acta teacta tecccchnica corviniensisacta.fih.upt.ro/pdf/2016-3/acta-2016-3-15.pdf · 2016-07-15 ·...

5
© copyright Faculty of Engineering – Hune ACTA TE ACTA TE ACTA TE ACTA TECHNICA CO HNICA CO HNICA CO HNICA CO – Bulletin of Engineering Bulletin of Engineering Bulletin of Engineering Bulletin of Engineering Tome IX [201 Tome IX [201 Tome IX [201 Tome IX [2016], Fascicule ], Fascicule ], Fascicule ], Fascicule ISSN: 2067 ISSN: 2067 ISSN: 2067 ISSN: 2067 – 3809 3809 3809 3809 1. 1. 1. 1. N. KAPILAN N. KAPILAN N. KAPILAN N. KAPILAN TECHNICAL ASPECTS TECHNICAL ASPECTS TECHNICAL ASPECTS TECHNICAL ASPECTS 1. Department of Mechanical Engineeri Bangalore – 562 164, INDIA Abstract Abstract Abstract Abstract: : : : In recent years, adsorption co global warming potentials related to t heat driven refrigeration system and h can be used as the heat source in th refrigerants such as water, can be u adsorption system, different combinati a careful selection of the adsorbent- increase in the demand of the air cond alternative solution to overcome the p development in the adsorbent technolo helps to achieve higher adsorption ca simulation work has been carriedout operating conditions and accommodat system and also provides a review of di Keywords: Keywords: Keywords: Keywords:Cooling system, Adsorption s INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION The use of air conditioners has essential in homes, office, car, I.T In and almost everywhere as it comfortable conditions and im comfort and indoor air quality. T used in the air conditioning system energy and the production of the e environmental impact, including greenhouse gases. The air condition in the automobile consumes arou engine's power and hence increases consumption. Also CFCs, HCFCs a refrigerants used in the air conditio to global warming and also cau depletion. In conventional refrigeration or system, compressor is used to transf indoor to the outdoor. The workin this system is called as refrigerant a phase change during heat tr compression process, the refrigeran temperature increases and the re heats to the surrounding and chang vapour phase to liquid phase. Howe of the refrigerant is high. This li edoara, University POLITEHNICA Timisoara ORVINIENSIS ORVINIENSIS ORVINIENSIS ORVINIENSIS e e e e 3 [July July July July– September September September September] S OF ADSORPTION COOLIN S OF ADSORPTION COOLIN S OF ADSORPTION COOLIN S OF ADSORPTION COOLIN ing, Nagarjuna College of Engineering and Techn ooling systems are getting attention due to ozone the conventionally used refrigerants. The adsorp hence waste heat energy of the industries or au he adsorption system. In adsorption system, t used and hence it can cope with the current ion of adsorbent-adsorbate pairs is used for succ -adsorbate pair is important. With the availab ditioning in the summer, solar adsorption coolin problems associated with the conventional air ogy provides solution to the shortcomings in so apacity per unit mass of adsorbent. In recent ye t to predict the adsorption system dynamic p te design changes efficiently. This paper discuss ifferent types of adsorption systems. system, engine exhaust powered, solar powered become almost ndustries, theatre provides more mproves thermal The compressor m needs electrical electricity has an the release of ning system used und 3kW of the s the vehicle fuel and HFCs based oning contribute use ozone layer air-conditioning fer heat from low ng fluid used in and it undergoes ransfer. During nt’s pressure and efrigerant rejects ges it phase from ever, the pressure iquid refrigerant undergoes expansion from pressure and simultan reduces. This low tempe the evaporator and abs indoor and becomes va refrigerant goes to the c repeats. The refrigeratio systems are most widel commercial and industri demand of the refrigerati day by day due to change income level of the fam refrigeration systems with increases the ozone deple global warming. This lea regulations which enco finding suitable refrigerat more eco-friendly, cos reliable. Among the diff systems, adsorption coo popular as it a thermal e we can use waste heat or ADSORPTION COOLING ADSORPTION COOLING S ADSORPTION COOLING ADSORPTION COOLING S Adsorption is the process fluid are fixed on the wa adsorbed molecules unde NG SYSTEM NG SYSTEM NG SYSTEM NG SYSTEM nology, Devanahalli, e layer depletion issues and ption cooling system is the utomobiles or solar energy the environmental friendly t environmental issues. In cessful operation and hence bility of solar energy and ng is considered as the best conditioning systems. The olar adsorption systems and ears, significant number of performance under various ses the basics of adsorption m higher pressure to lower neously its temperature erature refrigerant goes to sorbs the heat from the apour. This low pressure compressor and the cycle on and air conditioning ly used in the domestic, ial applications. Also, the ion systems are increasing in lifestyle and increase in milies. However the use of h conventional refrigerants etion and also increases the ads to new environmental ourage research work in tion systems which will be st effective, simple and ferent alternative cooling oling system is getting energy driven system and solar energy. SYSTEMS SYSTEMS SYSTEMS SYSTEMS s by which molecules of a alls of a solid material. The ergo no chemical reaction

Upload: others

Post on 21-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ACTA TEACTA TECCCCHNICA CORVINIENSISacta.fih.upt.ro/pdf/2016-3/ACTA-2016-3-15.pdf · 2016-07-15 · The adsorption cooling system is the heat driven refrigeration system and hence

©©©© ccccooooppppyyyyrrrriiiigggghhhhtttt FFFFaaaaccccuuuullllttttyyyy ooooffff EEEEnnnnggggiiiinnnneeeeeeeerrrriiiinnnngggg –––– HHHHuuuunnnneeee

ACTA TEACTA TEACTA TEACTA TECCCCHNICA CORVINIENSIS HNICA CORVINIENSIS HNICA CORVINIENSIS HNICA CORVINIENSIS –––– Bulletin of EngineeringBulletin of EngineeringBulletin of EngineeringBulletin of Engineering Tome IX [201Tome IX [201Tome IX [201Tome IX [2016666], Fascicule ], Fascicule ], Fascicule ], Fascicule ISSN: 2067 ISSN: 2067 ISSN: 2067 ISSN: 2067 –––– 3809380938093809

1. 1. 1. 1. N. KAPILANN. KAPILANN. KAPILANN. KAPILAN

TECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEMTECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEMTECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEMTECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEM 1.Department of Mechanical Engineering, Nagarjuna College of Engineering and Technology, Devanahalli, Bangalore – 562 164, INDIA

