXXXVIII. Ganglioplegic

A. coniine B. nicotine C. lobeline

LXXXIX. Alpha-Glucosidase inhibitor, intestinal

A. Caffeic acid (Kwon, et al. 2006) B. Catechin (Kwon, et al. 2006)

Actions of Medicinal Plants 37 Original by Eric Yarnell, ND, RH(AHG) C. Cornus officinalis iridoids D. Melissa officinalis (Kwon, et al. 2006) E. Mentha x piperita (chocolate mint) (Kwon, et al. 2006) F. Morus alba G. Origanum vulgare (Kwon, et al. 2006) H. Resveratrol (Kwon, et al. 2006) I. Rosmarinic acid (Kwon, et al. 2006) J. Rosmarinus officinalis (Kwon, et al. 2006) K. Salvia officinalis (Kwon, et al. 2006)

XC. Glutathione reductase inhibitor

A. anthocyanidin B. catechin

XCI. Glutathione S-transferase inhibitor

A. butein B. 2-hydroxyl chalcone C. morin (Chlorophora tinctoria) D. quercetin E. tannic acid

XCII. Goitrogens (Langer 1983)--see also thyrostatics

All of these are only clearly known to cause problems in settings of iodine deficiency. A. cyanogenic glycosides

1. Brassica spp. (broccoli, cauliflower, kale, Brussels sprouts) 2. Linum usitatissimum: quantities contained are very small

B. flavone (Gaitan & Cooksey 1989) C. flavonoids

1. apigenin and luteolin glycosides (Digitaria exilis (Fonio millet) and Pennisetum dasystachyum (pearl millet)

a) Goitrogenic in large amounts in iodine deficient people (Sartelet, et al. 1996). 2. Mechanisms: inhibit thyroid peroxidase, inhibit T4 à T3 conversion peripherally, thyroid hormone receptor antagonism (Fitzpatrick 2000)

D. Glycine max (soy)--isoflavones (Fitzpatrick 2000) XCIII. Guanylate cyclase inhibitor

A. Momordica charantia XCIV. Hallucinogen (psychedelic, psychotomimetic, psychointegrator)

Despite a wide variety of chemical constituents and botanical families, the underlying action of all hallucinogens/psychointegrators is on serotonergic neurons (Siegel 1984; Hollister 1984; Jacobs 1984; Mandell 1985; Aghajanian 1994). Autonomic nervous system effects induce the limbic system, which in turn increase integration of the front cortex with the limbic system and increase interhemispheric coherence

Actions of Medicinal Plants 38 Original by Eric Yarnell, ND, RH(AHG) (Mandell 1985). Some such as Datura stramonium and similar Solanaceae plants, however, act primarily through anticholinergic mechanisms. A. Amanita muscaria (fly agaric) (muscarine) B. Anadenanthera peregrina (yopo, paricá, niopo) = Piptadenia peregrina (bufotenine, N,N-dimethyltryptamine, other indole alkaloids) C. Banisteriopsis caapi (ayahuasca) = B. inebrians (beta-carboline alkaloids such as harmine, harmiline) D. Cannabis indica (marijuana) (tetrahydrocannabinols) E. Datura stramonium (jimson weed) (atropine, etc.) F. Ipomoea (morning glory) (lysergic acid) G. Lophophora williamsii (peyote) (mescaline = phenylethylamine) H. Mandragora officinarum (mandrake) I. Myristica fragrans (nutmeg) (myristicin, elemicin) J. psilocybin and other indolealkylamines (Psilocybe spp, Conobybe spp, Paneolis spp, Stropharia spp) K. Trichocereus spp L. Turbinia spp M. Virola calophylla (virola) (N,N-dimethyltryptamine) N. miscellaneous

1. McKenna 1996 XCV. Hepatoprotective

A. cynarin (Cynara scolymus) B. catechin C. Cichorium intybus D. curcumin (Curcuma longa) E. ginsenosides (Panax ginseng) F. gomisin (Schisandra chinensis) G. Hydrastis canadensis H. lecithin I. morin (Chlorophora tinctoria) J. orotic acid K. Schisandra chinensis L. Silybum marianum M. Taraxacum officinalis root N. Veronicastrum vriginicum

XCVI. Histidine decarboxylase inhibitor

A. Allium sativum? B. catechin

XCVII. Hyaluronidase inhibitor

A. polysaccharides (Echinacea spp.) XCVIII. Hypertensive (antihypotensive, pressor agent)

Actions of Medicinal Plants 39 Original by Eric Yarnell, ND, RH(AHG) A. caffeine B. ephedrine (Ephedra sinica) C. glycyrrhetinic acid (Glycyrrhiza glabra) D. sparteine

XCIX. Hypoglycemic (see also antidiabetic)

A. Momordica charantia B. trigonelline (Trigonella foenum-graecum) C. miscellaneous (Oliver-Bever & Zahnd 1979)

C. Hypolipidemic agent, hypocholesterolemic, hypotriglyceridemic

A. allicin (Allium sativum, A. cepa) B. biochanin A (pratensol) (Baptisia tinctoria, Medicago sativa, Trifolium pratense, etc.) C. forskolin (Plectranthus forskohlii) D. germacranolide and guaianolide sesquiterpene lactones (helenalin, tenulin, deoxyelephantopin, eupahyssopin) (Hall, et al. 1980) E. guggulsterones (Commiphora mukul)

1. stimulate hepatic uptake of LDL F. ginsenosides (Panax ginseng) G. morin (Chlorophora tinctoria) H. policosanol = octacosanol (Saccharum officinarum) I. tannic acid

CI. Hypotensive (antihypertensive)

A. Potent 1. ajmaline (Rauvolfia serpentina)raubasine (Rauvolfia serpentina) 2. raupine (Rauvolfia serpentina) 3. rescinnamine (Rauvolfia serpentina) 4. reserpine (Rauvolfia serpentina) 5. serpentine (Rauvolfia serpentina) 6. ester alkaloids (Veratrum spp)

B. Mild 1. Allium sativum 2. Angelica sinensis 3. Crataegus laevigata 4. Dendranthemna x morifolium (chrysanthemum) 5. forskolin (Plectranthus forskohlii) 6. Ganoderma lucidum 7. ginsenosides (Panax ginseng) 8. Hibiscus 9. Lonicera 10. Olea europaea 11. Rhododendron 12. Salvia miltiorrhiza

Actions of Medicinal Plants 40 Original by Eric Yarnell, ND, RH(AHG) 13. Viscum album

CII. Immunomodulator, immune modulator, phytocytokine, adaptogen (Alonso-Osorio 2001)

A. Acanthopanax sessiflorum (wu jia pi) B. Albizzia lebbeck C. Albizzia julibrissin (silk tree) D. acemannan or acetylated mannose (Aloe barbadensis) E. Andrographis paniculata F. Angelica sinensis (dong quai)—polysaccharides, coumarins G. Aralia elata (Japanese angelica tree) H. Aralia manshurica (Manchurian spikenard) I. Aralia racemosa (spikenard) J. Aralia schmidtii (Sakhalin spikenard) K. Astragalus membranaceus (astragalus) L. Centella asiatica (gotu kola) M. Cicer arientinum (chickpea) N. Codonopsis pilosula (dang shen) O. Echinacea purpurea above-ground parts P. Echinopanax elatus (Asian devil’s club) Q. Eleutherococcus senticosus (eleuthero) R. Eucommia ulmoides (hardy rubber tree) S. Ganoderma lucidum (reishi) T. Hoppea dichotoma U. Lentinula edodes (shiitake) V. Leuzea carthamnoides (maral root) W. Ocimum tenuifolium (holy basil) X. Oplopanax horridum (devil’s club) Y. Panax ginseng (Asian ginseng) Z. Panax notoginseng (tienchi ginseng) AA. Panax quinquefolius (American ginseng) BB. Pfaffia paniculata (suma) CC. Rhodiola rosea (roseroot stonecrop) DD. Schisandra chinensis (wu wei zhi) EE. Tinospora cordifolia (guduchi) FF. Trametes versicolor (yun zhi) GG. Trichopus zeylanicus (arogyappacha) HH. Viscum album (European mistletoe)--lectins II. Withania somnifera (ashwagandha) JJ. Th1 pattern inducer

1. Cordyceps sinensis (Gao, et al. 2000) KK. Th2 pattern inducer LL. Th1/Th2 balancing

1. Panax ginseng

Actions of Medicinal Plants 41 Original by Eric Yarnell, ND, RH(AHG) CIII. Immunostimulant

A. achyrocline B. Allium sativum C. Baptisia tinctoria D. catechin E. Echinacea angustifolia root F. E. pallida root G. Eupatorium perfoliatum H. Ligusticum spp I. Spilanthes acmella J. Thuja occidentalis K. vincetoxicum L. dendritic cell stimulators M. macrophage phagocytosis stimulators

1. BCG vaccine 2. beta-1,3-glucan (Saccharomyces cerevesiae cell wall glycoprotein) 3. Echinacea spp 4. Viscum album

N. NK cells stimulators 1. function: Larix occidentalis (arabinogalactans), Chelidonium majus (semisynthetic agent Ukrain by injection), Astragalus membranaceus (lignans), AHCC 2. number and function: Viscum album (Iscador extract, rhamnogalacturonan)

CIV. Inflammation modulator, anti-inflammatory, anti-phlogistic

A. Categorization by major constituents (clinically, may want to use herbs from different categories to address a problem as each group of constituents likely acts differently)

1. Miscellaneous inflammation modulators a) Aesculus hippocastanum b) Echinacea spp c) Hypericum perforatum

(1) 5-Lipoxygenase inhibiting (Herold, et al. 2003). d) Plantago lanceolata

(1) COX-2 inhibiting (Herold, et al. 2003). 2. Alkaloidal inflammation modulators (Nesterova, et al. 2009)

a) Aconitum spp (aconite)---use extreme caution (particularly effective in just a few drops in the ears for otitis media) b) Delphinum eleatum (larkspur)---use extreme caution c) Conium maculatum (poison hemlock)---topical only, use extreme caution

3. Enzymatic inflammation modulators a) bromelain b) papain

4. Essential fatty acid, omega-6 (highly dubious inflammation modulators) a) Borago officinalis (borage) b) Oenothera biennis (evening primrose)

Actions of Medicinal Plants 42 Original by Eric Yarnell, ND, RH(AHG) c) Ribes niger (black currant)

5. Essential fatty acids, omega 3 (all mild and slow-acting) a) Cannabis sativa (hemp) b) Linum usitatissimum (flax) c) Juglans regia (walnut) d) Perilla frutescens (perilla) e) Portulacca oleracea (purslane) f) Typha spp (cattail)

6. Flavonoid inflammation modulators (all mild) a) Crataegus spp (hawthorn) b) Matricaria recutita (chamomile) c) Scutellaria baicalensis (Baical skullcap)

7. Resin inflammation modulators (all moderately potent) a) Boswellia serrata (frankincense) b) Capsicum frutescens (cayenne) c) Commiphora molmol (myrrh) d) Curcuma longa (turmeric) e) Guaiacum officinalis (lignum vitae) f) Liquidambar orientalis (storax) g) Myroxylon balsamum (tolu balsam) h) Myroxylon pereirae (peru balsam) i) Populus balsamifera (poplar) gemma j) Styrax benzoin (benzoin) k) Zingiber officinale (ginger)

