acronyms - springer978-1-4899-1322-7/1.pdf · acronyms ac/cl acerc anl amu,amu ar&td asa astm...

63
ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI CIT CP CPD CPI CSA CW 2-D 3-D DAE daf aromatic clusters per carbon Advanced Combustion Engineering Research Center Argonne National Laboratories, often referring to the ANL sample coals atomic mass units Advanced Research and Technology Development active surface area American Standard Testing Method Attached tar precursors (Fig. 87) base-catalyzed depolymerization block decay or single pulse Utah Blind Canyon hvb bituminous coal (Fig. 79) Brunauer-Emmett-Teller Brigham Young University Beulah-Zap lignite (Fig. 79) carbon-13 nucleus computer-aided molecular design computer-controlled scanning electron microscope chemical ionization combustion inorganic transformation cross-polarization Chemical Percolation Devolatilization model (Grant et al. 1989) carbon preference index chemical shielding anisotropy Constant wattage, meaning a nonpulsed laser two-dimensional three-dimensional distributed activation energy (pyrolysis model) dry, ash-free

Upload: trinhtu

Post on 08-Apr-2018

225 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

ACRONYMS

AC/Cl ACERC ANL

amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C

CAMD CCSEM CI CIT CP CPD

CPI CSA CW 2-D 3-D DAE daf

aromatic clusters per carbon Advanced Combustion Engineering Research Center Argonne National Laboratories, often referring to the ANL

sample coals atomic mass units Advanced Research and Technology Development active surface area American Standard Testing Method Attached tar precursors (Fig. 87) base-catalyzed depolymerization block decay or single pulse Utah Blind Canyon hvb bituminous coal (Fig. 79) Brunauer-Emmett-Teller Brigham Young University Beulah-Zap lignite (Fig. 79) carbon-13 nucleus computer-aided molecular design computer-controlled scanning electron microscope chemical ionization combustion inorganic transformation cross-polarization Chemical Percolation Devolatilization model (Grant

et al. 1989) carbon preference index chemical shielding anisotropy Constant wattage, meaning a nonpulsed laser two-dimensional three-dimensional distributed activation energy (pyrolysis model) dry, ash-free

Page 2: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

410

DD DECS DISARAY DISCHAIN dmmf DOE DP DRB DTG DTP DVC

EDS ElMS EI EM ESCA FG FG-DVC

FGP

FI FIMS FLASHCHAIN FLASHTWO

FNAA FTIR GC lH

HlC HPLC HT HTA HVA,hvAb HVB,hvBb HVC,hvCb IBCP I,ILHB IR ISO LGC ligA LSHB

ACRONYMS

dipolar dephasing Department of Energy Coal Sample distributed energy array model (Kerstein and Niksa, 1987) distributed energy chain model (Kerstein and Niksa, 1987) dry, mineral-matter, moisture free Department of Energy Dubinin - Polyani demonstrated reserve base differential thermogravimetry detached tar precursors (Fig. 87) depolymerization, vaporization, and cross-linking (pyrolysis model, Solomon et at. 1988) energy dispersive spectra electron ionization mass spectroscopy electron ionization electron microscopy electron spectroscopy for chemical analysis functional group (pyrolysis model, Solomon et at. 1988) functional group-depolymerization, vaporization, and cross­linking (Solomon et al., 1988a) Fletcher-Grant-Pugmire (vapor pressure correlation, Fletcher

et al. 1992b) field ionization field ionization mass spectroscopy linear chain pyrolysis model (Niksa and Kerstein, 1991) tar vaporization with flash distillation analogy (Niksa,

1988a,b) fast neutron activation analysis Fourier transform infrared spectroscopy gas chromatography hydrogen, atomic mass 1 hydrogen-to-carbon ratio (usually by mass % on a daf basis) high-pressure liquid chromatography hydrotreatment high-temperature ash high-volatile A bituminous (coal rank) high-volatile B bituminous (coal rank) high-volatile C bituminous (coal rank) Illinois Basin Coal Sample Program Illinois #6 coal from the ANL samples infrared spectroscopy International Organization for Standardization liquid gas chromatography lignite A (coal rank) Lewis-Stockton high-volatile bituminous coal from ANL

samples (Fig. 79)

Page 3: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

ACRONYMS

lvb LVEI MAS MIPR MS mvb MW m/z N-alkanes NMR N-PAH PAC PAH PCHB PCSP PETC PETCIDU-AR&TD

PFI PSOC

PTHB PV py-EIMS

py-FIMS

py-GCIMS py-LVMS py-MS py-TLGCIMS

py-TQMS RSA RSI Rock-Eval

RPD SA SEC SEM SEMPC SFC subC Tmax TEM

low-volatile bituminous (coal rank) low-voltage electron ionization magic angle spinning multiple independent parallel reaction (pyrolysis model) mass spectroscopy medium-volatile bituminous (coal rank) molecular weight atomic mass (same as amu) normal or straight-chain hydrocarbons nuclear magnetic resonance neutral-polycyclic aromatic hydrocarbon polycyclic aromatic compounds polycyclic aromatic hydrocarbons Pocahontas high-volatile bituminous (coal rank) Premium Coal Sample Program Pittsburgh Energy Technology Center