AbstractAbstractAbstractAbstract: : : : In recent years, adsorption cooling systems are getting attention due to ozone layer depletion issues and global warming potentials related to the conventionally used refrigerants. The adsorption cooling system is the heat driven refrigeration system and hence waste heat energy of the industries or automobiles or solar energy can be used as the heat source in the adsrefrigerants such as water, can be used and hence it can cope with the current environmental issues. In adsorption system, different combination of adsorbenta careful selection of the adsorbent-increase in the demand of the air conditioning in the summer, solar adsorption cooling is considered as the best alternative solution to overcome the problems associated with the conventional air conditioning systems. The development in the adsorbent technology provides solution to the shortcomings in solar adsorption systems and helps to achieve higher adsorption capacity pesimulation work has been carriedout to predict the adsorption system dynamic performance under various operating conditions and accommodate design changes efficiently. This paper discusses thsystem and also provides a review of different types of adsorption systems.Keywords:Keywords:Keywords:Keywords:Cooling system, Adsorption system, engine exhaust powered, solar powered

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION The use of air conditioners has become almost essential in homes, office, car, I.T Industries, theatre and almost everywhere as it provides comfortable conditions and improvescomfort and indoor air quality. The compressor used in the air conditioning system energy and the production of the electricity has an environmental impact, including the release of greenhouse gases. The air conditioning system used in the automobile consumes around 3kW of the engine's power and hence increases the vehicle fuel consumption. Also CFCs, HCFCs and HFCs based refrigerants used in the air conditioning contribute to global warming and also cause ozone layer depletion. In conventional refrigeration or airsystem, compressor is used to transfer heat from low indoor to the outdoor. The working fluid used in this system is called as refrigerant and it undergoes phase change during heat transfer. During compression process, the refrigerant’s pressure and temperature increases and the refheats to the surrounding and changes it phase from vapour phase to liquid phase. However, the pressure of the refrigerant is high. This liquid refrigerant

nnnneeeeddddooooaaaarrrraaaa,,,, UUUUnnnniiiivvvveeeerrrrssssiiiittttyyyy PPPPOOOOLLLLIIIITTTTEEEEHHHHNNNNIIIICCCCAAAA TTTTiiiimmmmiiiissssooooaaaarrrraaaa

HNICA CORVINIENSIS HNICA CORVINIENSIS HNICA CORVINIENSIS HNICA CORVINIENSIS

], Fascicule ], Fascicule ], Fascicule ], Fascicule 3333 [[[[JulyJulyJulyJuly–––– SeptemberSeptemberSeptemberSeptember]]]]

TECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEMTECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEMTECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEMTECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEM

Department of Mechanical Engineering, Nagarjuna College of Engineering and Technology, Devanahalli,

In recent years, adsorption cooling systems are getting attention due to ozone layer depletion issues and warming potentials related to the conventionally used refrigerants. The adsorption cooling system is the

heat driven refrigeration system and hence waste heat energy of the industries or automobiles or solar energy can be used as the heat source in the adsorption system. In adsorption system, the environmental friendly refrigerants such as water, can be used and hence it can cope with the current environmental issues. In adsorption system, different combination of adsorbent-adsorbate pairs is used for succe

-adsorbate pair is important. With the availability of solar energy and increase in the demand of the air conditioning in the summer, solar adsorption cooling is considered as the best

ve solution to overcome the problems associated with the conventional air conditioning systems. The development in the adsorbent technology provides solution to the shortcomings in solar adsorption systems and helps to achieve higher adsorption capacity per unit mass of adsorbent. In recent years, significant number of simulation work has been carriedout to predict the adsorption system dynamic performance under various operating conditions and accommodate design changes efficiently. This paper discusses thsystem and also provides a review of different types of adsorption systems.

Cooling system, Adsorption system, engine exhaust powered, solar powered

The use of air conditioners has become almost essential in homes, office, car, I.T Industries, theatre and almost everywhere as it provides more comfortable conditions and improves thermal

indoor air quality. The compressor itioning system needs electrical

roduction of the electricity has an environmental impact, including the release of greenhouse gases. The air conditioning system used in the automobile consumes around 3kW of the

reases the vehicle fuel consumption. Also CFCs, HCFCs and HFCs based refrigerants used in the air conditioning contribute

cause ozone layer

In conventional refrigeration or air-conditioning to transfer heat from low

indoor to the outdoor. The working fluid used in this system is called as refrigerant and it undergoes phase change during heat transfer. During compression process, the refrigerant’s pressure and temperature increases and the refrigerant rejects heats to the surrounding and changes it phase from vapour phase to liquid phase. However, the pressure of the refrigerant is high. This liquid refrigerant

undergoes expansion from higher pressure to lower pressure and simultaneously its tereduces. This low temperature refrigerant goes to the evaporator and absorbs the heat from the indoor and becomes vapour. This low pressure refrigerant goes to the compressor and the cycle repeats. The refrigeration and air conditioning systems are most widely used in the domestic, commercial and industrial applications. Also, the demand of the refrigeration systems are increasing day by day due to change in lifestyle and increase in income level of the families. However the use of refrigeration systems with conventional refrigerants increases the ozone depletion and also increases the global warming. This leads to new environmental regulations which encourage research work in finding suitable refrigeration systems which will be more eco-friendly, cost effective, simple and reliable. Among the different alternative cooling systems, adsorption cooling system is getting popular as it a thermal energy driven system and we can use waste heat or solar energy. ADSORPTION COOLING SYSTEMSADSORPTION COOLING SYSTEMSADSORPTION COOLING SYSTEMSADSORPTION COOLING SYSTEMSAdsorption is the process by which molecules of a fluid are fixed on the walls of a solid material. The adsorbed molecules undergo no chemical reaction

TECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEMTECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEMTECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEMTECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEM

Department of Mechanical Engineering, Nagarjuna College of Engineering and Technology, Devanahalli,