8. Salicylate inflammation modulators (Nesterova, et al. 2009) a) Moderate potency

(1) Betula spp (birch) (2) Populus spp (poplar, aspen, cottonwood) (3) Salix spp (willow)

b) Mild potency (1) Filipendula ulmaria (meadowsweet) (2) Fragaria vesca (wild strawberry)---extremely mild (3) Gaultheria procumbens (wintergreen)—topically more potent (4) Viburnum prunifolium (black haw)

9. Sulfur inflammation modulators (all moderately potent) a) Allium cepa (onion) b) Allium sativum (garlic) c) Armoracia rusticana (horsh radish) d) Brassica nigra (black mustard) e) Sinapis alba (white mustard)

10. Terpenoid/phenylpropanoid inflammation modulators (all moderately potent) a) Achillea millefolium (yarrow) b) Betula spp (birch) c) Cinnamomum camphora (camphor)

Actions of Medicinal Plants 43 Original by Eric Yarnell, ND, RH(AHG) d) Guaiacum officinale (lignum vitae) e) Juniperus communis (juniper) f) Matricaria recutita (chamomile) g) Melaleuca leucadendron (cajeput) h) Myristica fragrans (nutmeg) i) Rosmarinus officinalis (rosemary) j) Tanacetum parthenium (feverfew) k) Zingiber officinale (ginger)

11. Triterpenoid/steroidal inflammation modulators (all moderately potent) a) Bupleurum falcatum (Chinese thoroughwax) b) Dioscorea villosa (wild yam) c) Glycyrrhiza glabra (licorice)

(1) Dual 5-lipoxygenase and COX-2 inhibitor (Herold, et al. 2003). d) Smilax spp (sarsaparilla) e) Trigonella foenum-graecum (fenugreek) f) Yucca spp (yucca)

B. Dermatological inflammation modulators

1. Aloe vera (aloe) gel (polysaccharides) a) inhibits thromboxane formation

2. Arnica montana (arnica) flos 3. Calendula officinalis (calendula) flos 4. escin (Aesculus hippocastanum) 5. Matricaria recutita 6. mucilage 7. Plantago spp (plantain) 8. Salix alba 9. Symphytum officinale (comfrey) herba or radix (polysaccharides)

CV. Inotropic

A. negative (decreases contractility) 1. Angelica sinensis

B. positive (increases contractility) 1. Convallaria majalis 2. Crataegus laevigata 3. digitoxin (Digitalis purpurea) 4. forskolin (Plectranthus forskohlii) 5. helenalin (Arnica montana)

CVI. Insect Repellant

A. Citrus hystrix (kaffir lime) volatile oil (Tawatsin, et al. 2001) B. Cymbopogon winterianus (citronella grass) volatile oil (Tawatsin, et al. 2001) C. Curcuma longa (turmeric) volatile oil (Tawatsin, et al. 2001) D. Ocimum americanum (hairy basil) volatile oil (Tawatsin, et al. 2001)

Actions of Medicinal Plants 44 Original by Eric Yarnell, ND, RH(AHG) E. Ocimum selloi (basil pepper) volatile oil F. vanillin (Tawatsin, et al. 2001)

CVII. Insecticidal: see also anti-parasitic

A. Annonaceous acetogenins B. Azadiracta indica (neem) (azadiractans) C. lemon peel oil (Mwaiko & Savaeli 1994)

CVIII. Interleukin synthesis or secretion

A. inhibitor 1. Urtica dioica (of Il-1)

B. stimulator 1. Echinacea spp. (of Il-1), in vitro only 2. epigallocatechin gallate (Camellia sinensis) (of Il-1)

CIX. Intestinal Permeability Increasers

A. bromelain B. lectins C. piperine (Piper longum) D. saponins

CX. Intoxicant

A. fermented palm sap: humans, palm civets, bats, monkeys and elephants become intoxicated when they drink it B. fermented wheat, rye, corn and many other plants yield ethanol C. Madhuca indica (mohwa tree)--fermented flowers are made into daroo wine in India; sloth bears also get intoxicated from eating the flowers

CXI. Iodothyronine deiodinase inhibitor

converts T4 à T3 A. apigenin B. luteolin C. quercetin D. rosmarinic acid, ellagic acid, luteolin-7beta-glucoside (Melissa officinalis, Lithospermum officinale, Lycopus virginicus)

Lactagogue: see Galactagogue CXII. Laxatives, cathartic (all extremely potent)

All cholagogues are also mildly cathartic.

A. Anthraquinone glycosides 1. Very potent (in order from most to least)

Actions of Medicinal Plants 45 Original by Eric Yarnell, ND, RH(AHG) a) Aloe vera latex b) Frangula purshiana c) Rhamnus frangula d) Rheum palmatum e) Senna alexandrina

2. Mildly potent a) Juglans cinerea b) Rumex crispus

B. Fatty acids (Ricinus communis oleum)—extremely potent C. Resins (Convolvulaceae, Podophyllum, Colocynthis citrullus)—extremely potent

CXIII. Laxatives, osmotic

A. Ficus B. fruit acids (eg fructose) C. Manna D. Tamarindus

Laxative, polysaccharide (bulk-forming)—see Demulcent CXIV. 5-Lipoxygenase inhibitor

A. allicin (Allium sativum, A. cepa) B. Atractylodes lancea C. curcumin (Curcuma longa) D. Glycyrrhiza glabra E. NDGA (Larrea tridentata) F. Tanacetum parthenium G. Zingiber officinale

CXV. Litholytic

A. Eupatorium purpureum (Joe Pye weed) B. Rubia tinctoria (woad)

CXVI. Lymphatic, lymphagogue

A. Upper body: 1. Calendula officinalis 2. Galium spp 3. Phytolacca americana —most generic for entire body though 4. Viola tricolor–second most generic for entire body

B. Abdomen, spleen: 1. Ceanothus greggii 2. Polymnia uvedalia (bear’s foot)

C. Pelvis: 1. Fouquieria splendens

Actions of Medicinal Plants 46 Original by Eric Yarnell, ND, RH(AHG) CXVII. Mast Cell Stabilizer

A. Acorus calamus rhizome B. Ambrosia spp (ragweed) leaf (?) C. Artemisia douglasiana (western mugwort) leaf D. Drosera spp (sundew) leaf E. Olea europea (olive) leaf, hydroxytyrosol F. Propolis G. Urtica dioica leaf H. Vaccinium myrtillus (bilberry) fruit

CXVIII. Miotic (constricts pupil)

A. physostigmine (Physostigma venenosum) B. pilocarpine (Pilocarpus jaborandi)

CXIX. Monoamine oxidase (MAO) inhibitor

A. Hypericum perforatum 1. weak MAO A inhibitor in vitro only

B. isoliquiritinigenin, glycyrrhizin (Glycyrrhiza glabra) C. nicotine

1. inhibits MAO B, which catabolizes dopamine Mucilaginous Herbs—see demulcent CXX. Mucolytic

A. Eriodictyon spp B. Grindelia spp C. propolis

CXXI. Muscle relaxant, central

A. kavain (Piper methysticum) CXXII. Muscle relaxant, peripheral

A. C-toxiferine B. tubocurarine (Curare)

CXXIII. Mydriatic (dilates pupil)

A. atropine (Atropa belladonna, Datura stramonium, Hyoscyamus niger) CXXIV. NADH:ubiquinone oxidoreductase inhibitor

A. Annonaceous actogenins (uvaricin, etc. isolated from the genera Annona, Asimina, Goniothalamus, Rollinia, Uvaria and Xylopia)

CXXV. Nephroprotectives, renal protective

Actions of Medicinal Plants 47 Original by Eric Yarnell, ND, RH(AHG) A. Astragalus membranaceus B. Lespedeza capitata C. Panax ginseng D. Parietaria officinalis E. Rheum palmatum F. Silybum marianum G. Urtica dioica seed

CXXVI. Nervine, neurotonic

A. Potent 1. Pulsatilla spp 2. Rauvolfia serpentaria—historical interest only, not safe at sedative doses 3. Gelsemium sempervirens

B. Moderate 1. Myristica fragrans 2. Piper methysticum 3. Valeriana officinalis 4. Valeriana sitchensis 5. Zizyphus spinosa 6. Corydalis yanhusuo

C. Mild 1. Avena sativa 2. Chamaesyce hirta 3. Cypripedium spp * 4. Eschscholzia californica 5. Humulus lupulus 6. isoeugenol (Syzygium aromaticum) 7. Leonurus cardiaca 8. Matricaria recutita 9. Melissa officinalis 10. Nepeta cataria 11. Passiflora incarnata 12. Piper methysticum 13. Rosa spp. 14. Scutellaria lateriflora 15. Stachys betonica 16. Verbacum thapsus flos 17. Verbena spp

CXXVII. NFkappaB inhibitors, inflammation modulating

A. curcumin (Curcuma longa) (Singh & Aggarwal 1995) B. Zingiber officinale

Actions of Medicinal Plants 48 Original by Eric Yarnell, ND, RH(AHG) CXXVIII. Nitric oxide synthase activator

A. Allium sativum CXXIX. Nootropic (Howes & Houghton 2003)

A. Acorus calamus B. Angelica archangelica C. Bacopa monniera D. Biota orientalis E. Celastrus paniculatus F. Centella asiatica G. Clitoria ternatea H. Codonopsis pilosula I. Crocus sativus J. Evodia rutaecarpa K. Galanthus nivalis L. Ginkgo biloba M. Huperzia serrata N. Lycoris radiata O. Magnolia officinalis P. Narcissis spp Q. Polygala tenuifolia R. Rosmarinus officinalis S. Salvia spp T. Vinca minor

CXXX. Parasympathocomimetic (parasympathomimetic)

A. acetylcholine B. arecoline (Areca catechu) C. choline D. nicotine (Nicotiana tabacum) E. muscarine F. physostigmine (eserine) (Physostigma venenosum) G. pilocarpine (Pilocarpus jaborandi) H. reserpine (Rauvolfia serpentaria): indirect via depletion of catecholamine storage granules in central nervous system

Pain relieving: see analgesic above CXXXI. Partus Preparator Do not use in ethanol as it relaxes the uterus.