411

Pittsburgh Energy Technology Center's Direct Utilization-Advanced Research and Technology Development

pristane formation index Penn State Office of Coal Research; designation for coals from the sample bank at Pennsylvania State University Pittsburgh high-volatile bituminous (coal rank) (Fig. 79) pore volume pyrolysis combined with ElMS (electron ionization mass

spectroscopy) pyrolysis combined with FIMS (field ionozation mass spec-

troscopy) pyrolysis-gas chromatography/mass spectroscopy pyrolysis low-voltage mass spectometry pyrolysis combined with mass spectroscopy pyrolysis transfer line gas chromatography and mass spec­troscopy pyrolysis triple-quadrapole mass spectroscopy reactive surface area reactive surface intermediate common analytical technique in geology, similar to TGA

(Burnham et at., 1989b) radio-frequency plasma detector surface area size exclusion (liquid) chromatography scanning electron microscope scanning electron microscopy point count supercritical fluid chromatography subbituminous C (coal rank) temperature of maximum evolution transmission electron microscopy

Page 4: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

412

TG, TGA TG-EIMS

TG-FfIR

TG-LVMS

TGIMS

THF TIC TIl TPD TQMS TSA UFMB

UNDEERC

UNIFAC

VARDI

VARDIA

VASS wt. % WYSC XANES XPS XRD XRFA USGS

ACRONYMS

thermogravimetric analysis thermogravimetric analysis combined with ElMS (electron

ionization mass spectroscopy) thermogravimetric analysis combined with FI1R (Fourier

transform infrared spectroscopy) thermogravimetric analysis combined with L VMS (low­

voltagemass spectometry) thermogravimetric analysis combined with mass spectros-

copy tetrahydrofuran total ion current total ion intensity (from mass spectroscopy) temperature-programmed desorption triple-quadrupole mass spectrometry total surface area Upper Freeport medium-volatile bituminous (coal rank)

(Fig. 79) University of North Dakota Energy and Environmental

ResearchCenter technique for vapor-liquid equilibrium of a continuous

molecularweight distribution (Hartounian and Allen, 1989; Vajdi and Allen, 1989) data analysis technique which deconvolutes complex mass spectral data a self-modeling technique to extract information from mass

spectroscopy data (Windig et al., 1987) variable-angle sample spinning weight percent Wyodak subbituminous C (coal rank) x-ray adsorption near-edge structure spectroscopy x-ray photoelectron spectroscopy x-ray diffraction x-ray fluorescence analysis United States Geological Survey

Page 5: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

NOMENCLATURE

aU A A A A A A ACICI B BT

BL c c C C Ca Cal Cj

dalton d De E

f f J.

attachments Arrhenius rate coefficient (Le., preexponential factor) (varies) concentration of active sites (varies) area (m2)

aromatic nucleii (Niksa and Kerstein, 1991) empirical coefficient in vapor correlation (Niksa and Kerstein, 1991) Arrhenius rate coefficient (Le., preexponential factor) number of aromatic carbon per cluster bridges (Niksa and Kerstein, 1991) moles CO2 formed per mole of CO formed (T indicates temperature-

dependent variable) average bridges and loops per cluster char bridge population (Grant et aI., 1989) fraction fixed carbon from proximate analysis (ash included) char links (Niksa and Kerstein, 1991) concentration (varies) dispersed calcium percentage weight % carbon in aliphatic groups number of carbon atoms in group i (Niksa and Kerstein, 1991) unit of atomic mass diameter (m) effective diffusivity (m2/s) Arrhenius activation energy (kJ/mol) function fraction of broken bridges f = 1 - p (Grant et al., 1989) fraction of carbon that is aromatic (i.e., carbon aromaticity corrected for

carbonyl content) fraction of Sp2 carbons that are incorporated in an aromatic ring fraction of carbons that are aromatic and bridgehead mole fraction of carbons that are carboxyl or carbonyl fraction of carbons that are aromatic and protonated

413

Page 6: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

414

fal

f~ f~ f~ f~ f~

f~ fgas fmelJ1 Fb

Fz g gi G H

H(al) Har Hal HoH /)J{r

Hch hm

hvAb hvBb hvCb j J* k ki

k k.n Ie.

k'f I

"" I ligA lvb Lp £ £* m.

NOMENCLATURE

mole fraction of aliphatic carbon fractions of carbons that are methyl or highly mobile CH and CH2

fraction of carbons that are aromatic and bonded to oxygen fraction of alphatic carbons that are CH and CH2

fraction of carbons that are aromatic and nonprotonated mole fraction of carbons that are aromatic and attached to phenolic or

ether groups mole fraction of carbons that are aromatic with alkyl substitution fraction of coal existing as gas (Fletcher et al., 1992b) fraction of coal existing as metaplast (Fletcher et al., I 992b ) fraction of bridges that are labile (Niksa and Kerstein, 1991) characteristic ignition index gas (Grant et al., 1989) gas formed from reaction i (Grant et al., 1989) gas (Niksa and Kerstein, 1991) instantaneous mole fraction of tar vapor within the coal particle (Niksa

and Kerstein, 1991) weight fraction of donatable hydrogen (Solomon et al., 1988a) weight % of hydrogen attached to aromatic groups weight % of hydrogen in aliphatic groups weight % of hydrogen in hydroxyl groups heat of reaction (J/kg-mole) hydrogen percentage in char mass transfer coefficient (mls) high-volatile A bituminous (coal rank) high-volatile B bituminous (coal rank) high-volatile C bituminous (coal rank) degree of polymerization (Niksa and Kerstein, 1991) largest metaplast fragment (Niksa and Kerstein, 1991) rate constant rate constant for reaction i reaction rate constant (varies) mass transfer coefficient (same as hm) (mls)

reaction rate constant (same as k~ (varies) reaction rate constant per external surface area, concentration units (var-

ies)

intrinsic reaction rate constant per external surface area (varies) reaction rate constant per external surface area, pressure units (varies) length of oligimers (Solomon et al., 1988a) lignite A (coal rank) low-volatile bituminous (coal rank) 10gIO (pressure), used in tar yield correlation (Ko et al., 1987) labile bridge population (Grant et al., 1989) reactive bridge intermediate (Grant et al., 1989) molecular weight of aromatic material in a cluster (Grant et al., 1989)