In recent years, adsorption cooling systems are getting attention due to ozone layer depletion issues and warming potentials related to the conventionally used refrigerants. The adsorption cooling system is the

heat driven refrigeration system and hence waste heat energy of the industries or automobiles or solar energy orption system. In adsorption system, the environmental friendly

refrigerants such as water, can be used and hence it can cope with the current environmental issues. In adsorbate pairs is used for successful operation and hence

adsorbate pair is important. With the availability of solar energy and increase in the demand of the air conditioning in the summer, solar adsorption cooling is considered as the best

ve solution to overcome the problems associated with the conventional air conditioning systems. The development in the adsorbent technology provides solution to the shortcomings in solar adsorption systems and

r unit mass of adsorbent. In recent years, significant number of simulation work has been carriedout to predict the adsorption system dynamic performance under various operating conditions and accommodate design changes efficiently. This paper discusses the basics of adsorption

undergoes expansion from higher pressure to lower pressure and simultaneously its temperature reduces. This low temperature refrigerant goes to the evaporator and absorbs the heat from the indoor and becomes vapour. This low pressure refrigerant goes to the compressor and the cycle repeats. The refrigeration and air conditioning

re most widely used in the domestic, commercial and industrial applications. Also, the demand of the refrigeration systems are increasing day by day due to change in lifestyle and increase in income level of the families. However the use of

ystems with conventional refrigerants increases the ozone depletion and also increases the global warming. This leads to new environmental regulations which encourage research work in finding suitable refrigeration systems which will be

cost effective, simple and reliable. Among the different alternative cooling systems, adsorption cooling system is getting popular as it a thermal energy driven system and we can use waste heat or solar energy. ADSORPTION COOLING SYSTEMSADSORPTION COOLING SYSTEMSADSORPTION COOLING SYSTEMSADSORPTION COOLING SYSTEMS

process by which molecules of a fluid are fixed on the walls of a solid material. The adsorbed molecules undergo no chemical reaction

Page 2: ACTA TEACTA TECCCCHNICA CORVINIENSISacta.fih.upt.ro/pdf/2016-3/ACTA-2016-3-15.pdf · 2016-07-15 · The adsorption cooling system is the heat driven refrigeration system and hence

ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS –––– Bulletin of EngineeringBulletin of EngineeringBulletin of EngineeringBulletin of Engineering

but simply lose energy when being fixed to the adsorption bed resulting in an exothermic energy output. The vapour compression refrigeration system consists of a compressor, a condenser, an expansion valve, and an evaporator. In adsorption system, the compressor is replaced by a thermal compressor which is operated by heat instead of mechanical energy. The vaporised refrigeradsorbed in the pores of the adsorbent in the reaction chamber. Due to the loading of the adsorbent, the thermal compressor is operated intermittently. A simple adsorption system consists of desorption chamber (solid adsorbent bed), condenser, adsorption chamber and evaporator. In few systems, valves are used between the various components and some utilize expansion valves between the condenser and the evaporator. Figure 1 shows the adsorption system. The adsorption system depends upon the affinity of the adsorbent bed to attract the refrigerant vapour from the evaporator and this process creates a low pressure in the evaporator. When the adsorbent bed is close to the saturation point, the valve between the evaporator and the absorber is closed and heat is applied to adsorbent bed. The addition of heat evaporates the refrigerant and the refrigerant vapour goes to the condenser where it is condensed in the condenser before returning to the evaporator. When this cycle is completed, the adsorbent bed is cooled by the cool water until the adsorption conditions are established. After this process, the valve between the evaporator and the adsorbed is reopened.Adsorption refrigeration system uses solid adsorbent beds to adsorb and desorb a refrigerant in ordobtain cooling effect. These adsorbent beds filled with solid material adsorb and desorb a refrigerant vapour in response to changes in the temperature of the adsorbent. The adsorbent bed desorbs refrigerant when heated and adsorb refrigerant vapor when cooled [1]. A basic adsorption cycle consists of four thermodynamic processes which is shown in the vapour pressure diagram, Figure 1. Heating and Pressurization (1Heating and Pressurization (1Heating and Pressurization (1Heating and Pressurization (1----2)2)2)2) At starting of the process, the adsorbent is cold and saturated with the refrigerant and this state is represented as point 1. When heat is applied, the adsorbent is heated which results in desorbing a certain amount of the refrigerant from the adsorbent. This process causes increase in pressure from evaporator pressure to condenser pressure, without changing the refrigerant uptake and this process continues until the minimum desorption temperature is reached. This process is called as preheating. The end of this process is represented as

ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS Fascicule Fascicule Fascicule Fascicule 3333 [[[[JulyJulyJulyJuly –––– SeptemberSeptemberSeptemberSeptember Tome Tome Tome Tome IXIXIXIX [201[201[201[2016666]]]]

|||| 111100004444 ||||

but simply lose energy when being fixed to the adsorption bed resulting in an exothermic energy

ssion refrigeration system consists of a compressor, a condenser, an expansion valve, and an evaporator. In adsorption system, the compressor is replaced by a thermal compressor which is operated by heat instead of mechanical energy. The vaporised refrigerant is adsorbed in the pores of the adsorbent in the reaction chamber. Due to the loading of the adsorbent, the thermal compressor is operated

A simple adsorption system consists of desorption chamber (solid adsorbent bed), condenser,

rption chamber and evaporator. In few systems, valves are used between the various components and some utilize expansion valves between the condenser and the evaporator. Figure 1 shows the adsorption system. The adsorption system depends

of the adsorbent bed to attract the refrigerant vapour from the evaporator and this process creates a low pressure in the evaporator. When the adsorbent bed is close to the saturation point, the valve between the evaporator and the

eat is applied to adsorbent bed. The addition of heat evaporates the refrigerant and the refrigerant vapour goes to the condenser where it is condensed in the condenser before returning to the evaporator. When this cycle is

cooled by the cool water until the adsorption conditions are established. After this process, the valve between the evaporator and the adsorbed is reopened. Adsorption refrigeration system uses solid adsorbent beds to adsorb and desorb a refrigerant in order to obtain cooling effect. These adsorbent beds filled with solid material adsorb and desorb a refrigerant vapour in response to changes in the temperature of the adsorbent. The adsorbent bed desorbs refrigerant when heated and adsorb refrigerant

A basic adsorption cycle consists of four thermodynamic processes which is shown in the

At starting of the process, the adsorbent is cold and saturated with the refrigerant and this state is represented as point 1. When heat is applied, the adsorbent is heated which results in desorbing a certain amount of the refrigerant from the

This process causes increase in pressure from evaporator pressure to condenser pressure, without changing the refrigerant uptake and this process continues until the minimum desorption temperature is reached. This process is called as

f this process is represented as

state point 2. This process is similar to compression in vapour compression refrigeration system.