A. Actaea racemosa (black cohosh) = Cimicifuga racemosa B. Caulophyllum thalictroides (blue cohosh)--use with caution C. Gossypium herbaceum

Actions of Medicinal Plants 49 Original by Eric Yarnell, ND, RH(AHG) CXXXII. P-glycoprotein (Pgp, P-gp) inhibitor, multidrug resistance inhibitor in cancer cells

A. Atractylodes lancea B. epigallocatechin gallate (ECCG), theanine (Camellia sinensis) C. Feijoa sellowiana D. Ficus citrifolia E. flavonoids especially quercetin F. indole-3-carbinol (via its metabolite diindolylmethane) G. methoxyhydrnocarpin, a flavonoid in Berberis spp H. reserpine I. Rosmarinus officinalis J. Stephania tetrandra alkaloids

CXXXIII. Phenolsulfotransferase inhibitor

A. Hepatic sulfating enzyme. B. apigenin C. chrysin D. curcumin (Curcuma longa) E. ellagic acid F. fisetin G. galangin H. genistein I. kaempferol J. myricetin K. quercetin

Phosphodiesterase (cAMP) inhibitor: see cAMP-phosphdiesterase inhibitor CXXXIV. Phospholipase (PLP) A2 inhibitor

A. Boswellia serrata B. curcumin (Curcuma longa) C. Tanacetum parthenium D. Zingiber officinale

CXXXV. Phospholipase C inhibitor

A. Glycyrrhiza glabra B. Zingiber officinale

CXXXVI. Phytoestrogenic agent, phytoestrogen (Zhang, et al. 2005) Summary of known phytoestrogenic constituents: Isoflavones (all) Coumestans (all) Lignans (some) Phenylpropanoids (some)

Actions of Medicinal Plants 50 Original by Eric Yarnell, ND, RH(AHG) Anthraquinones (some)

A. biochanin A (pratensol) (Baptisia tinctoria, Medicago sativa, Trifolium pratense, etc.) B. coumestrol (Brassica oleracea var. gemmifera, Glycine max, Medicago sativa, Pisum sativum, Phaseolus lunatus, P. vulgaris, Taraxacum officinale, Trifolium pratense, etc.) C. daidzein (Genista tinctoria, Glycine max, Pueraria lobata, Pueraria psuedohirsuta, Trifolium pratense, etc.) D. genistein (prunetol, sophoricol, genisteol) (Baptisia tinctoria, Cytisus scoparius, Glycine max, Glycyrrhiza glabra, Medicago sativa, Pueraria lobata, Trifolium pratense, etc.) E. Foeniculum vulgare (fennel)--anethole F. Glycine max (soy)--isoflavones G. Glycyrrhiza glabra (licorice) H. Humulus lupulus (hops) I. Linum usitatissimum (flax)--lignans J. Medicago sativum (alfalfa)--isoflavones K. Panax ginseng (Asian ginseng) L. Pimpinella anisum (anise)—anethole M. Serenoa repens N. Trifolium pratense (red clover)--isoflavones

CXXXVII. Platelet-Activating Factor (PAF) antagonist and inhibitor

A. androsin (Picrorhiza kurroa) (Dorsch & Wagner 1991) B. Arctium lappa (burdock) (Iwakami, et al. 1992) C. coumarins (Puecedanum praeruptorum) (Takeuchi, et al. 1988) D. curcumin (Curcuma longa) E. eugenol F. Forsythia suspensa G. forskolin (Coleus forskohlii) H. ginkgolides (Ginkgo biloba) (Nunez, et al. 1986; Braquet, et al. 1985) I. ginsenosides (Panax ginseng) J. glycyrrhizin (Glycyrrhiza glabra) K. kadsurenone, a lignan (Piper futokadsura) (Shen, et al. 1985) L. lignans (Schisandra chinensis) (Lee, et al. 1999) M. pinusolide (Biota orientalis) N. tetragalloyl quinic acid (Galphimia glauca) (Dorsch & Wagner 1991) O. Tussilago farfara

1. sesquiterpene L-652,469 (Hwang, et al. 1987) P. (+)-yangambin (Ocotea duckei) (receptor antagonist)

CXXXVIII. Platelet aggregation inhibitor

A. allicin (Allium sativum, A. cepa) B. bromelain C. capsaicin (Capsicum spp) D. Galega officinalis E. ginkgolides (Ginkgo biloba)

Actions of Medicinal Plants 51 Original by Eric Yarnell, ND, RH(AHG) F. ginsenosides (Panax ginseng) G. alpha-linolenic acid (Linum usitatissimum) H. quercetin I. ruscogenin (Ruscus aculeatus) J. Zingiber officinale (ginger) (negative clinical study exists)

CXXXIX. Prolactin modulators, anti-prolactin, prolactinogogue, prolactin stimulator

A. Prolactin amphoterics 1. Vitex agnus-castus

B. Prolactin inhibitors C. Prolactin stimulators: see also lactagogues

1. Rauvolfia serpentina 2. resveratrol 3. Trigonella foenum-graecum

CXL. Prostatic agent

A. Cucurbita pepo (fatty acids) B. Hypoxis rooperi (African star grass) C. Prunus africanum (pygeum) D. Serenoa repens (fatty acids and sterols)

1. inhibit 5-alpha-reductase 2. inhibit movement of dihydrotestosterone-bound cytosolic receptor into nucleus 3. spasmolytic (alpha adrenergic antagonist) 4. phytoestrogen

E. Urtica dioica root (blocks SHBG receptor) F. Beta-Sitosterol

CXLI. Protease inhibitor

A. triterpene acids (Geum japonicum) (Xu HX, et al. J Nat Prod 1996;(7)) CXLII. Protein Kinase C inhibitor

A. hypericin (Hypericum perforatum) B. quercetin (Ferriola, Cody & Middleton 1989)

CXLIII. Protein-Tyrosine kinase inhibitor (see also Tyrosine kinase inhibitor)

A. emodin (Rheum palmatum) B. hydroxystilbene, O-glycosides (Rheum officinale)

CXLIV. Redifferentiator, Cancer Normalizer A. berberine B. vitamin A

Rhinologic—see anti-allergic

Actions of Medicinal Plants 52 Original by Eric Yarnell, ND, RH(AHG) CXLV. Rubefacient

A. Brassica nigra (black mustard) B. Capsicum spp (cayenne) C. Juniperus spp (juniper) D. Rosmarinus officinalis (rosemary) E. turpentine

Sedative, Tranquilizer, Hypnotic--see nervine CXLVI. Secretolytic (respiratory)

A. Potent 1. Atropa belladonna 2. Datura stramonium 3. Ephedra sinica

B. Mild-to-Moderate 1. Glycyrrhiza glabra 2. Grindelia spp 3. Hedera helix 4. Primula spp. 5. Polygala senega

CXLVII. Sialagogue

A. Brassica alba (white mustard) B. Capsicum spp C. Echinacea angustifolia D. Physostigma venenosum E. Pilocarpus jaborandi F. Piper cubeba G. Piper nigrum H. Sanguinaria canadensis I. Zingiber officinale

CXLVIII. Skeletal muscle relaxants

A. Pedicularis spp B. Piper methysticum C. Stachys officinalis

CXLIX. Spasmolytic, antispasmodic These are smooth muscle relaxants. See also skeletal muscle relaxants A. Potent

1. anticholinergics a) atropine (Atropa belladonna) b) Datura stramonium

Actions of Medicinal Plants 53 Original by Eric Yarnell, ND, RH(AHG) c) Hyoscyamus niger d) Mandragora officarinum e) Solanum dulcamara

2. papaverine B. Moderate

1. anticholinergics a) Garrya flavescens (silk tassel) b) Garrya wrightii (Wright’s silk tassel)

2. Paeonia lactiflora 3. Viburnum opulus 4. Viburnum prunifolium

C. Mild 1. Angelica sinensis 2. Carminatives (calcium channel blockers that relax smooth muscle)---Giachetti, et al. 1988

a) Acorus calamus b) Anethum graveolens c) Angelica archangelica d) Carum carvi e) Cinnamomum zeylanicum f) Coriandrum sativum g) Elettaria cardamomum h) Foeniculum vulgare i) Lavandula spp j) Matricaria recutita k) Melissa officinalis l) Mentha x piperita m) Mentha spicata n) Origanum basilicum o) Pimpinella anisum p) Piper nigrum q) Rosmarinus officinalis r) Salvia officinalis s) Syzygium aromaticum t) Thymus vulgaris u) Tilia spp v) Zingiber officinale

3. daidzein (Genista tinctoria, Glycine max, Pueraria lobata, Pueraria psuedohirsuta, Trifolium pratense, etc.) 4. Dioscorea villosa (wild yam) 5. Piper methysticum 6. Pueraria lobata

CL. Styptic, anti-hemorrhagic

See also astringents.

Actions of Medicinal Plants 54 Original by Eric Yarnell, ND, RH(AHG) A. Capsella bursa-pastoris B. Panax notoginseng (tienchi ginseng) C. Trillium spp (bethroot)

CLI. Sympatholytic, adrenergic antagonist, beta blocker, alpha blocker

A. alkaloids such as ergotoxin, ergotamine (Secale) B. ergometrin C. liposterolic compounds (Serenoa repens): alpha-1 adrenergic antagonists D. reserpine (Rauvolfia serpentina): depletes norepinephrine from storage granules in neurons in CNS thus general central sympatholytic (parasympathomimetic) E. rose and patchouli volatile oils (Haze, et al. 2002) F. yohimbine (Pausinystalia yohimbe): presynaptic alpha-2 adrenergic antagonist

CLII. Sympathomimetic, adrenergic agonist

A. ephedrine, pseudoephedrine (Ephedra sinica): alpha-1 and both beta adrenergic agonists B. pepper, estragon, fennel, grapefruit volatile oils (Haze, et al. 2002) C. tyramine

CLIII. Thrombolytic, thrombosis inhibitor

See also fibrinolytic above. A. Allium cepa B. Allium sativum C. Ginkgo biloba

CLIV. Thymoleptic (antidepressant)

A. Potent 1. Papaver somniferum (opium poppy) 2. Pausinystalia yohimbe (yohimbe) 3. Peganum harmala (Syrian rue) 4. Strychnos nux-vomica

B. Moderate 1. Lavandula officinalis (lavender) 2. Hypericum perforatum (St. John’s wort) 3. Ignatia amara 4. kavalactones (Piper methysticum)

C. Mild 1. Aralia racemosa 2. Cimicifuga racemosa (black cohosh) 3. Crocus sativus 4. Eleutherococcus senticosus 5. Melissa officinalis 6. Oplopanax horridum 7. Panax spp 8. Selenicereus grandiflora

Actions of Medicinal Plants 55 Original by Eric Yarnell, ND, RH(AHG) 9. Turnera diffusa (damiana)

CLV. Thyrostatic--see goitrogens also

A. Fucus vesiculosus B. Lithospermum ruderale, L. officinale C. Lycopus virginicus, L. europaeus D. Melissa officinalis E. Thymus serpyllum

CLVI. Thyrostimulant, thyrotropic, thyrotrophic

A. Fucus vesiculosis (bladderwrack) B. guggulsterones (Commiphora mukul)--dubious

CLVII. Tonic Definition: herbs that strengthen and improve function in an organ, tissue, or the entire body. They are gentle, non-toxic, and generally require higher doses taken long-term for optimal effects. They have broad effects generally that are sustained even when the herb is stopped. They do not suppress. They also support normal function in healthy people and can be taken preventively. Bidirectional or modulating effects are not inherent in their definition. Often contain nutrients and can be nourishing, but only if taken in food doses. “Replete deficiency in function or integrity.” See also Alterative.