Page 7: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

NOMENCLATURE 415

mcross

m(C02)

m(Cf4)

m m M,MW M Mi Me

N

p p ppm P Pi pat

Pi Pc Po pb

Pj

mass of a labile bridge (Grant et al., 1989) mass of cross-linked (reattached) metaplast (Fletcher et al., 1992b) total mass of finite fragments (Grant et aI., 1989) concentration of metaplast fragments of size j (Niksa and Kerstein, 1991) mass of unattached fragments (Le., metaplast) (Fletcher et al., 1992b) number of initial cross-link sites per monomer (Solomon et aI., 1988a) number of potential CO2 cross-link sites per monomer (Solomon et aI.,

1988a) number of potential Cf4 cross-link sites per monomer (Solomon et al.,

1988a) true or intrinsic order of reaction mass (kg) molecular weight, average molecular weight per cluster (kg/kg-mole) metaplast (Niksa and Kerstein, 1991) molecular weight of fragment i (Fletcher et aI., 1992b) (kglkg-mole) molecular weight between cross-links (Solomon et aI., 1988a) (kg/kg-

mole) average molecular weight between cross-links (kglkg-mole) molecular weight per aromatic cluster, including attachments (Grant et

aI., 1989) (kg/kg-mole) number-averaged molecular weight (of tar) (Yun et al., 1991) (kglkg-

mole) particle molecular weight (kglkg-mole) average bridge mass per attachment on a cluster mass-to-charge ratio apparent order of reaction order of reaction fragment size index, n = 1 is monomer, etc. (Grant et aI., 1989) concentration of intermediate fragments of size j (Niksa and Kerstein,

1991) intermediate (Niksa and Kerstein, 1991) weight % oxygen in ether groups weight % oxygen in hydroxyl groups oxygen percentage in virgin coal fraction of intact bridges in lattice (Grant et al., 1989) intact linkages (Niksa and Kerstein, 1991) parts per million from reference (tetramethyl silane) total pressure (Pa) partial pressure of fragment i (Pa) saturated vapor pressure of metaplast (Pa) vapor pressure of component i (Pa) empirical coefficient in vapor correlation (Niksa and Kerstein, 1991) average fraction of intact bridges fraction of labile bridges (Niksa and Kerstein, 1991) partial pressure of tj (jth polymerized tar fragment) (Niksa and Kerstein,

1991) (Pa)

Page 8: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

416

p,P Q

rj

R R r,R subB subC S S SC

v V W

Wi X

X XTAR

X ~

NOMENCLATURE

partial pressure [pa (or atm)] swelling ratio of the volume of swollen coal to original coal volume at

equilibrium with the swelling solvent population of n-cluster fragments expressed on a per cluster basis (Grant

et ai., 1989)

diffusion rate (kg/s) apparent reaction rate (kg/s) particle radius, pore radius (p.m, m) particle reaction rate (kg/s) total particle reaction rate (sum of reaction rates of devolatilization and

all oxidizers) (kg/s) normalized total particle reaction rate, (kg/kg s) apparent reaction rate of char per external surface area (kg/m2/s) intrinsic reaction rate per external surface area (kg/m2/s)

reaction rate of oxidizer 0 per external surface area (kg/m2/s) maximum reaction rate per external surface area (film-diffusion control,

or Zone III) (kg/m2/s) concentration of reactant fragments of size j (Niksa and Kerstein, 1991) gas constant (8314.4) (J/kg-mol/K) reactant (Niksa and Kerstein, 1991) reaction rate (varies) subbituminous B (coal rank) subbituminous C (coal rank) peripheral groups (Niksa and Kerstein, 1991) internal pore surface area (m2/g) average number of side chains on a cluster concentration of tar fragments of size j (Niksa and Kerstein, 1991) time (s) tar (Niksa and Kerstein, 1991) temperature (K) critical temperature of reaction, defined as the particle temperature when

a certain fraction of char has been consumed under a standard tempera­ture and/or heating condition (K)

fraction of volatiles from proximate analysis (ash included) volume (m3)

fraction of moisture from proximate analysis (ash included) fraction of group i in char fraction (Serio et aI., 1987) extent of reaction fraction burned correlating parameter for tar yield (Ko et ai., 1987) char fraction in FG model (Serio et ai., 1987) mass fraction of carbon in the parent coal (daf basis)

mole fraction of mj (Niksa and Kerstein, 1991) mole fraction of fragment i in liquid phase functional group fraction for FG model (Serio et ai., 1987)

Page 9: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

NOMENCLATURE 417

Yi Z 1 Adj 2 Adj a a a

f3 f3 f3

'Y 'Y

4> p

P 11 X Xb (J

1/1 a a+1

7

7

750

VB

Vc

v, Vs

~p

Subscripts

mole fraction of fragment i in gas phase empirical coefficient in vapor correlation (Niksa and Kerstein, 1991) aromatic hydrogen with one adjacent hydrogen aromatic hydrogen with two adjacent hydrogens burning mode parameter: plpo = (mJ"",t and did., = (mJmoYl-a)13

correlating coefficient for tar yield (Ko et 01., 1987) correlating coefficient for tar/metaplast vapor pressure (Fletcher et 01.,