Condenser

Evaporat

AdsorptionChamber Cool

Water

Expansion Va

1

3'

4'

Ln P

1 / T

Figure 1. Adsorption Cooling SystemHeating, Heating, Heating, Heating, Desorption and Condensation (2Desorption and Condensation (2Desorption and Condensation (2Desorption and Condensation (2The adsorber continues receiving heat and the desorption process starts from the point 2 and the refrigerant is condensed at a constant pressure in the condenser. The desorption process proceeds until the adsorbent temperamaximum available desorption temperature and the refrigerant uptake reaches the cycle minimum uptake and end of this process is represented as state point 3. This process is similar to condensation in vapour compression refrigeration systeCooling and Depressurization (3Cooling and Depressurization (3Cooling and Depressurization (3Cooling and Depressurization (3After this process, desorption chamber is cooled and the adsorbent is pre-cooled and becomes able to adsorb refrigerant vapour. This results in decreasing the system pressure, from condenser pressure to the evaporatorchanging the refrigerant uptake within the adsorbent. When the adsorber heat exchanger is further pre-cooled a portion of the previously desorbed and condensed refrigerant is adsorbed and the latent heat of vaporization is drawn from the remaining liquid refrigerant in the evaporator. This results in decreasing the refrigerant temperature from state point 3 to state point 4. This process is similar to expansion in vapour compression refrigeration system. Cooling, Adsorption and EvaporatiCooling, Adsorption and EvaporatiCooling, Adsorption and EvaporatiCooling, Adsorption and EvaporatiThe adsorber continues releasing heat while being connected to the evaporator. The adsorbent temperature continues decreasing, which induces

SeptemberSeptemberSeptemberSeptember]]]]

state point 2. This process is similar to compression in vapour compression refrigeration system.

ndenser

rator

HotWater

Desorption Chamber

n Valve

23

4

Figure 1. Adsorption Cooling System Desorption and Condensation (2Desorption and Condensation (2Desorption and Condensation (2Desorption and Condensation (2----3)3)3)3)

The adsorber continues receiving heat and the desorption process starts from the point 2 and the refrigerant is condensed at a constant pressure in the condenser. The desorption process proceeds until the adsorbent temperature reaches the maximum available desorption temperature and the refrigerant uptake reaches the cycle minimum uptake and end of this process is represented as state point 3. This process is similar to condensation in vapour compression refrigeration system. Cooling and Depressurization (3Cooling and Depressurization (3Cooling and Depressurization (3Cooling and Depressurization (3----4)4)4)4) After this process, desorption chamber is cooled and

cooled and becomes able to adsorb refrigerant vapour. This results in decreasing the system pressure, from condenser pressure to the evaporator pressure, without changing the refrigerant uptake within the adsorbent. When the adsorber heat exchanger is

cooled a portion of the previously desorbed and condensed refrigerant is adsorbed and the latent heat of vaporization is drawn from

remaining liquid refrigerant in the evaporator. This results in decreasing the refrigerant temperature from state point 3 to state point 4. This process is similar to expansion in vapour compression refrigeration system. Cooling, Adsorption and EvaporatiCooling, Adsorption and EvaporatiCooling, Adsorption and EvaporatiCooling, Adsorption and Evaporation (4on (4on (4on (4----1)1)1)1) The adsorber continues releasing heat while being connected to the evaporator. The adsorbent temperature continues decreasing, which induces

Page 3: ACTA TEACTA TECCCCHNICA CORVINIENSISacta.fih.upt.ro/pdf/2016-3/ACTA-2016-3-15.pdf · 2016-07-15 · The adsorption cooling system is the heat driven refrigeration system and hence

ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS –––– Bulletin of EngineeringBulletin of EngineeringBulletin of EngineeringBulletin of Engineering

adsorption of vapor. This adsorbed vapor is vaporized in the evaporator. The evaporation heat is supplied by the heat source at low temperature. The adsorption process, within which the cooling effect is produced, starts from state point 4and proceeds by further cooling the adsorberexchanger until the whole amount of refrigerant is evaporated upon removing the cooling load from the surrounding space (refrigerator’s cabin) and adsorbed in the adsorbent. This is equivalent to the "evaporation" in compression cycles. Line 3’ to 4’ represents the saturation line. The processes in loop of 1-refrigeration cycle and the processes in loop of 13-4 is the adsorption cycle which represents the conditions of adsorbent. The basic adsorption cooling system is not a continuous one. An adsorption bed is charged with refrigerant at low temperature and pressure; when adsorption slows down or stops, the adsorption bed is heated and high temperature and pressure gas is released from the bed. To obtain a continuous cooling effect from an adsorption refrigeration system normally two or more adsorbent beds are used in the system [2]. WORKING PAIRSWORKING PAIRSWORKING PAIRSWORKING PAIRS The selection of the adsorbent-adsorbate pair is essential for the successful operation of adsorption system. The commonly used adsorption pairs are, silica gel – water, zeolite – methanol, zeoliteand activated carbon and ammonia. In adsorption system, the refrigerant is chosen based on its evaporating temperature and pressure, heat capacity, ability to be adsorbed on solid beds and environmental impact. In general, refrigerants with high heat capacity per unit volume and low environmental impact are selected. Water can be used as refrigerant due to its high latent heat of evaporation and non-toxicity. Howevpoint and low vapour pressure limits its application. ADVANTAGES OF ADSORPTION SYSTEMS ADVANTAGES OF ADSORPTION SYSTEMS ADVANTAGES OF ADSORPTION SYSTEMS ADVANTAGES OF ADSORPTION SYSTEMS The advantages of adsorption cooling systems are

1. Waste heat energy or solar energy can be used

2. Needs few moving parts 3. Low maintenance 4. Small quantity of electrical energy

consumption is required 5. Negligible ozone layer depletion potential

PERFORMANCE ANALYSIS OF ADSORPTION PERFORMANCE ANALYSIS OF ADSORPTION PERFORMANCE ANALYSIS OF ADSORPTION PERFORMANCE ANALYSIS OF ADSORPTION COOLING SYSTEMCOOLING SYSTEMCOOLING SYSTEMCOOLING SYSTEM Tso et al has developed an adsorption cooling system with silica gel as the adsorbent and water as the adsorbate. Their adsorption cooling system contains two adsorbers, an evaporator, two condensers, one heating and one cooling water tank. The coefficient of performance of their system was about 0.3, at the desorption temperature of 80

ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS Fascicule Fascicule Fascicule Fascicule 3333 [[[[ Tome ITome ITome ITome I

|||| 111100005555 ||||

adsorption of vapor. This adsorbed vapor is vaporized in the evaporator. The evaporation heat is

by the heat source at low temperature. The adsorption process, within which the cooling effect is produced, starts from state point 4and proceeds by further cooling the adsorber–desorber heat exchanger until the whole amount of refrigerant is

on removing the cooling load from the surrounding space (refrigerator’s cabin) and adsorbed in the adsorbent. This is equivalent to the "evaporation" in compression cycles. Line 3’ to 4’

-2-3’-4’ is the refrigeration cycle and the processes in loop of 1-2-4 is the adsorption cycle which represents the

conditions of adsorbent. The basic adsorption cooling system is not a continuous one. An adsorption bed is charged with refrigerant at low

re and pressure; when adsorption slows down or stops, the adsorption bed is heated and high temperature and pressure gas is released from the bed. To obtain a continuous cooling effect from an adsorption refrigeration system normally two or

beds are used in the system [2].

adsorbate pair is essential for the successful operation of adsorption

The commonly used adsorption pairs are, methanol, zeolite-water

and activated carbon and ammonia. In adsorption system, the refrigerant is chosen based on its evaporating temperature and pressure, heat

adsorbed on solid beds and environmental impact. In general, refrigerants with high heat capacity per unit volume and low environmental impact are selected. Water can be used as refrigerant due to its high latent heat of

toxicity. However, its freezing point and low vapour pressure limits its application. ADVANTAGES OF ADSORPTION SYSTEMS ADVANTAGES OF ADSORPTION SYSTEMS ADVANTAGES OF ADSORPTION SYSTEMS ADVANTAGES OF ADSORPTION SYSTEMS The advantages of adsorption cooling systems are

Waste heat energy or solar energy can be

ity of electrical energy

Negligible ozone layer depletion potential PERFORMANCE ANALYSIS OF ADSORPTION PERFORMANCE ANALYSIS OF ADSORPTION PERFORMANCE ANALYSIS OF ADSORPTION PERFORMANCE ANALYSIS OF ADSORPTION

Tso et al has developed an adsorption cooling system with silica gel as the adsorbent and water as the adsorbate. Their adsorption cooling system contains two adsorbers, an evaporator, two condensers, one heating and one cooling water

of performance of their system was about 0.3, at the desorption temperature of 80

degree C, adsorber cooling water inlet temperature of about 34 degree C, evaporating temperature of 14 degree C and adsorption/desorption phase time of 15 minutes. Ahmed Elsthat water/silica gel produce more cooling capacity compared to ethanol/activated carbon adsorbents. Ahmed Shmroukh et al developed an effective heat and mass transfer processes for the adsorbate to obtain applicable adsorption catube heat exchanger core and the adsorbate is adhesive over its surface and located as the core of the adsorber. They reported that the activated carbon powder/R-134a pair is highly recommended to be used as adsorption refrigeration working pair as compared to activated carbon powder/R-407c, activated carbon powder/R-507A, activated carbon granules/R507A, activated carbon granules/Ractivated carbon granules/Rof its higher maximum adsorption capacity thaother tested pairs, to produce a compact, efficient and reliable for long life performance adsorption refrigeration system. Halder and Sarkar developed a refrigeration cycle using activated carbon granules as an adsorbent and carbon dioxide gas as aexperiment has demonstrated that it is feasible to produce a low temperature using an activated carbon bed for adsorption/desorption of carbon dioxide. Skander et al studied the activated carbon / CO2 based adsorption cooling cycles usinpressure-temperature-concentration (diagram. They simulated the specific cooling effect and the coefficient of performance for the driving heat source temperatures ranging from 30 ºC to 90 ºC in terms of different cooling load temperatures with a cooling source temperature of 25 ºC. They found that the maximum COPs of Maxsorband ACF(A10)-CO2 based cooling systems are found to be 0.15 and 0.083, respectively. Jribi et al studied the possibility of using COrefrigerant for the adsorption cooling systems due to the system compactness and the ability to operate with low driving heat source of 80ºC which could be obtained from waste heat or solar energy. They developed and studied the adsorption uptake oon highly porous activated carbon of type Maxsorb III, for temperatures ranging from for pressure up to 10 MPa. The twoadsorption refrigeration cycle allows the system operation at relatively lower regeneration temperatures and the COP of the twofound to be higher than that of the singlecycle for these low regeneration temperatures typically between 50 and 77 degree C. However, the performance of the singlethat of the two-stage cycle

[[[[JulyJulyJulyJuly –––– SeptemberSeptemberSeptemberSeptember]]]] Tome ITome ITome ITome IXXXX [201[201[201[2016666]]]]

degree C, adsorber cooling water inlet temperature of about 34 degree C, evaporating temperature of 14 degree C and adsorption/desorption phase time

Ahmed Elsayed et al results showed that water/silica gel produce more cooling capacity compared to ethanol/activated carbon adsorbents. Ahmed Shmroukh et al developed an effective heat and mass transfer processes for the adsorbate to obtain applicable adsorption capacity using fin and tube heat exchanger core and the adsorbate is adhesive over its surface and located as the core of the adsorber. They reported that the activated

134a pair is highly recommended to be used as adsorption

rking pair as compared to activated 407c, activated carbon

507A, activated carbon granules/R-507A, activated carbon granules/R-407c and activated carbon granules/R-134a. This is because of its higher maximum adsorption capacity than the other tested pairs, to produce a compact, efficient and reliable for long life performance adsorption