1. Circulatory system: Crataegus spp (hawthorn) 2. Connective tissue and bone: Equisetum spp (horsetail) or Centella asiatica (gotu kola) 3. Endocrine system: Iris veriscolor (blue flag) or Podophyllum peltatum (mayapple)---water extracts only 4. Gall bladder: Fumaria officinalis (fumitory) 5. Gastrointestinal system: Anemopsis californica (yerba mansa) or Hydrastis canadensis (goldenseal) 6. Immune system: Oplopanax horridum (devil's club); see immunomodulators for more 7. Liver: Taraxacum officinale (dandelion) root 8. Lymphatics: Phytolacca americana (poke) 9. Nervous system: Avena sativa (oat) fresh milky seed 10. Renal system: Lespedeza capitata (lespedeza) or Parietaria judaica (pellitory-of-the-wall) 11. Reproductive tract: Smilax spp (sarsaparilla) 12. Thyroid: Fucus vesiculosus (bladderwrack) 13. Urinary tract: Galium spp (cleavers) or, if stronger diuretic effects are also desired, Urtica dioica (nettles) 14. Venous system: Collinsonia canadensis (stoneroot)

CLVIII. Topoisomerase-I inhibitor (uncoils DNA before cell division)

A. acacetin B. apigenin C. camptothecins

1. topotecan (Hycamtin) is an FDA-approved drug for advanced ovarian cancer D. catechins E. epipodophyllotoxins (etoposide)

Actions of Medicinal Plants 56 Original by Eric Yarnell, ND, RH(AHG) F. genistein (Glycine max) G. kaempferol H. morin (Chlorophora tinctoria) I. podophyllin resin J. quercetin

CLIX. Topoisomerase-II inhibitor

A. genistein (Glycine max, Pueraria lobata, etc.) CLX. Tumor necrosis factor (TNF) secretion or synthesis

A. inhibitor 1. Arnica spp 2. berbamine (Berberis spp) 3. Camellia sinensis 4. curcumin (Curcuma longa) (indirect via PLPA2 inhibition) 5. DHEA 6. Echinacea spp 7. gentiopicroside (Gentiana lutea) (Kondo, Takano & Hojo 1994) 8. ginsenosides (Panax ginseng)--see herb monograph 9. Hypericum perforatum 10. melatonin 11. Panax ginseng 12. Perilla frutescens (perilla) folium 13. Phytolacca americana 14. quercetin 15. Silybum marianum 16. Tanacetum parthenium (indirect via PLPA2 inhibition) 17. tetrandrine (Stephania tetrandra) 18. Tripterygium wilfordii 19. Urtica dioica (inhibits secretion of TNF-alpha) 20. Zingiber officinale

B. stimulator

1. Echinacea spp. polysaccharides--stimulate secretion in vitro (didn’t in people) 2. sho-saiko-to formula stimulates synthesis of TNF-alpha in vitro

CLXI. Tyrosine kinase inhibitor

A. genistein (Glycine max, Pueraria lobata, etc.) B. quercetin (Levy, et al. 1984)

CLXII. Uterine Tonic

A. Aletris farinosa (probably inert) B. Angelica sinensis C. Caulophyllum thalictroides

Actions of Medicinal Plants 57 Original by Eric Yarnell, ND, RH(AHG) D. Chamaelirium luteum E. Rubus idaeus

CLXIII. Vasodilator (see coronary artery dilator as well)

A. apigenin (Apium graveolens, Ginkgo biloba) B. Ginkgo biloba C. khellin (Ammi visnaga) D. Rosmarinus officinalis

CLXIV. Vesicant, suppurant, pustulant

See also escharotic.

A. cantharis B. croton oil C. Podophyllum peltatum—podophyllin, podophyllotoxin D. Ranunculus spp—fresh plant topically

CLXV. Wound Healing, Vulnerary

A. asiatic acid, madecassic acid, asiaticoside and madecassoside (Centella asiatica) B. Aristolochia C. Arnica montana D. Azadirachta indica E. Calendula officinalis F. Digitalis spp (topically) G. Lophophora williamsii H. Matricaria recutita I. polysaccharides (Echinacea angustifolia, E. purpurea) J. polysaccharides (Aloe vera)

1. including stimulation of fibroblast activity K. Symphytum officinale (comfrey)--allantoin

CLXVI. Xanthine oxidase inhibitor

A. morin (Chlorophora tinctoria)--moderately effective

References Abbasoglu U, Sener B, Gunay Y, Temizer H (1991) "Antimicrobial activity of some isoquinoline alkaloids" Arch Pharm 324:379-80 Adlercretuz H, Bannwart C, Wahala K, et al. (1993) "Inhibition of human aromatase by mammalian lignins and isoflavonoid phytoestrogens" J Steroid Biochem Mol Biol 44:147-53 Aghajanian G (1994) "Serotonin and the action of LSD in the brain" Psychiatric Annals 2463(?? 26 #63?):137-41

Actions of Medicinal Plants 58 Original by Eric Yarnell, ND, RH(AHG) Alonso-Osorio MJ (2001) “Phytotherapy and immunomodulators” Circular Farmaceutica 59:40-44 Alsat E (1987) "Lomatium dissectum" Comp Med May/June:32-4 Ambros M, Lurton E, Boustie J and Girre L (1994) "Comparison of the anti-herpes simplex virus activities of propolis and 3-methyl-but-2-enyl caffeate" J Nat Prod 57(5):644-7 Anderson D, et al. (1991) "In vitro virucidal activity of selected anthraquinones and anthraquinone derivatives" Antiviral Res 16:185-96 Anderton JG, Mantle D, Thomas TH (1996) "Antioxidant herbal preparations" J R Soc Med 89(9):540 [letter] Atta AH, El-Sooud KA (2004) “The antinociceptive effect of some Egyptian medicinal plant extracts” J Ethnopharmacol 95(2-3):235-8. see abstract at end of monograph Barnard D, et al. (1992) "Evaluation of the antiviral activity of anthraquinones, anthrones and anthraquinone derivatives against human cytomegalovirus" Antiviral Res 1992;17:63-77 Beládi I, Pusztan R, et al. (1977) "Activity of some flavonoids against viruses" Ann NY Acad Sci 284:358-64 Belidi I, et al. (1981) "In vitro and in vivo antiviral effects of flavonoids" In Farkas, et al. (eds) Flavonoids and Bioflavonoids: Proceeds of the International Bioflavonoid Symposium (Munich: Elsevier) * Bergner P (2002-2003) “Herbs and insulin resistance” Medical Herbalism 13(2):1,3- Berenguer J, Carrasco D (1977) "Double-blind trial of silymarin versus placebo in the treatment of chronic hepatitis" Munch Med Wochenschr 119:240-60 * Bingel AS, Farnsworth NR (1994) "Higher plants as potential sources of galactagogues" Econ Med Plant Res 6:1-54 [review] Blevins R, Dumic M (1980) "The effect of delta-9-tetrahydrocannabinol on herpes simplex virus replication" J Gen Virol 49:427-31 Braquet PG, Spinnewyn B, Braquet M, et al. (1985) Blood & Vessel 16:558 Cáceres A, Girón LM, Martínez AM (1987) "Diuretic activity of plants used for the treatment of urinary ailments in Guatemala" J Ethnopharmacol 19:233-45 Cáceres A, Saravia A, Rizzo S, et al. (1992) "Pharmacologic properties of Moringa oleifera. 2: Screening for antispasmodic, antiinflammatory and diuretic activity" J Ethnopharmacol 36:233-7 Cellini L, Di Campli E, Masulli M, et al. (1996) Inhibition of Helicobacter pylori by garlic extract (Allium sativum)"

Actions of Medicinal Plants 59 Original by Eric Yarnell, ND, RH(AHG) FEMS Immunol Med Microbiol 13(4):273-7 Chaudhry PS, Cabrera J, Juliani HR, Varma SD (1983) "Inhibition of human lens aldose reductase by flavonoids, sulindac and indomethacin" Biochem Pharmacol 32:1995-8 Chen I, McDougal A, Wang F, Safe S (1998) "Aryl hydrocarbon receptor-mediated antiestrogenic and antitumorigenic activity of diindolylmethane" Carcinogenesis 19:1631-9 Chiang J, et al. "Three inhibitors of type I human immunodeficiency virus long terminal repeat-directed gene expression and virus replication" Proc Natl Acad Sci 1991;90:1839-42 Choi SU, Ryu SY, Yoon SK, et al. (1999) “Effects of flavonoids on the growth and cell cycle of cancer cells” Anticancer Res 19(6B):5229-33 see abstract at end of monograph Chu CY, Tsai YY, Wang CJ, et al. (2001) "Induction of apoptosis by esculetin in human leukemia cells" Eur J Pharmacol 416:25-32 Cooke DW Lallinger GJ Durack DT. In vitro sensitivity of Naegleria fowleri to qinghaosu and dihydroqinghaosu. J Parasitol (1987 Apr) 73(2):4113 Davis LE, Shen JK, Cai Y (1990) "Antifungal activity in human cerebrospinal fluid and plasma after intravenous administration of Allium sativum" Antimicrob Agents Chemother 34:651-3 * de Carvalho PB, Ferreria EI (2001) "Leishmaniasis phytotherapy. Nature's leadership against an ancient disease" Fitoterapia 72:599-618 [review] * Devi BA, Kamalakkannan N, Prince PSM (2003) “Supplementation of fenugreek leaves to diabetic rats. Effect on carbohydrate metabolic enzymes in diabetic liver and kidney” Phytother Res 17:1231-3 Dorsch W, Wagner H (1991) "New antiasthmatic drugs from traditional medicine?" Int Arch Allergy Appl Immunol 94:262-5 [review] * Elgorashi EE, Stafford GI, van Staden J (2004) “Acetylcholinesterase enzyme inhibitory effects of Amaryllidaceae alkaloids” Planta Med 70:260-2 Fabry W, Okemo P, Ansorg R (1996) "Activity of east African medicinal plants against Helicobacter pylori" Chemotherapy 42(5):315-7 Fabry W, Okemo P, Mwatha WE, et al. (1996) "Susceptibility of Helicobacter pylori and Candida spp. to the east African plant Terminalia spinosa" Arzneim Forsch 46(5):539-40 * Farzami B, Ahmadvand D, Vardasbi S, et al. (2003) “Induction of insulin secretion by a component of Urtica dioica leave [sic] extract in perifused [sic] islets of Langerhans and its in vivo effects in normal and streptozotocin