1992b) correlating coefficient for tar yield (Ko et 01., 1987) fraction of char links, p(O)(1 - Fb(O» (Niksa and Kerstein, 1991) correlating coefficient for tar/metaplast vapor pressure (Fletcher et 01.,

1992b) correlating coefficient for tar/metaplast vapor pressure (Fletcher et 01.,

1 992b) characteristic size (VP/Ap , or dP/3) (m) change in volume during reaction referred to unit volume of oxygen 'Y

= (1/1 - 1)/(1/1 + 1) side chain (Grant et 01., 1989) void fraction or porosity Thiele modulus composite rate constant k,jkc (Grant et 01., 1989) density (kglm3)

effectiveness factor (t~tn ratio of actual burning rate to maximum burning rate (t~t':n) mole fraction of bridgehead carbons site coverage fraction of carbon consumed that forms CO2 at the surface standard deviation coordination number (number of attachments per cluster) used in lattice

model (Grant et 01., 1989) tortuosity the number of broken bridges per cluster (Grant et 01., 1989) time to bum 50% of the char (s) selectivity coefficient of bridge scission versus spontaneous condensation

(Niksa and Kerstein, 1991) stoichiometric coefficient for bridge conversion into noncondensible

gases (Niksa and Kerstein, 1991) stoichiometric reaction rate coefficient (the number of moles of product

formed per mole of oxidizer) ratio of active surface area to external surface area

A aromatic nucleus a apparent

Page 10: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

418

ar av b B C c, cross ch cr, crit d e g,G g,G

j m max min L MON N NL P PS o o p p ref R s S t T vc {)

o

aromatic average labile bridge bond-breaking, labile bridges char link cross-links char critical diffusion effective gas, bulk gas stream gas index for species i, intrinsic index for species j (film decomposition) maximum, mass transfer maximum minimum labile bridges monomer nuclei nonlabile bridges peripheral groups pyrydine soluble oxidizer initial condition particle pore reference bimolecular recombination surface peripheral groups true, total total (per monomer) virgin coal side chains initial condition (time = 0)

Superscripts

b H sat v " *

bridges hydrogen saturated condition vapor per surface area pseudo, intermediate state constant (Eq. 5.24)

NOMENCLATURE

Page 11: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES

Abdullah, W. H., Murchison, D., Jones, J. M., Telnaes, N., and Gjelberg, J., 1988, Lower carboniferous coal depositional environments on Spitsbergen, Svalbard, Org. Geochem. 13:953-964.

Adschiri, T., and Furusawa, T., 1987, Estimation of dynamic change in gasification rate of chars. II: A common formulation of dynamic change in experimentally observed surface area during steam gasification of char, Chem. Eng. Sci. 42:1313-1317.

Adschiri, T., Kojima, T., and Furusawa, T., 1987, Estimation of dynamic change in gasification rate of chars. II: Overlapped grain models, Chem. Eng. Sci. 42:1319-1322.

Ahmed, S., and Back, M. H., 1985, The role of the surface complex in the kinetics of the reaction of oxygen with carbon, Carbon 23:513-524.

Alemany, L. B., Grant, D. M., Alger, T. D., and Pugmire, R. J., 1983a, Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 3: Effect of the 13C_'H dipolar interaction on cross polarization and carbon-proton dephasing, J. Am. Chem. Soc. 105:6697 -6704.

Alemany, L. B., Grant, D. M., Pugmire, R. J., Alger, T. D., and Zilm, K. W., 1983b, Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. I: Highly protonated molecules, J. Am. Chem. Soc. 105:2133-2141.

Alemany, L. B., Grant, D. M., Pugmire, R. J., Alger, T. D., and Zilm, K. W., 1983c, Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 2: Molecules of low or remote protonation, J. Am. Chem. Soc. 105:2142-2147.

Alemany, L. B., Grant, D. M., Pugmire, R. J., and Stock, L. M., 1984, Solid state magnetic resonance spectra of Illinois No.6 coal and some reductive alkylation products, Fuel 63:513 -521.

Allan, J., and Larter, S. R., 1983, Aromatic structures in coal maceral extracts and kerogens, in Advances in Organic Geochemistry-1981 (M. Bjoroey, ed.), pp. 534-545, Wiley, New York.

Alpern, B., 1987, Some reflections on coal petrology and coal classification, Newcastle Symp. Advances in the Study of the Sydney Basin, 21st, Newcastle, N.S.W., Australia, Dept. of Geology, University of Newcastle, Newcastle, 273, pp. 27-35.

Alpern, B., Lemos de Sousa, M. J., and Flores, D., 1989, A progress report on the Alpern coal classification, coal: classification, coalification, mineralogy, trace-element chemistry, and oil and gas potential (P. C. Lyons and B. Alpern, Eds.), Int. J. Coal Geo/. 13:1-19.

American Society for Testing and Materials, 1984, Committee D-5 on Coal and Coke, ASTM

419

Page 12: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

420 REFERENCES

Standards on Coal and Coke, American Society for Testing and Materials, Philadelphia, PA.

Amundson, N. R., 1981, Modeling of gasification processes, Final Report, U.S. DOE Contract No. DE-FG21-78ETlOI58, University of Houston, Houston, TX.