Halder and Sarkar developed a refrigeration cycle using activated carbon granules as an adsorbent and carbon dioxide gas as an adsorbate. Their experiment has demonstrated that it is feasible to produce a low temperature using an activated carbon bed for adsorption/desorption of carbon dioxide. Skander et al studied the activated carbon /

based adsorption cooling cycles using the concentration (P-T-W)

diagram. They simulated the specific cooling effect and the coefficient of performance for the driving heat source temperatures ranging from 30 ºC to 90 ºC in terms of different cooling load temperatures h a cooling source temperature of 25 ºC. They

found that the maximum COPs of Maxsorb-CO2 based cooling systems are found

to be 0.15 and 0.083, respectively. studied the possibility of using CO2 as the

refrigerant for the adsorption cooling systems due to the system compactness and the ability to operate with low driving heat source of 80ºC which could be obtained from waste heat or solar energy. They developed and studied the adsorption uptake of CO2 on highly porous activated carbon of type Maxsorb III, for temperatures ranging from -18 to 80ºC and for pressure up to 10 MPa. The two-stage adsorption refrigeration cycle allows the system operation at relatively lower regeneration

the COP of the two-stage cycle is found to be higher than that of the single-stage cycle for these low regeneration temperatures typically between 50 and 77 degree C. However, the performance of the single-stage is higher than

stage cycle for regeneration

Page 4: ACTA TEACTA TECCCCHNICA CORVINIENSISacta.fih.upt.ro/pdf/2016-3/ACTA-2016-3-15.pdf · 2016-07-15 · The adsorption cooling system is the heat driven refrigeration system and hence

ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS –––– Bulletin of EngineeringBulletin of EngineeringBulletin of EngineeringBulletin of Engineering

temperature above 77 degree C. The maximum COP obtained is about 0.16 for evaporation and desorption temperatures of 15ºC and 80ºC, respectively. Skander et al analysed the dynamic behavior of a 4-bed adsorption chiller using highly porous activated carbon of type Maxsorb III as the adsorbent and R1234ze, as the refrigerant. The simulated results shows that, with 80 kg of Maxsorb III, the system is able to produce 2 kW of cooling power at driving heat source temperature of 85 °C which can be obtained from waste heat or solar energy. Lu et al studied the feasibility of improving the performance of the adsorption refrigeration of CaCl2–ammonia adsorption system, by distributing activated carbon uniformly in the mass of CaClthereby helping to enhance mass transfer and uplift the cooling power density. They designed and used a multifunctional heat pipe adsorption refrigerator, in which activated carbon-CaClcompound adsorbent and ammonia as refrigerant. They used water and acetone as the working liquids in the heat pipe. Abdual Hadi et al investigated charging and the influence of the key variables on the performance of a 1.5 tons capacity two bed adsorption chiller with activated carbon-methanol as the adsorption pair. The beds functions as methanol generators and the need of using of two generators is to build a nearly continuous adsorption-desorption cycle. The adsorption chiller was driven by hot water, with a temperature range of 70 to 100 degree C. They reported that the COP of this adsorption chiller was about 0.301, at an outdoor temperature of 25 degree C. They reported that the Two beds adsorption unit can give continue cooling effect and suggested that, using the mass recovery process increases the pre desorption concentramethanol, in the desorption generator, and hence, improving the cycle COP. Branka et alreported that the active carbon hollow fibers compared to classic active carbon possess higher ratio of geometric area to volume which improves the heat and a mass transport. Nawel and Hacene reported that the activated carbon can be produced from carbonized olive stones in presence of argon in the temperature range from 700 to 800 degree C and can be activated by ZnClWang et al developed two heatadsorption systems, one for ice-making and another for air conditioning. They used activated carbonmethanol adsorption pair and the cycle time is short for the both systems. They also reported that the adsorption systems are capable of producing ice of capability of 6 kg ice per kg-adsorbent per day. Baiju & Muraleedharan determinedand desorption characteristics of two activated

ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS Fascicule Fascicule Fascicule Fascicule 3333 [[[[JulyJulyJulyJuly –––– SeptemberSeptemberSeptemberSeptember Tome Tome Tome Tome IXIXIXIX [201[201[201[2016666]]]]

|||| 111100006666 ||||

temperature above 77 degree C. The maximum COP obtained is about 0.16 for evaporation and desorption temperatures of 15ºC and 80ºC, respectively. Skander et al analysed the dynamic

bed adsorption chiller using highly activated carbon of type Maxsorb III as the

adsorbent and R1234ze, as the refrigerant. The simulated results shows that, with 80 kg of Maxsorb III, the system is able to produce 2 kW of cooling power at driving heat source temperature of 85 °C

e obtained from waste heat or solar

Lu et al studied the feasibility of improving the performance of the adsorption refrigeration of

ammonia adsorption system, by distributing activated carbon uniformly in the mass of CaCl2,

o enhance mass transfer and uplift the cooling power density. They designed and used a multifunctional heat pipe adsorption refrigerator,

CaCl2 is used as compound adsorbent and ammonia as refrigerant.

as the working liquids

Abdual Hadi et al investigated charging and the influence of the key variables on the performance of a 1.5 tons capacity two bed adsorption chiller with

methanol as the adsorption pair. nctions as methanol generators and the

need of using of two generators is to build a nearly desorption cycle. The

adsorption chiller was driven by hot water, with a temperature range of 70 to 100 degree C. They

f this adsorption chiller was about 0.301, at an outdoor temperature of 25 degree C. They reported that the Two beds adsorption unit can give continue cooling effect and suggested that, using the mass recovery process increases the pre desorption concentration, of methanol, in the desorption generator, and hence,

Branka et alreported that the active carbon hollow fibers compared to classic active carbon possess higher ratio of geometric area to volume which

mass transport. Nawel and Hacene reported that the activated carbon can be produced from carbonized olive stones in presence of argon in the temperature range from 700 to 800 degree C and can be activated by ZnCl2 and KOH. Wang et al developed two heat-regenerative

making and another for air conditioning. They used activated carbon- methanol adsorption pair and the cycle time is short for the both systems. They also reported that the adsorption systems are capable of producing ice of