Actions of Medicinal Plants 60 Original by Eric Yarnell, ND, RH(AHG) diabetic rats” J Ethnopharmacol 89:47-53 Ferriola PC, Cody V and Middleton E Jr (1989) "Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity relationships" Biochem Pharmacol 38:1617-24 Fitzpatrick M (2000) "Soy formulas and the effects of isoflavones on the thyroid" N Z Med J 113:24-26 [review] Fotsis T, Pepper MS, Montesano R, et al. (1998) "Phytoestrogens and inhibition of angiogenesis" Baillieres Clin Endocrin Metab 12:649-66 Gaitan EO, Cooksey RC (1989) "General concepts of environmental goitrogenesis" In: Gaitan E (ed) Environmental Goitrogenesis (Boca Raton, FL: CRC Press):3-11 Gangwar M, Verma VC, Singh TD, et al. (2013) "In-vitro scolicidal activity of Mallotus philippinensis (Lam.) Muell Arg. fruit glandular hair extract against hydatid cyst Echinococcus granulosus" Asian Pac J Trop Med 6(8):595-601. Gao Q, Wu G, He D (2000) “Effect of Cordyceps sinensis on the Th1/Th2 cytokines in patients with Condyloma Acuminatum” Zhong Yao Cai 23(7):402-4 [in Chinese]. Ge X, Yannai S, Rennert G, et al. (1996) "3,3'-diindolylmethane induces apoptosis in human cancer cells" Biochem Biophys Res Comm 228:153-8 Giaccheti D, Taddei E, Taddei I (1988) “Pharmacological activity of essential oils on Oddi’s sphincter” Planta Med :389-92. Gilbert BE, Wyde PR, Wilson SZ, Meyerson LR (1993) "SP-303 small-particle aerosol treatment of influenza A virus infection in mice and respiratory syncytial virus infection in cotton rats" Antiviral Res 21(1):37-45 Guo NL, Lu DP, Woods GL, et al. (1993) "Demonstration of the anti-viral activity of garlic extract against human cytomegalovirus in vitro" Chin Med J 106:93-6 Gupta RK, Chatterjee PC (1982) "The fibrinolytic effect of leguminosae plant seed extracts on human fibrinogen" Ind J Pathol Microbiol 25:237 Haldar S, chintapalli J, Croce CM (1996) “Paclitaxel induces bcl-2 phosphorylation and death of prostate cancer cells” Cancer Res 56:1253 Hall IH, Lee KH, Starnes OC, et al. (1980) "Antihyperlipidaemic activity of sesquiterpene lactones and related compounds" J Pharm Sci 69:694 Halliwell B, Aeschbach R, Loliger, Aruoma OI (1995) "The characterization of antioxidants" Food Chem Toxicol 33:601-17 * Haraguchi H, Ohmi I, Sakai S, Fukuda A (1996) "Effect of Polygonum hydropiper sulfated flavonoids on lens

Actions of Medicinal Plants 61 Original by Eric Yarnell, ND, RH(AHG) aldose reductase and related enzymes" J Nat Prod 59:443-5 Hayashi K, Kamiya M and Hayashi T (1995) "Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus and HIV" Planta Med 61:237-41 Haze S, Sakai K, Gozu Y (2002) “Effects of fragrance inhalation on sympathetic activity in normal adults” Jpn J Pharmacol 90(3):247-53. Herold A, Cremer L, Calugaru A, Tamas V, Ionescu F, Manea S, Szegli G (2003) “Hydroalcoholic plant extracts with anti-inflammatory activity” Roum Arch Microbiol Immunol 62(1-2):117-29. see abstract at end of monograph Herrmann E and Kucera L (1967) "Antiviral Substances in Plants of the Mint Family (Labiatae) II. Nontannin Polyphenol of Melissa officinalis" Proc Soc Exp Biol Med 124:869-74 Herrmann E and Kucera L (1967) "Antiviral Substances in Plants of the Mint Family (Labiatae) III. Peppermint (Mentha piperita) and other Mint Plants" Proc Soc Exp Biol Med 124:874-8 Hollister L (1984) "effects of hallucinogens in humans" In: Jacobs B (ed) Hallucinogens: Neurochemical, Behavioral and Clinical Perspectives (New York: Raven Press):203-26 * Howes MJR, Houghton PJ (2003) “Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function” Pharmacol Biochem Behav 75:513-27 Hsiang CY, Hsieh CL, Wu SL, Lai IL, Ho TY (2001) “Inhibitory effect of anti-pyretic and anti-inflammatory herbs on herpes simplex virus replication” Am J Chin Med 29:459-67 see abstract at end of monograph Hudson JB (1990) Antiviral Compounds from Plants (CRC Press, Inc. Boca Raton, Florida) Hwang SB, Chang MN, Garcia ML, et al. (1987) Eur J Pharmacol 141:269 Ionescu G, Kiehi R, Wichmann-Kunz F, et al. (1990) "Oral citrus seed extract in atopic eczema: In vitro and in vivo studies on intestinal microflora" J Orthomolec Med 5:155-7 Isawa K, Kim HS, Wataya Y, Lee DU (1998) "Antimalarial activity and structure-activity relationships of protoberberine alkaloids" Eur J Med Chem 33:65-9 Iwakami S, Wu JB, Ebizuka Y, Sankawa U (1992) "Platelet activating factor (PAF) antagonist contained in medicinal plants: Lignans and sesquiterpenes" Chem Pharm Bull 40:1196-8 Izzo AA, Di Carlo G, et al. (1995) "Biological screening of Italian medicinal plants for antibacerial activity" Phytother Res 9:281-6

Actions of Medicinal Plants 62 Original by Eric Yarnell, ND, RH(AHG) Jacobs B (ed) Hallucinogens: Neurochemical, Behavioral and Clinical Perspectives (New York: Raven Press) Jabbar A, Raza MA, Iqbal Z, Khan MN (2006) "An inventory of the ethnobotanicals used as anthelmintics in the southern Punjab (Pakistan)" J Ethnopharmacol 108(1):152-4. See abstract at end of monograph Jordan MA, Thrower D, Wilson L (1991) “Mechanisms of inhibition of cell proliferation by the Vinca alkaloids” Cancer Res 51:2212 Kang DG, Oh H, Chung HT, Lee HS. Inhibition of angiotensin converting enzyme by lithospermic acid B isolated from Radix Salviae miltiorrhiza Bunge. Phytother Res 2003;17(8):917-20. Kaul TN, Middleton E Jr. and Ogra PL (1985) "Antiviral effect of flavonoids on human viruses" J Med Virology 15:71-9 Kellis JT Jr and Vickery LE (1984) "Inhibition of human estrogen synthetase (aromatase) by flavones" Science 225:1032-4 Ko BS, Choi SB, Park SK, Jang JS, Kim YE, Park S (2005) “Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma” Biol Pharm Bull 28(8):1431-7 Kondo Y, Takano F, Hojo H (1994) "Suppression of chemically and immunologically induced hepatic injuries by gentiopicroside in mice" Planta Med 60:414-6 Konoshima T (1996) "Antitumorpromoting activities or triterpenoid glycosides; cancer chemoprevention by saponins" Adv Exp Med Biol 404:87100 Kucera L, Herrmann E "Antiviral Substances in Plants of the Mint Family (Labiatae) I. Tannin of Melissa officinalis" Proc Soc Exp Biol Med 124:865-9 Kuo SM (1996) "Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells" Cancer Lett 110:41-8 Kwon YI, Vattem DA, Shetty K (2006) “Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension” Asia Pac J Clin Nutr 15(1):107-18 Lagrota M, et al. (1983) "Antiviral activity of lapachol" Rev Microbiol 14:21-6 Langer P (1983) "Naturally occurring food toxicants" Goitrogens" In: Rechcigl M (ed) CRC Handbook of Naturally Occurring Food Toxicants (Boca Raton, FL: CRC Press):101-29 Lavie G, et al. (1989) "Studies of the mechanism of action of the antiretroviral agents hypericin and pseudohypericin" Proc Natl Acad Sci 86:5963-7

Actions of Medicinal Plants 63 Original by Eric Yarnell, ND, RH(AHG) Lee IS, Jung KY, Oh SR, et al. (1999) "Structure-activity relationships of lignans from Schisandra chinensis as platelet activating factor antagonists" Biol Pharm Bull 22:265-7 Leng SH, Lu FE, Xu LJ (2004) “Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion” Acta Pharmacol Sin 25(4):496-502 Levitz SM, North EA, Dupont MP and Harrison TS (1995) "Mechanisms of inhibition of Cryptococcus neoformans by human lymphocytes" Infect Immun 63(9):3550-4 Levy J, Teuerstein I, Marbach M, et al. (1984) "Tyrosine protein kinase activity in the DMBA-induced rat mammary tumor: Inhibition by quercetin" Biochem Biophys Res Comm 123:1227-33 Liang YC, Huang YT, Tsai SH, et al. (1999) "Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages" Carcinogenesis 20:1945-52 Lis-Balchin M, Deans S, Hart S (1997) "A study of the changes in the bioactivity of essential oils used singly and as mixtures in aromatherapy" J Alt Compl Med 3:249-56 Liu IX, Durham DG, Richard RME (2001) "Vancomycin resistance reversal in enterococci by flavonoids" J Pharm Pharmacol 53:129-32 Mandell A (1985) "Interhemispheric fusion" J Psychoactive Drugs 17:257-66 * Mantani N, Imanishi N, Kawamata H, et al. (2001) "Inhibitory effect of (+)-catechin on the growth of influenza A/PR/8 virus in MDCK cells" Planta Med 67:240-3 Mantle D, Lennard TW, Pickering AT (2000) “Therapeutic applications of medicinal plants in the treatment of breast cancer: a review of their pharmacology, efficacy and tolerability” Adverse Drug React Toxicol Rev 19(3):223-40 see abstract at end Martin MC, San Roman L, Dominguez A (1990) "In vitro activity of protoanemonin, an antifungal agent" Planta Med 56:66-69 McKenna DJ (1996) "Plant hallucinogens: springboards for psychotherapeutic drug discovery" Behav Brain Res 73(12):10916 Meruelo D, Lavie G, Lavie D (1988) "Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: Aromatic polycyclic diones hypericin and pseudohypericin" Proc Natl Acad Sci 85:5230-4 Meuniet MT, Villié F, Jonadet M, et al. (1987) "Inhibition of angiotensin I coverting enzyme by flavanolic compounds. In vitro and in vivo studies" Planta Med :12 Meurer-Grimes B, McBeth DL, Hallihan B, Delph S (1996) "Antimicrobial activity in medicinal plants of the Scrophulariaceae and Acanthaceae" Int J Pharmacognosy 34:243-8