Anderson, K. B., and Winans, R. E., 1991, Structure and structural diversity in resinites as detennined by pyrolysis-gas chromatography-mass spectrometry, Preprint, Am. Chem. Soc., Div. Fuel Chem. 36(2):765-773.

Anthony, D. B., 1974, Rapid devolatilization and hydrogasification of pulverized coal, Sc.D. thesis, MIT, Cambridge, MA.

Anthony, D. B., and Howard, J. B., 1976, Coal devolatilization and hydrogasification, AlChE J. 22:625-656.

Anthony, D. B., HOWard, J. B., Hottel, H. C., and Meissner, H. P., 1975, Rapid devolatilization of pulverized coal, Fifteenth Int. Symp. Combustion, The Combustion Institute, pp. 1303-1317.

Arthur, J., 1951, Reactions between carbon and oxygen, Trans. Faraday Soc. 47:164. Atkinson, B., and Merrick, D., 1983, Mathematical models of the thermal decomposition of coal.

4: Heat transfer and temperature profiles in a coke-oven charge, Fuel 62:553-561. Averitt, P., 1975, Coal resources of the United States, January I, 1974, U.S. Geological Survey

Bull., No. 1412. Axelson, D. E., 1985, Solid State Nuclear Magnetic Resonance of Fossil Fuels, Multiscience,

Montreal, Canada. Bailey, J. G., Tate, A., Diessel, C. F. K., and Wall, T., F., 1990, A char morphology system

with applications to coal combustion, Fuel 69:225-239. Baker, E. W., and Louda, J. W., 1986, Porphyrins in the geological record, in Biological Markers

in the Sedimentary Record (R. B. Johns, ed.), pp. 125-225, Elsevier, Amsterdam. Ballal, G., Amundson, N. R., and Zygourakis, K., 1988, Pore structural effects in catalytic

gasification of coal chars, AIChE J. 34:426-434. Ballal, G., and Zygourakis, K., 1986, Gasification of coal chars with carbon dioxide and oxygen,

Chem. Eng. Commun. 49:181-195. Ballal, G., and Zygourakis, K., 1987a, Evolution of pore surface area during noncatalytic gas­

solid reactions. 1: Model development, Ind. Eng. Chem. Res. 26:911-921. Ballal, G., and Zygourakis, K., 1987b, Evolution of pore surface area during noncatalytic gas­

solid reactions. 2: Experimental results and model validation, Ind. Eng. Chem. Res. 26: 1787-1796.

Bartholomew, C. H., Gopalakrishnan, R., and Fullwood, M., 1991, Calcium oxide catalysis of char oxidation, Proc. 9th Ann. Int. Pittsburgh Coal Conf., Pittsburgh, PA, pp. 1140-1145.

Bartle, K. D., 1988a, Structural analysis of coal derivatives, in New Trends in Coal Science (Y. Yurum, ed.), pp. 169-186, Kluwer, Dordrecht, The Netherlands.

Bartle, K. D., 1988b, Chromatographic techniques in coal science, in New Trends in Coal Science (Y. Yurum, ed.), pp. 271-285, Kluwer, Dordrecht, The Netherlands.

Bartle, K. D., Mills, D. G., Mulligan, M. J., Amaechina, I. 0., and Taylor, N., 1986, Errors in determination of molecular mass distribution of coal derivatives by size-exclusion chroma­tography, Anal. Chem. 58:2403-2408.

Bartle, K. D., Mulligan, M. J., Taylor, N., Martin, T. G., and Snape, C. E., 1984, Moleculear mass calibration in size-exclusion chromatography of coal derivatives, Fuel 63: 1556-1560.

Barton, W. A., and Lynch, L. J., 1989, IH NMR spin-lattice relaxation in bituminous coals, Energy Fuels 3:402-411.

Basu, P., 1985, A review of combustion of single coal particles in fluidized beds, Trans. CSME 9:142-149.

Bateman, K., 1993, Mm-sized coal particle combustion at elevated pressures, M.S. thesis, Brig­ham Young University, Provo, UT.

Page 13: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 421

Bautista, J. R., Russel, W. B., and Saville, D. A., 1986, Time-resolved pyrolysis distributions of softening coals, Ind. Eng. Chem. Fundam. 25:536-544.

Bax, A., Szeverenyi, N. M., and Maciel, G. E., 1983, Chemical shift anisotropy in powdered solids studied by 2D Fr NMR with flipping of spinning axis, J. Magn. Reson. 55:494-497.

Baxter, L. L., 1991, Char fragmentation and fly ash formation during coal combustion, Proc. 8th Ann. Pittsburgh Coal Conf., p. 19.

Ben-Aim, R. I., 1987, Influence of structural parameters on the mechanism of combustion of coal, Int. Chem. Eng. 27:70-75.

Benson, S. A., and Holm, P. L., 1985, Comparison of inorganic constituents in three low-rank coals, Ind. Eng. Chem. Prod. Res. Dev. 24:145-149.

Benson, S. A., Jones, M. L., and Harb, J. N., 1993, Ash formation and deposition, in Fundamentals of Coal Combustion (L. D. Smoot, Ed.), pp. 299-373, Elsevier, Amsterdam.

Benson, S. A., Kalmanovitch, D. P., Zygarlicke, C. J., and Steadman, E. N., 1989, Studies of ash deposit formation from Powder River basin and Fort Union coals, presented at the 15th Biennial Low-Rank Fuels Symp., University of North Dakota and the U.S. DOE, St. Paul, MN.