adsorbent per day. determined the adsorption

esorption characteristics of two activated

carbon–methanol and activated carbonexperimentally. Their work shows that the maximum adsorption capacity of activated carbonR134a working pair is 1.21 times that of activated carbon–methanol.Astina and Bexperiments on adsorption refrigeration system using activated carbon and propane as the working pair. Two adsorption beds are used to make the refrigeration system working continuously. Each adsorption bed is filled with activated carbonaround 2 kg, and refrigerant 0.4 kg. From the experimental results, they reported that the adsorption refrigeration system provides coefficient of performance, cooling capacity and cycle time around 0.15, 50 kJ and 3h30 min, respectively.Ramji et al simulation results shows that activated carbon-water pair produced the best cooling compared to activated carbonactivated carbon-ammonia working pairs. The methanol and ammonia showed a COP of 0.37 and 0.4, respectively. The cooling capacity for and ammonia showed a value of 0.65 kW and 0.50 kW, respectively. Tamainot et al developed a modbased on the adsorption equilibrium equations of the adsorbent-refrigerant pair and heat flows. The simulation results of 26 various activated ammonia pairs for three cycles (single bed, twoand infinite number of beds) are developed at typical conditions for ice making, air conditioning and heat pumping applications. The driving temperature varies from 80 to 200 degree C. The carbon absorbents investigated are mainly coconut shell and coal based types in multiple forms: monolithic, granular, compacted granular, fibre, compacted fibre, cloth, compacted cloth and powder. Considering a twothermal performances based onobtained with the monolithic carbon KOHWith a driving temperature of 100°C, the cooling production is about 66 MJ m151 MJ m-3 (COP=0.61) for ice making and air conditioning respectively; the heating production is about 236 MJ per m3. CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS The adsorption air conditioning designed in this work still has some key problems. It requires a high welding technique to keep a high vacuum level in the chambers. The leakage from the exhaust gas flow side to the air flow system is difficult to be avoided. The heat transfer from the heated adsorber to the condenser and even to the evaporator through the heat conduction of the metallic shell cannot be avoided. The adsorber, the condenser and the evvacuum chamber and are not separated in the vapour channel from each other, and so, condensing may occur in the evaporator. Therefore,

SeptemberSeptemberSeptemberSeptember]]]]

methanol and activated carbon–R134a, experimentally. Their work shows that the maximum adsorption capacity of activated carbon–R134a working pair is 1.21 times that of activated

Astina and Bun Kisa,performed experiments on adsorption refrigeration system using activated carbon and propane as the working pair. Two adsorption beds are used to make the refrigeration system working continuously. Each adsorption bed is filled with activated carbon around 2 kg, and refrigerant 0.4 kg. From the experimental results, they reported that the adsorption refrigeration system provides coefficient of performance, cooling capacity and cycle time around 0.15, 50 kJ and 3h30 min, respectively.

lation results shows that activated water pair produced the best cooling

compared to activated carbon-methanol and ammonia working pairs. The

methanol and ammonia showed a COP of 0.37 and 0.4, respectively. The cooling capacity for methanol and ammonia showed a value of 0.65 kW and 0.50

Tamainot et al developed a model based on the adsorption equilibrium equations of

refrigerant pair and heat flows. The simulation results of 26 various activated carbon-ammonia pairs for three cycles (single bed, two-bed and infinite number of beds) are developed at typical conditions for ice making, air conditioning and heat pumping applications. The driving temperature varies from 80 to 200 degree C. The

bsorbents investigated are mainly coconut shell and coal based types in multiple forms: monolithic, granular, compacted granular, fibre, compacted fibre, cloth, compacted cloth and powder. Considering a two-bed cycle, the best thermal performances based on power density are obtained with the monolithic carbon KOH-AC. With a driving temperature of 100°C, the cooling production is about 66 MJ m-3 (COP=0.45) and

3 (COP=0.61) for ice making and air conditioning respectively; the heating production is

The adsorption air conditioning designed in this work still has some key problems. It requires a high welding technique to keep a high vacuum level in the chambers. The leakage from the exhaust gas flow side to the air flow side in the air/gas switch system is difficult to be avoided. The heat transfer from the heated adsorber to the condenser and even to the evaporator through the heat conduction of the metallic shell cannot be avoided. The adsorber, the condenser and the evaporator are in one vacuum chamber and are not separated in the vapour channel from each other, and so, condensing may occur in the evaporator. Therefore,

Page 5: ACTA TEACTA TECCCCHNICA CORVINIENSISacta.fih.upt.ro/pdf/2016-3/ACTA-2016-3-15.pdf · 2016-07-15 · The adsorption cooling system is the heat driven refrigeration system and hence

ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS –––– Bulletin of EngineeringBulletin of EngineeringBulletin of EngineeringBulletin of Engineering

more refrigeration power loss is generated. Further improvements are undergoing at present.present a detailed review on the past efforts in the field of solar refrigeration systems. A number of attempts have been made by researchers to improve the performance of the solar powered adsorption subsystems. It is seen that, for successful operation of such systems, a careful selection of the adsorbentadsorbate pair is essential apart from the collector choice, system design and arrangement of subsystems. Acknowledgment Acknowledgment Acknowledgment Acknowledgment Author thank VGST, Government of Karnataka for their support. References References References References [1.] https://en.wikipedia.org/wiki/Absorption_refri

gerator [2.] https://perso.limsi.fr/mpons/pricyc.htm[3.] Tso C.Y., Chan K.C. and Chao C.Y.H,

Experimental Investigation Of A DoubleAdsorption Cooling System For Application In Green Buildings, HEFAT2014 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Orlando, Florida, 1416th July 2014

[4.] Ahmed Elsayed, Raya Al-Dadah, Saad Mahmoud, Investigation of Efficient Adsorbents Using Transient Analysis of Adsorption Chillers with Simulink, Proceedings of the International Conference on Heat Transfer and Fluid Flow, Prague, Czech Republic, Paper No. 199, 199-8, August 11th to 12th, 2014.

[5.] Ahmed N. Shmroukh, Ahmed Hamza H. Ali, Ali K. Abel-Rahman, Experimental Study on Adsorption Capacity of Activated Carbon Pairs with Different Refrigerants, World Academy of Science, Engineering and Technology International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 7(11), 496

[6.] G Halder and S C Sarkar, The cooling effect by an adsorption-desorption refrigeration cycle, Centre for Rural and Cryogenic Research, Journal of Energy in Southern Africa, 18(2), 262007

[7.] Skander Jribi, Anutosh Chakraborty, Ibrahim I. ElSharkawy, Bidyut Baran Saha, Shigeru Koyama, Thermodynamic Analysis of Activated Carbonbased Adsorption Cooling Cycles, World Academy of Science, Engineering and Technology, 43, 2008.