Actions of Medicinal Plants 64 Original by Eric Yarnell, ND, RH(AHG) Morigawa A, Kitabataka K, Fujimoto Y, Ikekawa N (1986) "Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum" Chem Pharm Bull 34:3025-8 Motohashi N, Kawase M, Shirataki Y, et al. (2000) "Biological activity of feijoa peel extracts" Anticancer Res 20:4323-30 Mutoh M, Takahashi M, Fukuda K, et al. (2000) "Suppression of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells by chemopreventive agents with a resorcin-type structure" Carcinogenesis 21:963-9 Mwaiko GL, Savaeli ZX (1994) "Lemon peel oil extract as mosquito larvicide" East Afr Med J 71(12):797-9

see abstract at end of monograph Nabekura T, Kamiyama S, Kitagawa S (2005) “Effects of dietary chemopreventive phytochemicals on P-glycoprotein function” Biochem Biophys Res Commun 327(3):866-70. see abstract at end of monograph Nagai T, Suzuki Y, Tomimori T and Yamada H (1995) "Antiviral activity of plant flavonoid, 5,7,4'-trihydroxy-8-methoxyflavone, from the roots of Scutellaria baicalensis against influenza A (H3N2) and B viruses" Biol Pharm Bull 18:295-9 Nesterova IuV, Povet'eva TN, Aksinenko SG, et al. (2009) “Evaluation of anti-inflammatory activity of extracts from Siberian plants” Vestn Ross Akad Med Nauk (11):30-4 [in Russian]. Newton SM, Lau C, Wright CW (2000) "A review of antimycobacterial natural products" Phytother Res 14:303-22 [review] Nikaido T, Ohmoto T, Noghuchi H, et al. (1981) "Inhibitors of cyclic AMP phosphodiesterase in medicinal plants" Planta Med 43:18-23 Nikaido T, Ohmoto T, Sankawa U, et al. (1988) "Inhibition of adenosine 3',5'-cyclic monophosphate phosphodiesterase by flavonoids. II." Chem Pharm Bull (Tokyo) 36(2):654-61 Nikaido T, Ohmoto T, Kinoshita T, et al. (1989) "Inhibition of adenosine 3',5'-cyclic monophosphate phosphodiesterase by flavonoids. III." Chem Pharm Bull (Tokyo) 37(5):1392-5 see abstract at end of monograph Nonaka G-I, Lee K-H, Cheng Y-C and Kilkuskie RE (1990) "Inhibition of human retroviruses" Patent #WO 90/04968 Nunez D, Chignard M, Korth R, et al. (1986) Eur J Pharmacol 123:197 Nyarko AK, Asare-Anane H, Ofosuhene M, Addy ME (2002) “Extract of Ocimum canum lowers blood glucose and

Actions of Medicinal Plants 65 Original by Eric Yarnell, ND, RH(AHG) facilitates insulin release by isolated pancreatic beta-islet cells” Phytomedicine 9(4):346-51. Ohmoto T, Aikawa R, Nikaido T, et al. (1986) "Inhibition of adenosine 3',5'-cyclic monophosphate phosphodiesterase by components of Sophora flavescens Aiton." Chem Pharm Bull (Tokyo) 34(5):2094-9 Ohmoto T, Nikaido T, Koike K, et al. (1988) "Inhibition of adenosine 3',5'-cyclic monophosphate phosphodiesterase by alkaloids. II." Chem Pharm Bull (Tokyo) 36(11):4588-92 Oliver-Bever B, Zahnd GR (1979) "Plants with oral hypoglycaemic action" Q J Crude Drug Res 17:139-96 Otero-R; Nunez-V; Barona-J; et al. (2000) "Snakebites and ethnobotany in the northwest region of Colombia - Part III: Neutralization of the haemorrhagic effect of Bothrops atrox venom" J Ethnopharhamcol 73:233-41 see abstract at end of monograph * Patel BC, Parikh MV, Patel LB (1982) "'Leptaden' a nonhormonal Ayurvedic drug, for deficient lactation in mothers of an urban community (a double-blind clinical trial)" Med Surg 22:25-28 Pengsuparp T, Cai L, e al. (1995) "Mechanistic evaluation of new plant-derived compounds that inhibit HIV-1 reverse transcriptase" J Nat Prod 58:1024-31 Pietro-RCLR; Kashima-S; Sato-DN; Januario-AH; Franca-SC (2000) "In vitro antimycobacterial activities of physalis angulata L" Phytomedicine 7:335-8 see abstract at end of monograph Pompei R, et al. (1980) "Antiviral activity of glycyrrhizic acid" Experientia 36:304-5 Poser G (1971) "Experience in the treatment of chronic hepatopathies with silymarin" Arzneim Forsch 21:1209-12 Pradhan SK; Agrawal OP (1986) “A comparative study of various galactogogues on the yield and composition of milk in dairy cows” Indian Journal of Indigenous Medicine (4): 21-4 Rao AR, Hashim S (1995) "Chemopreventive action of oriental food-seasoning spices mixture garam masala on DMBA-induced transplacental and translactational carcinogenesis in mice" Nutr Cancer 23:91-101 Ribeiro R de A, de Barros F, de Melo MM, et al. (1988) "Acute diuretic effects in conscious rats produced by some medicinal plants used in the state of Sao Paulo, Brasil" J Ethnopharmacol 24:19-29 Riddle JM (1991) “Oral contraceptives and early-term abortifacients during classical antiquity and the Middle Ages” Past Present 132:3-32 Ringbom T, Segura L, Noreen Y, et al. (1998) "Ursolic acid from Plantago major, a selective inhibitor of cyclooxygenase-2 catalyzed prostaglandin biosynthesis" J Nat Prod 61:1212-5 * Sachdewa A, Khemani LD (2003) “Effect of Hibiscus rosa sinensis Linn ethanol flower extract on blood glucose

Actions of Medicinal Plants 66 Original by Eric Yarnell, ND, RH(AHG) and lipid profile in streptozotocin induced diabetes in rats” J Ethnopharmacol 89:61-66 Sartelet H, Serghat S, Lobstein A, et al. (1996) "Flavonoids extracted from Fonio millet (Digitaria exilis) reveal potent antithyroid properties" Nutrition 12:100-6 Schiff PB, Fant J, Horwitz SB (1979) “Promotion of microtubule assembly in vitro by taxol” Nature 277;665 Selway JWT "Antiviral activity of flavones and flavans" in Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological and Structure-Activity Relations (Alan R. Liss, Inc. New York: 1986) pp. 521-36 Shen TY, Hwang SB, Chang MN, et al. (1985) Proc Natl Acad Sci USA 82:672 Shimizu M, Ito T, Terashima s, et al. (1984) Phytochemistry 23:1885 Siegel R (1984) "The natural history of hallucinogens" In: Jacobs B (ed) Hallucinogens: Neurochemical, Behavioral and Clinical Perspectives (New York: Raven Press):1-18 Singh S, Aggarwal BB (1995) "Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane)" J Biol Chem 270:24995-5000 Suzuki, H., et al. "Effects of glycyrrhizin on biochemical tests in patients with chronic hepatitis--double blind trial" Asian Med J 1985;26:423-38 Sydiskis RJ, Owen DG, LohrJL, et al. (1991) "Inactivation of enveloped viruses by anthraquinones extracted from plants" Antimicrob Agents Chemother 35(12):2463-6 Tabak M, Armon R, Potasman I, Neeman I (1996) "In vitro inhibition of Helicobacter pylori by extracts of thyme" J Appl Bacteriol 80(6):667-72 Takeuchi N, Kasama T, Mayuzumi K, et al. (1988) Chem Pharm Bull 36:4221 Tawatsin A, Wratten SD, Scott RR, et al. Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol 2001 Jun;26(1):76-82 Tempestra M (1993) "Proanthocyanidin polymers having antiviral activity and methods of obtaining same" US Patent #5,211,944 Terashima S, Shimizu M, Horie S, Morita N (1991) "Studies on aldose reductase inhibitors from natural products. IV. Constituents and aldose reductase inhibitory effect of Chrysanthemum morifolium, Bixa orellana and Ipomoea batatas" Chem Pharm Bull 39(12):33467

see abstract at end of monograph Thatte U, Bagadey S, Dahanukar S (2000) “Modulation of programmed cell death by medicinal plants” Cell Mol Biol (Noisy-le-grand) 46(1):199-214

Actions of Medicinal Plants 67 Original by Eric Yarnell, ND, RH(AHG) see abstract at end of monograph Tohda C, Kakihara Y, Komatsu K, Kuraishi Y (2000) “Inhibitory effects of methanol extracts of herbal medicines on substance P-induced itch-scratch response. Biol Pharm Bull 23(5):599-601 see abstract at end of monograph Tomás-Barberán FA, Lopéz-Gómez C, Villar A, Tomás-Lorente F (1986) "Inhibition of lens aldose reductase by Labiatae flavonoids" Planta Med :239 Vanden Berghe DA, Vlietinck AJ and Van Hoof L (1986) "Plant products as potential antiviral agents" Bull Inst Pasteur 101-47 Varma SD (1986) "Inhibition of aldose reductase by flavonoids: Possible attenuation of diabetic complications" In: Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity Relationships (NY: Alan R. Liss):343-57 Varma SD, Kinoshita JH (1976) "Inhibition of aldose reductase by flavonoids. Their possible role in the prevention of diabetic cataracts" Biochem Pharmacol 25:2505-13 * Vasanth S, Gopal RH, Rao RB (1990) "Plant anti-malarial agents" J Sci Industr Res 49:68-77 [review] Viana M, Barbas C, Bonet B, et al. (1996) "In vitro effects of a flavonoid-rich extract on LDL oxidation" Atherosclerosis 123(1-2):83-91

see abstract at end of monograph Vinitketkumnuen U, Puatanachokchai R, Lertprasertsuke N, et al. (1996) "Antimutagenicity and anti-tumor activity of lemon grass" Mutat Res Environ Mutagen 359:200-1 Wacker A, Hilbig W "Virus-inhibition by Echinacea purpurea" Planta Med 1978;33:89-102 Wöhlbling R, Leonhardt K (1994 "Local therapy of herpes simplex with dried extract from Melissa officinalis" Phytomedicine 1:25-31 Xu HX, Lee SF (2001) "Activity of plant flavonoids against antibiotic-resistant bacteria" Phytother Res 15(1):39-43 see abstract at end of monograph Zamora (1984) Cytotoxic, Antimicrobial and Phytochemical Properties of Larrea tridentata Cav. Doctoral Dissertation. Auburn University, Auburn, Alabama. Zhang CZ, Wang SX, Zhang Y, Chen JP, Liang XM (2005) “In vitro estrogenic activities of Chinese medicinal plants traditionally used for the management of menopausal symptoms” J Ethnopharmacol 98(3):295-300. see abstract at end of monograph Zhang L, Yang LW, Yang LJ (1992) “[Relation between Helicobacter pylori and pathogenesis of chronic atrophic