Benson, S. W., 1976, Thermochemical Kinetics, Wiley, New York. Berkowitz, N., 1985, Coal Science and Technology. 7: The Chemistry of Coal, Elsevier, New

York. Best, P. E., Solomon, P. R., Serio, M. A., Suuberg, E. M., Mott, W. R., Jr., and Bassilakis, R.,

1987, The relationship between char reactivity and physical and chemical structural features, Preprint. Am. Chem. Soc., Div. Fuel Chem. 32(4):138-146.

Bhatia, S. K., 1987, Modeling the pore structure of coal, AIChE J. 33:1707-1718. Bhatia, S. K., and Perlmutter, D. D., 1980, A random pore model for fluid-solid reactions. I:

Isothermal, kinetic control, AIChE J. 26:379-384. Bhatia, S. K., and Perlmutter, D. D., 1981a, A random pore model for fluid-solid reactions. ll:

Diffusion and transport effects, AIChE J. 27:247-254. Bhatia, S. K., and Perlmutter, D. D., 1981b, The effect of pore structure on fluid-solid reactions:

Application to the S02-lime reaction, AIChE J. 26:379-384. Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, Wiley, New

York. Botto, R. E., Hayatsu, R., Scott, R. G., McBeth, R. L., and Winans, R. E., 1985, l3C nuclear

magnetic resonance tracer studies to probe coalification, Proc. Int. Conf. Coal Sci., Sydney pp.624-627.

Boudou, J., 1990, Coal desulfurization by programmed-temperature pyrolysis and oxidation, in Geochemistry of Sulfur in Fossil Fuels (W. L. Orr and C. M. White, Eds.), pp. 345-364, ACS Symp. Series 429, Am. Chern. Soc., Washington, DC.

Boudou, J-P., Durand, B., and Oudin, J-L., 1984, Diagenetic trends of a Tertiary low-rank coal series, Geochim. Cosmochim. Acta 48:2005-2010.

Bouska, V., 1981, Geochemistry of Coal, Elsevier, New York. Braun, R. L., and Burnham, A. K., 1987, Analysis of chemical reaction kinetics using a distribu­

tion of activation energies and simpler models, Energy & Fuels 1:153-161. Brendenberg,1. B., Huuska, M., and Vuori, A., 1987, Latest advances in thermal and catalytic

reactions of the ether bond in coal and related model compounds, in Coal Science and Chemistry (A. Volborth, ed.), pp. 1-30, Elsevier, Amsterdam.

Brenner, D., 1985, The macromolecular nature of bituminous coal, Fuel 64:167-173. Brewster, B. S., Baxter, L. L., and Smoot, L. D., 1988, Treatment of coal devolatilization in

comprehensive combustion modeling, Energy Fuels 2:362-370. Brooks, J. D., and Smith, J. W., 1967, The diagenesis of plant lipids during the formation of

coal, petroleum and natural gas. I: Changes in the n-paraffin hydrocabons, Geochim. Cos­mochim. Acta 31:2389-2397.

Page 14: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

422 REFERENCES

Brooks, P. J., and Essenhigh, R. H., 1986, Variation of ignition temperatures of fuel particles in vitiated oxygen atmospheres: detennination of reaction mechanism, 21st Int. Symp. on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 293-302.

Burganos, V. N., and Sotirchos, S. V., 1987, Effective diffusivities in cylindrical capillary­spherical-cavity pore structures, AIChE J. 33:1678-1689.

Burganos, V. N., and Sotirchos, S. V., 1988, Simulation of Knudsen diffusion in random networks of parallel pores, Chem. Eng. Sci. 43:1685-1694.

Burganos, V. N., and Sotirchos, S. V., 1989a, Fragmentation in random pore structures, Chem. Eng. Commun. 85:95-112.

Burganos, V. N., and Sotirchos, S. V., 1989b, Knudsen diffusion in parallel, multidimensional or randomly oriented capillary structures, Chem. Eng. Sci. 44:2451-2462.

Burganos, V. N., and Sotirchos, S. V., 1989c, Diffusion in pore networks: effective medium theory and smooth field approximation, Chem. Eng. Sci. 44:2629-2637.

Burnham, A. K., Braun, R. L., Gregg, H. R., and Samoun, A. M., 1987, Comparison of methods for measuring kerogen pyrolysis rates and fitting parameters, Energy & Fuels, 1:452-458.

Burnham, A. K., Braun, R. L., and Samoun, A. M., 1989b, Further comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters, Org. Geochem. 13:839-845.

Burnham, A. K., Oh, M. S., Crawford, R. W., and Samoun, A. M., 198980 Pyrolysis of Argonne premium coals: activation energy distributions and related chemistry, Energy & Fuels 3:42-55.

Butler, J., Marsh, H., and Goodarzi, F., 1988, World coals: genesis of the world's major coalfields in relation to plate tectonics, Fuel 67:269-274.

Cagniant, D., Gruber, R., Lacordaire, C., Legrand, A. P., Sderi, D., Sfihi, H., Tounge, P., Quinton, M. F., Bunte, G., Jasienko, S., and Machinkowska, H., 1991, Characterization of coals and their macerals by solid state 13C n.m.r. and FT-Lr., Fuel 70:675-681.

Calkins, W. H., 1987, Investigation of organic sulfur-containing structures in coal by flash pyrolysis experiments, Energy & Fuels 1:59-64.