[8.] S. Jribi, El-Sharkawy, S. Koyama, B. B. Saha,On Activated Carbon-CO2 Characteristics And Cycle Performance, International Symposium on NextConditioning and Refrigeration Technology, Tokyo, Japan, 17th to 19th February

[9.] Skander Jribi, Bidyut Baran Saha, Shigeru Koyama, Anutosh Chakraborty, Kim Choon Ng, activated carbon/HFO-1234ze(E) based adsorption cooling cycle, Applied Thermal Engineering, 50(2), 1570–1575, 2013.

ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS ACTA TEHNICA CORVINIENSIS Fascicule Fascicule Fascicule Fascicule 3333 [[[[ Tome ITome ITome ITome I

|||| 111100007777 ||||

more refrigeration power loss is generated. Further improvements are undergoing at present.

detailed review on the past efforts in the field of solar refrigeration systems. A number of attempts have been made by researchers to improve the performance of the solar powered adsorption subsystems. It is seen that, for successful operation

stems, a careful selection of the adsorbent-adsorbate pair is essential apart from the collector choice, system design and arrangement of

Author thank VGST, Government of Karnataka for their

ipedia.org/wiki/Absorption_refri

https://perso.limsi.fr/mpons/pricyc.htm Tso C.Y., Chan K.C. and Chao C.Y.H, Experimental Investigation Of A Double-Bed Adsorption Cooling System For Application In Green Buildings, HEFAT2014 10th International

ence on Heat Transfer, Fluid Mechanics and Thermodynamics, Orlando, Florida, 14th to

Dadah, Saad Mahmoud, Investigation of Efficient Adsorbents Using Transient Analysis of Adsorption Chillers with

Proceedings of the International Conference on Heat Transfer and Fluid Flow, Prague, Czech Republic, Paper No. 199, 199-1to

, 2014. Ahmed N. Shmroukh, Ahmed Hamza H. Ali, Ali K.

Rahman, Experimental Study on Adsorption Capacity of Activated Carbon Pairs with Different

World Academy of Science, Engineering and Technology International Journal

uclear, Materials and Metallurgical Engineering, 7(11), 496-512, 2013 G Halder and S C Sarkar, The cooling effect by an

desorption refrigeration cycle, Centre for Rural and Cryogenic Research, Journal of Energy in Southern Africa, 18(2), 26-30, May

Skander Jribi, Anutosh Chakraborty, Ibrahim I. El-Sharkawy, Bidyut Baran Saha, Shigeru Koyama, Thermodynamic Analysis of Activated Carbon-CO2 based Adsorption Cooling Cycles, World Academy of Science, Engineering and Technology, 43, 2008.

Sharkawy, S. Koyama, B. B. Saha, Study Pair:Adsorption

Characteristics And Cycle Performance, 2010 International Symposium on Next-generation Air Conditioning and Refrigeration Technology,

February 2010. Skander Jribi, Bidyut Baran Saha, Shigeru Koyama, Anutosh Chakraborty, Kim Choon Ng, Study on

1234ze(E) based adsorption cooling cycle, Applied Thermal

1575, 2013.

[10.] Z.S. Lu, R.Z. Wang , L.W. Wang, C.J. ChePerformance analysis of an adsorption refrigerator using activated carbon in a compound adsorbent, Carbon, 44, 747–752, 2006.

[11.] Abdual Hadi N. Khalifa, Fawziea M. Hussein, Faeza M. Hadi, Experimental Study on Two Beds Adsorption Chiller with Regeneration,Applied Science, 5(4), 43

[12.] Branka V. KaludjeroviDanijela Sekulić, Jelena StaAdsorption Characteristics Of Activated Carbon Hollow Fibers, Chemical Industry & Chemical

Engineering Quarterly, 15 (1), 29[13.] Astina and Bun Kisa, Experiment of Adsorption

Refrigeration System Using Activated Carbon and Propane as the Working Pair, Journal of Advanced Research, 3(9), 620 2015.

[14.] H. R. Ramji, S. L. Leo, I. A. W. TAbdullah, Comparative Study Of Three Different Adsorbent-Adsorbate Working Pairs For A Waste Heat Driven Adsorption Air Conditioning System Based On Simulation, IJRRAS, February, 2014.

[15.] Tamainot-Telto, ZacharieJohn, Critoph, Robert E.Roger, Carbon-ammonia pairs for adsorption refrigeration applications: ice making, air conditioning and heat pumping.Journal of Refrigeration, 32 (6), 12122009.

copyright © University POLITEHNICA Timisoara, Faculty of Engineering Hunedoara,

5, Revolutiei, 331128, Hunedoarahttp://acta.fih.upt.ro

[[[[JulyJulyJulyJuly –––– SeptemberSeptemberSeptemberSeptember]]]] Tome ITome ITome ITome IXXXX [201[201[201[2016666]]]]

Z.S. Lu, R.Z. Wang , L.W. Wang, C.J. Chen, Performance analysis of an adsorption refrigerator using activated carbon in a compound adsorbent,

752, 2006. Abdual Hadi N. Khalifa, Fawziea M. Hussein, Faeza M. Hadi, Experimental Study on Two Beds Adsorption Chiller with Regeneration, Modern Applied Science, 5(4), 43-52, August 2011.

Branka V. Kaludjerović, Ljiljana Kljajević,

, Jelena Stašić, Žarko Bogdanov, Adsorption Characteristics Of Activated Carbon Hollow Fibers, Chemical Industry & Chemical

Quarterly, 15 (1), 29−31, 2009. Astina and Bun Kisa, Experiment of Adsorption Refrigeration System Using Activated Carbon and Propane as the Working Pair, International Journal of Advanced Research, 3(9), 620 – 627,

H. R. Ramji, S. L. Leo, I. A. W. Tan and M. O. Abdullah, Comparative Study Of Three Different

Adsorbate Working Pairs For A Waste Heat Driven Adsorption Air Conditioning System Based On Simulation, IJRRAS, 18 (2), 109-121,

Telto, Zacharie, Metcalf, Steven Critoph, Robert E., Zhong, Y. and Thorpe,

ammonia pairs for adsorption refrigeration applications: ice making, air conditioning and heat pumping. International Journal of Refrigeration, 32 (6), 1212-1229,

copyright ©

University POLITEHNICA Timisoara, Faculty of Engineering Hunedoara,

5, Revolutiei, 331128, Hunedoara, ROMANIA http://acta.fih.upt.ro