Actions of Medicinal Plants 68 Original by Eric Yarnell, ND, RH(AHG) gastritis and the research of its prevention and treatment]” Zhongguo Zhong Xi Yi Jie He Za Zhi 12(9):521-3, 515-6 [Article in Chinese] Zhou YP, Zhang JP (1989) "Oral baicalin and liquid extract of licorice reduce sorbitol levels in red blood cell in diabetic rats" Chin Med J 102:203-6 CLXVII. Abstracts to articles mentioned above Atta and El-Sooud 2004 Abstract: The antinociceptive effect of methanolic extracts (200 and 400 mg kg(-1)) of eight Egyptian medicinal plants was studied using acetic acid-induced writhing and tail-flick test in mice. Oral administration of 400 mg kg(-1) methanolic extracts of Convolvulus fatmensis, Alhagi maurorum, Plantago major seeds, Conyza dioscaridis significantly (P < 0.05) inhibited the nociception to acetic acid-induced writhes with a protection of 85.5-61.3%. Schouwia thebaica, Diplotaxis acris, Plantago major leaves and Mentha microphylla, in the large dose, showed a protection of 50.8-45.8%, which were significantly different as compared to control. The smaller dose of the tested plant extracts did not protect animals from painful acetic acid stimulation with the exception of Alhagi maurorum. In the tail-flick test, methanolic extracts of Mentha microphylla, Conyza dioscaridis, Alhagi maurorum, Plantago major leaves, Diplotaxis acris and Convolvulus fatmensis in a dose of 400 mg kg(-1) produced significant increase in the latency to response of tail to thermal stimulation. Mild or no effect was observed by the small dose with the exception of Diplotaxis acris that had significant antinociceptive effect at the dose of 200 mg kg(-1). The extracts of all tested plants in doses up to 2 g kg(-1) b.wt. did not cause any deaths or major signs of acute toxicity. Phytochemical screening indicated the presence of unsaturated sterols, triterpenes, tannins, flavonoids and carbohydrates and/or glycosides as major constituents. Choi, et al. 1999 Abstract: In this study, we investigated the cytotoxicities of flavone (F01), 3-hydroxyflavone (F02), 6- hydroxyflavone (F03), 7-hydroxyflavone (F04), 3,6-dihydroxyflavone (F05), 5,7-dihydroxyflavone (F06) and 5,6,7-trihydroxyflavone (F07) to human cancer cells including P-glycoprotein (Pgp)-expressing HCT15 cells and its multidrug resistant subline, HCT15/CL02 cells. We also examined the effects of those flavonoids on the cell cycle of these cancer cells. HCT15/CL02 cells did not reveal resistance to all the flavonoids tested in comparison with HCT15 cells. In cell cycle analysis, all the flavonoids tested, except F01 and F04, reduced the G0/G1 population of SF295 cells at growth inhibitory concentrations, and increased G2/M (F02, F03 and F06) or S (F05 and F07) populations. In addition, F02 and F03 decreased the G2/M and G0/G1 population, and increased the S and G2/M population in HCT15 cells, respectively. Meanwhile, in HCT15/CL02 cells, F02 and F03 decreased the G0/G1 populations and increased the S population. In conclusion, we deemed that the flavonoids tested had diverse cytotoxic mechanisms, and exerted their cell growth inhibitory or killing activity by distinctive ways in different cells. Herold, et al. 2003 Abstract: The aim of the present study was to investigate if standardized hydroalcoholic plant extracts such as Calendula officinalis, Hypericum perforatum, Plantago lanceolata and Glycyrrhiza glabra can suppress in cell-free systems the activities of 5-lipoxygenase (5-LO) and cyclooxygenase-2 (COX-2), key enzymes in the formation of proinflammatory eicosanoids from arachidonic acid (AA). Studies were undertaken to compare the above mentioned plant extracts to a known NSAID (nimesulide) in their ability to inhibit both cyclooxygenase (COX-2) and lipoxygenase (5-LO) activities in cell-free systems. We report on 2 vegetal extracts (Hypericum perforatum and Glycyrrhiza glabra) that inhibit 5-LO activity and 2 vegetal extracts (Plantago lanceolata and Glycyrrhiza glabra) that inhibit COX-2 activity. In this study, we demonstrate for the first time that Glycyrrhiza

Actions of Medicinal Plants 69 Original by Eric Yarnell, ND, RH(AHG) glabra extract efficiently suppresses both eicosanoids and leukotrienes formation in cell-free systems, implying that this extract directly acts as a dual inhibitor of 5-LO and COX-2 activities. With regard to the properties of dual COX-2/5-LO inhibitors, Glycyrrhiza glabra extract might be a potential drug possessing anti-inflammatory activity devoid of the most troublesome (gastric) side effects seen for drugs used as COX-2 and 5-LO inhibitors. Hypericum perforatum, Plantago lanceolata and Glycyrrhiza glabra extracts can be added to an already impressive list of these species that have anti-inflammatory activity. Hsiang, et al. 2001 Abstract: The increasing clinical use of acyclovir, ganciclovir, and foscarnet against herpes simplex virus (HSV), varicella-zoster virus, and cytomegalovirus has been associated with the emergence of drug-resistant herpesvirus strains. To develop anti-HSV compounds from plants, 31 herbs used as antipyretic and anti-inflammatory agents in Chinese medicine were screened. Five different preparations (cold aqueous, hot aqueous, ethanolic, acid ethanolic, and methanolic) from 31 herbs were analyzed by plaque reduction assay, and 7 extracts. which showed significant antiviral activities, were further elucidated for their antiviral mechanisms. Our results showed that ethanolic extract of Rheum officinale and methanolic extract of Paeonia suffruticosa prevented the process of virus attachment and penetration. Aqueous extract of P. suffruticosa and ethanolic extract of Melia toosendan inhibited virus attachment to cell surface. Aqueous extract of Sophora flavescens and methanolic extract of M. toosendan showed no effect on virus attachment and penetration. These data indicated that these 4 herbs have a potential value as a source of new powerful anti-HSV compounds. Jabbar, et al. 2006 Abstract: A survey was conducted in southern Punjab, Pakistan, in order to document existing ethnobotanical knowledge by the herdsmen/key respondents about anthelmintics in ruminants. A 3-satge process was used to document the plants being used to treat and/or control helminthes. This paper describes 29 plants to treat helminthosis in ruminants. The main plants used were Lamium amplexicaule L., Mallotus philippinensis Muell., Withania somnifera (L.) Dunal., Azadirachta indica A. Juss., and Citrullus colocynthis (L.) Schrad. A few of these plants have been scientifically validated for their claim by herdsmen on modern lines while majority of them still needs investigations. This documentation could provide a foundation for the scientific study and verification of those plants which merit such study. Mantle, Lennard & Pickering 2000 Abstract: Various active compounds (or their semi-synthetic derivatives) derived from medicinal plants have been assessed for their efficacy and tolerability in the treatment of breast cancer. Some of these plant species, including Taxus baccata (paclitaxel, docetaxel), Podophyllum peltatum (etoposide), Camptotheca acuminata (camptothecin) and Vinca rosea (vinblastine, vinorelbine) have well recognized antitumour activity in breast cancer, and have been evaluated in clinical trials. For example, results from recent Phase II/III trials have established docetaxel as the most active single agent in the treatment (first or second-line) of advanced metastatic breast cancer. For other plant species such as Panax ginseng and Allium sativum, antitumour activity has been evaluated in experimental studies using cultured cells and animal models, but the therapeutic potential in patients remains to be determined. Antitumour activity derived from medicinal plants may produce results via a number of mechanisms, including effects on cytoskeletal proteins which play a key role in mitosis (paclitaxel), inhibition of activity of topoisomerase enzymes I (camptothecin) or II (etoposide), stimulation of the immune system (Viscum album), or antiprotease-antioxidant activity. Medicinal plant-derived antineoplastic agents may be used in single agent or in combinational therapies, and have been used in first-line or second-line (including anthracycline-refractory patients) treatment of localized or metastatic breast cancer. Adverse effects resulting from the use of these agents include neutropenia and peripheral neuropathies.

Actions of Medicinal Plants 70 Original by Eric Yarnell, ND, RH(AHG) McKenna 1996 Abstract: Medicinal chemists have traditionally looked to the biosynthetic diversity found in nature to provide structural templates for the development of novel therapeutic agents, and the field of hallucinogen chemistry is similar to other fields in this respect. Even LSD, for many psychopharmacologists the prototype hallucinogen, is not itself a natural compound but rather is a semisynthetic analogue of alkaloids found in plants and fungi. A similar statement could be made about the other major structural classes of hallucinogenic agents: the phenylethylamine derivatives, the tryptamine derivatives, and the betacarboline derivatives. In each case, compounds occurring naturally in some plant, usually associated with a long tradition of ethnomedical or ceremonial use, have been the starting point for the synthesis of numerous analogues. Some of these, such as the methoxylated amphetamine derivatives, display a pharmacological profile that differs in important respects from their natural product templates. In some instances the analogues have proven to be useful tools in the hands of neurobiologists characterizing the structure and function of brain neurotransmitter systems; in other cases, they have led to the development of new psychopharmacological agents with realized or potential clinical utility. This paper gives a brief historical overview of the role of natural products in the history and development of medicinal chemistry and experimental pharmacology, particularly with respect to the development of psychopharmacology and the discovery of CNSactive agents. It discusses the potential for the discovery of new medications with psychotherapeutic and/or research applications though the investigation of plants and natural compounds with serotonergic activities. Finally, consideration is given to some lesser known plant hallucinogens which may provide further useful leads for psychotherapeutic drug discovery. Mwaiko & Savaeli 1994 Abstract: Tests on lemon peel oil extract as a mosquito larvicide were carried out. The oil was found to be toxic on larvae, pupae and eggs of Culex quinquefasciatus. The oil also fulfilled other required specifications like suitable specific gravity, spreading pressure and viscosity. It was also toxic at a wide pH range, stable to heat and light in terms of chemical change which could alter larvicidal action. However, it was volatile and did not form a permanent film on water surfaces for long periods. This affected the larvicidal action. Nabekura, et al. 2005 Abstract: The effects of dietary phytochemicals on P-glycoprotein function were investigated using human multidrug-resistant carcinoma KB-C2 cells and the fluorescent P-glycoprotein substrates daunorubicin and rhodamine 123. The effects of natural chemopreventive compounds, capsaicin found in chilli peppers, curcumin in turmeric, [6]-gingerol in ginger, resveratrol in grapes, sulforaphane in broccoli, 6-methylsulfinyl hexyl isothiocyanate (6-HITC) in Japanese horseradish wasabi, indole-3-carbinol (I3C) in cabbage, and diallyl sulfide and diallyl trisulfide in garlic, were examined. The accumulation of daunorubicin in KB-C2 cells increased in the presence of capsaicin, curcumin, [6]-gingerol, and resveratrol in a concentration-dependent manner. The accumulation of rhodamine 123 in KB-C2 cells was also increased, and the efflux of rhodamine 123 from KB-C2 cells was decreased by these phytochemicals. Sulforaphane, 6-HITC, I3C, and diallyl sulfide and diallyl trisulfide had no effect. These results suggest that dietary phytochemicals, such as capsaicin, curcumin, [6]-gingerol, and resveratrol, have inhibitory effects on P-glycoprotein and potencies to cause drug-food interactions. Nikaido, et al. 1989 Abstract: Sixty-one flavanones, twenty-six isoflavones and eight other flavonoids, obtained from Sophora tomentosa, S. flavescens, Scutellaria baicalensis and other medicinal plants or synthesized, were tested for their inhibitory activity against adenosine 3',5'-cyclic monophosphate (cAMP) phosphodiesterase from beef heart. The structure-activity relationships were investigated. Otero, et al. 2000 Abstract: Thirty-one of 75 extracts of plants used by traditional healers for snakebites, had