Calkins, W. H., and Spackman, W., 1986, Tracing the origins of poly methylene moieties in coal, Int. J. Coal Geol. 6:1-19.

Callot, H. J., Ocampo, R., and Albrecht, P., 1990, Sedimentary porphyrins: correlations with biological precursors, Energy & Fuels 4:635-639.

Calo, J. M., and Hall, P. J., 1989, A mathematical model of temperature programmed desorption of oxygen complexes from porous chars and carbons, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(1):71-78.

Campbell, R. M., Djordjevic, N. M., Markides, K. E., and Lee, M. L., 1988, Supercritical fluid chromatographic determination of hydrocarbon groups in gasoline and middle distillate fuels, Anal. Chem. 60:356-362.

Campbell, R. M., and Lee, M. L., 1986, Supercritical fluid fractionation of petroleum and coal­derived mixtures, Anal. Chem. 58:2247-2251.

Caram, H. S., and Amundson, N. R., 1977, Diffusion and reaction in a stagnant boundary layer about a carbon particle, Ind. Eng. Chem. Fundam. 16:171-181.

Carangelo, R. M., Solomon, P. R., and Gerson, D. J., 1987, Application of TG-FTIR to study hydrocarbon structure and kinetics, Fuel 66:960-967.

Carlson, G. A., 1991, Molecular modeling studies of bituminous coal structure, Pre print, Am. Chem. Soc., Div. Fuel Chem. 36(1):398-404.

Carlson, G. A., and Granoff, B., 1989, Modeling of coal structure using computer-aided molecular design, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(3):780-786.

Carlson, R. E., 1991, High resolution chromatographic characterization of depolyermerized coals of different rank, M.S. thesis, Department of Chemistry, Brigham Young University, Provo, UT.

Page 15: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 423

Carlson, R. E., Critchfield, S., Vorkink, W. P., Dong, I.-Z., Pugmire, R. I., Bartle, K. D., Lee, M. L., Zhang, Y., and Shabtai, I., 1992, High resolution chromatographic characterization of depolymerized coals of different rank, Fuel 71:19-29.

Carr, A. D., and Williamson, 1. E., 1990, The relationship between aromaticity, vitrinite re­flectance and maceral composition of coals: implications for the use of vitrinite reflectance as a maturation parameter, Org. Geochem. 16:313-330.

Caton, 1. A., and Rosegay, K. H., 1983, A review and comparison of reciprocating engine operation using solid fuels, SAE Paper 831362.

Causton, P., and McEnaney, B., 1985, Determination of active surface areas of coal chars using a temperature-programmed desorption technique, Fuel 64:1441-1452.

Chaffee, A. L., Hoover, D. S., Johns, R. B., and Schweighardt, F. K., 1986, Biological markers extractable from coal, in Biological Markers in the Sedimentary Record (R. B. Iohns, ed.), pp. 311-345, Elsevier, Amsterdam.

Chaffee, A. L.,Iohns, R. B., Baerken, M. I., de Leeuw,I. W., Schenck, P. A., and Boon, 1. I., 1984, Chemical effects in gelification processes and lithotype formation in Victorian brown coal, in Advances in Organic Geochemistry (P. A. Schenck, 1. W. de Leeuw, and G. W. M. Lijmbach, eds.), Org. Geochem. 6:409-416.

Chakravarty, T., Windig, W., Hill, G. R., Meuzelaar, H. L. C., and Khan, M., R., 1988, Time­resolved pyrolysis mass spectrometry of coal: a new tool for mechanistic and kinetic studies, Energy & Fuels 2:400-405.

Chan, M. L., Moody, K. N., Mullins,I. R., and Williams, A., 1987, Low-temperature oxidation of soot, Fuel 66:1694-1698.

Chang, H-C. K., 1989, Characterization of coal molecular structure using high resolution chro­matographic techniques, Ph.D. dissertation, Department of Chemistry, Brigham Young Uni­versity, Provo, UT.

Chang, H-C. K., Bartle, K. D., Markides, K. E., and Lee, M. L., 1992, Structural comparison of low-molecular-weight extractable compounds in different rank coals using capillary column chromatography, in Advances in Coal Spectroscopy (H. L. C. Meuzelaar, ed.), pp. 141-164, Plenum, New York.

Chang, H-C. K., Nishioka, M., Bartle, K. D., Wise, S. D., Bayona, 1. M., Markides, K. E., and Lee, M. L., 1988, Identification and comparison oflow-molecular-weight neutral constituents in two different coal extracts, Fuel 67:45-57.

Chang, H-C. K., Skelton, R. I., Ir., Markides, K. E., and Lee, M. L., 1990, Determination of sulfur-containing polycyclic aromatic compounds in coal extracts using capillary column gas chromatography with radio frequency plasma detection, Polycyclic Aromatic Compounds 1:251-264.

Charpenay, S., Serio, M. A., and Solomon, P. R., 1992, The prediction of coal char reactivity under combustion conditions, 24th Int. Symp. Combustion, The Combustion Institute, Pitts­burgh, PA, 1189-1197.

Charpenay, S., Serio, M. A., and Solomon, P. R., 1994, A general model of char reactivity for bituminous coals, to be submitted to Energy & Fuels.

Chatterjee, K., Bal, B., Stock, L. M., and Zabransky, R. F., 1989b, Sources of carbon dioxide formed during coal pyrolysis, Energy & Fuels 3:427 -428.

Chatterjee, K., Stock, L. M., and Zabransky, R. F., 1989a, The pathways for thermal decomposi­tion of aryl alkyl ethers during coal pyrolysis, Fuel 68:1349-1353.