Actions of Medicinal Plants 71 Original by Eric Yarnell, ND, RH(AHG) moderate or high neutralizing ability against the haemorrhagic effect of Bothrops atrox venom from Antioquia and Choco, north-western Colombia. After preincubation of several doses of every extract (7.8- 4000 < mu >g/mouse) with six minimum haemorrhagic doses (10 < mu >g) of venom, 12 of them demonstrated 100% neutralizing capacity when the mixture was i.d. injected into mice (18-20 g). These were the stem barks of Brownea rosademonte (Caesalpiniaceae) and Tabebuia rosea (Bignoniaceae); the whole plants of Pleopeltis percussa (Polypodiaceae), Trichomanes elegans (Hymenophyllaceae) and Senna dariensis (Caesalpiniaceae); rhizomes of Heliconia curtispatha (Heliconiaceae); leaves and branches of Bixa orellana (Bixaceae), Philodendron tripartitum (Araceae), Struthanthus orbicularis (Loranthaceae) and Gonzalagunia panamensis (Rubiaceae); the ripe fruits of Citrus limon (Rutaceae); leaves, branches and stem of Ficus nymphaeifolia (Moraceae). Extracts of another 19 species showed moderate neutralization (21-72%) at doses up to 4 mg/mouse, e.g. the whole plants of Aristolochia grandiflora (Aristolochiaceae), Columnea kalbreyeriana (Gesneriaceae), Sida acuta (Malvaceae), Selaginella articulata (Selaginellaceae) and Pseudoelephantopus spicatus (Asteraceae); rhizomes of Renealmia alpinia (Zingiberaceae); the stem of Strychnos xinguensis (Loganiaceae); leaves, branches and stems of Hyptis capitata (Lamiaceae), Ipomoea cairica (Convolvulaceae), Neurolaena lobata (Asteraceae), Ocimum micranthum (Lamiaceae), Piper pulchrum (Piperaceae), Siparuna thecaphora (Monimiaceae), Castilla elastica (Moraceae) and Allamanda cathartica (Apocynaceae); the macerated ripe fruits of Capsicum frutescens (Solanaceae); the unripe fruits of Crescentia cujete (Bignoniaceae); leaves and branches of Piper arboreum (Piperaceae) and Passiflora quadrangularis (Passifloraceae). When the extracts were independently administered by oral, i.p. or i.v. route either before or after an i.d. venom injection (10 < mu >g), neutralization of haemorrhage dropped below 25% for all the extracts. Additionally, B. rosademonte and P. percussa extracts were able to inhibit the proteolytic activity of B. atrox venom on casein. Pietro, et al. 2000 Abstract: The HIV-tuberculosis co-infection has caused an impact on tuberculosis epidemiology all over the world and the efficacies of the therapeutic schemes traditionally prescribed in the treatment of tuberculosis, such as isoniazid, rifampicin and pyrazinamide, have decreased due to the appearance of multidrug-resistant M. tuberculosis strains (MDR). This work is part of research on natural antimicrobial agents from plant extracts through bioassay-guided fractionation, by in vitro determination of the minimum inhibitory concentration (MIC) using the microdilution method with Alamar blue oxidation-reduction dye. Crude CHCl-3 Physalis angulata extracts and physalin-containing fractions displayed antimycobac-terial activity against Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium kansasii, Mycobacterium malmoense and Mycobacterium intracellulare. Terashima, et al. 1991 Abstract: The hot water extracts of Chrysanthemum morifolium, Bixa orellana and Ipomoea batatas, were found to have potent inhibitory activity towards lens aldose reductase (AR). Ellagic acid (4) was isolated from C. morifolium and I. batatas, isoscutellarein (7) from B. orellana and 3,5dicaffeoylquinic acid (10) from I. batatas, respectively, as potent inhibitors. Thatte, Bagadey & Dahanukar 2000 Abstract: Programmed cell death (apoptosis), a form of cell death, described by Kerr and Wyllie some 20 years ago, has generated considerable interest in recent years. The mechanisms by which this mode of cell death (seen both in animal and plant cells), takes place have been examined in detail. Extracellular signals and intracellular events have been elaborated. Of interest to the clinician, is the concentrated effort to study pharmacological modulation of programmed cell death. The attempt to influence the natural phenomenon of programmed cell death stems from the fact that it is reduced (like in cancer) or increased (like in neurodegenerative diseases) in several clinical situations. Thus, chemicals that can modify programmed cell death are likely to be potentially useful drugs. From foxglove, which gave digitalis to the Pacific Yew from which came taxol, plants have been a source of research material for useful drugs. Recently, a variety of plant extracts have been investigated for

Actions of Medicinal Plants 72 Original by Eric Yarnell, ND, RH(AHG) their ability to influence the apoptotic process. This article discusses some of the interesting data. The ability of plants to influence programmed cell death in cancerous cells in an attempt to arrest their proliferation has been the topic of much research. Various cell-lines like HL60, human hepatocellular carcinoma cell line (KIM-1), a cholangiocarcinoma cell-line (KMC-1), B-cell hybridomas, U937 a monocytic cell-line, HeLa cells, human lymphoid leukemia (MOLT-4B) cells and K562 cells have been studied. The agents found to induce programmed cell death (measured either morphologically or flow cytometrically) included extracts of plants like mistletoe and Semicarpus anacardium. Isolated compounds like bryonolic acid (from Trichosanthes kirilowii var. Japonica, crocin (from saffron) and allicin (from Allium sativum) have also been found to induce programmed cell death and therefore arrest proliferation. Even Chinese herbal medicine "Sho-saiko-to" induces programmed cell death in selected cancerous cell lines. Of considerable interest is the finding that Panax ginseng prevents irradiation-induced programmed cell death in hair follicles, suggesting important therapeutic implications. Nutraceuticals (dietary plants) like soya bean, garlic, ginger, green tea, etc. which have been suggested, in epidemiological studies, to reduce the incidence of cancer may do so by inducing programmed cell death. Soy bean extracts have been shown to prevent development of diseases like polycystic kidneys, while Artemisia asiatica attenuates cerulein-induced pancreatitis in rats. Interestingly enough, a number of food items as well as herbal medicines have been reported to produce toxic effects by inducing programmed cell death. For example, programmed cell death in isolated rat hepatocytes has been implicated in the hepatitis induced by a herbal medicine containing diterpinoids from germander. Other studies suggest that rapid progression of the betel- and tobacco-related oral squamous cell carcinomas may be associated with a simultaneous involvement of p53 and c-myc leading to inhibition of programmed cell death. Several mechanisms have been identified to underlie the modulation of programmed cell death by plants including endonuclease activation, induction of p53, activation of caspase 3 protease via a Bcl-2-insensitive pathway, potentiate free-radical formation and accumulation of sphinganine. Programmed cell death is a highly conserved mechanism of self-defense, also found to occur in plants. Hence, it is natural to assume that chemicals must exist in them to regulate programmed cell death in them. Thus, plants are likely to prove to be important sources of agents that will modulate programmed cell death. Tohda, et al. Abstract 2000: In a search for new anti-pruritic drugs we screened methanol extracts of 33 herbal medicines which have been used for cutaneous diseases for their antipruritic activity using substance P (SP) as a pruritogen in mice. When administered perorally 30 min before SP injection, methanol extracts of 6 of these herbal medicines, the root of Scrophularia ningpoensis Hemsl., the root of Patrinia villosa (Thunb.) Juss, the fruit of Forsythia suspenna Vahl, the rhizome of Cimicifuga dahurica (Turcz.) Maxim., the aerial part of Schizonepeta tenuifolia Briq. and the fruit of Cnidium monnieri (L.) Cuss, inhibited SP-induced itch-scratch response at a dose of 200 mg/kg with-out affecting locomotor activity. Dose dependence of these 6 extracts (50-500 mg/kg) was investigated and all of them inhibited SP-induced itch-scratch response, with extracts from Scrophularia ningpoensis, Schizonepeta tenuifolia and Cnidium monnieri showing particularly significant inhibition. The results suggest that these 6 methanol extracts have inhibitory activity against SP-induced itching. Viana, et al. 1996 Abstract: Flavonoids are phenolic compounds of vegetable origin with antioxidant effects. The present study aimed to determine their properties as LDL antioxidants. LDL were incubated with increasing concentrations of flavonoids (016 micrograms/ml) and LDL oxidation was started by adding CuCl2 (2 microM) to the media. When flavonoids were present in the media, vitamin E consumption, the lag phase of conjugated diene formation, LDL electrophoretic mobility in agarose gels and the appearance of thiobarbituric acid reacting substances (TBARS) were delayed in a concentrationdependent manner. To determine whether flavonoids could terminate LDL oxidation once initiated, two sets of experiments were performed. In the first, LDL oxidation was

Actions of Medicinal Plants 73 Original by Eric Yarnell, ND, RH(AHG) initiated as described above. At 2 or 4 h of incubation, flavonoids were added (4 micrograms/ml) and their effect compared to samples where butylated hydroxytoluene or EDTA were added. At 5 h, in the LDL samples where flavonoids were added, the electrophoretic mobility and TBARS production were the same as those present in LDL samples incubated for the whole period in the absence of flavonoids. However, when either butylate hydroxytoluene or EDTA was added, as would be expected, the LDL oxidation process was completely arrested as shown by a reduction in the appearance of TBARS and a lower LDL electrophoretic mobility. In the second experiment, LDL oxidation was initiated as described above and at 0, 10 and 20 min, flavonoids were added (4 micrograms/ml). When vitamin E was still present in the LDL solution, the flavonoids were able to both increase the lag phase in the formation of conjugated dienes and to delay the consumption of vitamin E. The present results show that in vitro, flavonoids prevent LDL oxidation in a concentrationdependent manner, delaying the consumption of vitamin E, but they cannot terminate or delay LDL oxidation once vitamin E in LDL is consumed. Xu & Lee 2001 Abstract: Thirty eight plant-derived flavonoids representing seven different structural groups were tested for activities against antibiotic-resistant bacteria using the disc-diffusion assay and broth dilution assay. Among the flavonoids examined, four flavonols (myricetin, datiscetin, kaempferol and quercetin) and two -flavones (flavone and luteolin) exhibited inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA). Myricetin was also found to inhibit the growth of multidrug-resistant Burkholderia -cepacia, vancomycin-resistant enterococci (VRE) and other medically important organisms such as -Klebsiella pneumoniae and Staphylococcus epidermidis. Myricetin was bactericidal to B. cepacia. The results of the radiolabel incorporation assay showed that myricetin inhibited protein synthesis by -B. cepacia. The structure-activity relationship of these flavonoids is discussed. Zhang, et al. 2005 Abstract: The estrogenic activity of 70% EtOH extracts of 32 traditional Chinese medicinal plants, selected according to their reported efficacy for the treatment of menopausal symptoms, was assessed using a recombinant yeast system with both a human estrogen receptor expression plasmid and a reporter plasmid. Among them, 11 (34%) species proved to be active. Polygonum cuspidatum had the highest estrogenic relative potency (RP) (3.28 x 10(-3)), followed by Rheumpalmatum (3.85 x 10(-4)), Cassia obtusifolia (3.49 x 10(-4)), Polygonum multiflorum (2.87 x 10(-4)), Epimedium brevicornum (2.30 x 10(-4)), Psoralea corylifolia (1.90 x 10(-4)), Cynomorium songaricum (1.78 x 10(-4)), Belamcanda chinensis (1.26 x 10(-4)), Scutellaria baicalensis (8.77 x 10(-5)), Astragalus membranaceus (8.47 x 10(-5)) and Pueraria lobata (6.17 x 10(-5)). The EC(50) value of 17beta-estradiol used as the positive control was 0.205+/-0.025 ng/ml (RP=100). This study gave support to the reported efficacy of Chinese medicines used for hormone replacement therapy.