Chen, 1., Castagnoli, C., and Niksa, S., 1990, The effects of secondary reactions on product and elemental distributions from rapid coal pyrolysis, Paper no. 90-48 presented at the Western States SectionlThe Combustion Institute, San Diego, CA.

Chen, M., Fan, L., and Essenhigh, R. H., 1984, Prediction and measurement of ignition tempera-

Page 16: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

424 REFERENCES

tures of coal particles, 20th Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1513-1521.

Choi, C-Y., Muntean, I. V., Thompson, A. R., and Botto, R. E., 1989, Characterization of coal macerals using combined chemical and NMR spectroscopic methods, Energy & Fuels 3:528-533.

Chou, C.-L., 1990, Geochemistry of sulfur in coal, in Geochemistry of Sulfur in Fossil Fuels (W. L. Orr and C. M. White, eds.), pp. 30-52, ACS Symp. Series 429, Am. Chern. Soc., Washington, DC.

Cody, G. D., Ir., Larsen, I. W., Siskin, M., and Cody, G. D., Sr., 1989, Correlation of optical birefringence with coal rank. Structural implications, Energy & Fuels 3:551-556.

Cohen, A. D., and Spackman, W., 1980, Phytogenic organic sediments and sedimentary environ­ments in the Everglades-mangrove complex. 1lI: The alteration of plant material in peats and the origin of coal macerals, Palaeontographica 172(Part B):125-149.

Cook, A. C., and Struckmeyer, H., 1986, The role of coal as a source rock for oil, in Second South­eastern Australia Oil Exploration Symposium (R. C. Glenie, ed.), pp. 419-432, Melbourne, Australia.

Cope, R. F., 1993, Effects of minerals on the oxidation rates of Beulah Zap lignite char, Ph.D. dissertation, Department of Chemical Engineering, Brigham Young University, Provo, UT.

Cotterman, R. L., Bender, R., and Prausnitz, I. M., 1985, Phase equilibria for mixtures containing very many components. Development and application of continuous thermodynamics for chemical process design, Ind. Eng. Chern. Process Des. Dev. 24:194-203.

Cotterman, R. L., and Prausnitz, I. M., 1985, Flash calculations for continuous or semicontinuous mixtures using an equation of state, Ind. Eng. Chern. Process Des. Dev. 24:434-443.

Crawford, D. L., and Gupta, R. K., 1990, Characterization of extracellular bacterial enzymes which depolymerize a soluble lignite coal polymer, Preprint, Am. Chern. Soc., Div. Fuel Chem. 35(3):846-855.

Crelling, I. C., 1989, Separation and characterization of coal macerals: accomplishments and future possibilities, Pre print. Arn. Chem. Soc., Div. Fuel Chem. 34(1):249-255.

Crelling, I. C., Pugmire, R. I., Meuzelaar, H. L. C., McClennen, W. H., Huai, H., and Karas, I., 1991, Chemical structure and petrology of resinite from Hiawatha "B" coal seam, Energy & Fuels 5:688-694.

Crelling, I. C., Skorupska, N. M., and Marsh, H., 1988, Reactivity of coal macerals and lithotypes, Fuel 67:781-785.

Cypres, R., 1987, Aromatic hydrocarbons formation during coal pyrolysis, Fuel Proc. Technol. 15:1-15.

Davidson, R. M., 1980, Molecular structure of coal, Report number ICI1SfI'R 08, lEA Coal Research, London.

Davidson, R. M., 1982, Molecular structure of coal, in Coal Science, Vol. 1 (M. L. Gorbaty, I. W. Larsen and I. Wender, eds.), pp. 83-160, Academic Press, New York.

Davidson, R. M., 1986, Nuclear Magnetic Resonance Studies of Coal, lEA Coal Research, London.

Davies, I. L., Markides, K. E., Bartle, K. D., and Lee, M. L., 1990, Multidimensional supercritical fluid chromatography, in Multidimensional Chromatography (H. I. Cortes, ed.), pp. 301-330, Dekker, New York.

Davis, A., Mitchell, G. D., Derbyshire, F. I., Rathbone, R. F., and Lin, R., 1991, Optical properties of coals and liquefaction residues as indicators of reactivity, Fuel 70:352-360.

Davis, A., Rathbone, R. F., Lin, R., and Quick, I. C., 1990, Observations concerning the nature of maceral fluorescence alteration with time, Org. Geochem. 16:897-906.

De liang, W., Lee, I., and Yang, R. Y. K., 1988, Microstructural variations of lignite, subbitumi-

Page 17: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 425

nous and bituminous coals and their high temperature chars, Fuel Proc. Technol. 18: 11-23.

dela Rosa, L., Pruski, M., Lang, D., Gerstein, B., and Solomon, P., 1992, Characterization of the Argonne premium coals by using lH and 13C NMR, and FTIR spectroscopies, Energy & Fuels 6:460-468.

de Leeuw, J. W., and Largeau, C., 1991, A review of macromolecular organic compounds that

comprise living organisms and their role in kerogen, coal and petroleum formation, in Organic Geochemistry (M. H. Engel and S. A. Macko, eds.), Plenum, New York.

Delfosse, L., Ponsolle, L., and Jabkhiro, E. H., 1988, The evolution of porosity during the combustion of char: the fractal approach and the statistic description, 22nd Int. Symp. Combustion, The Combustion Institute, pp. 39-45.

Derbyshire, F., 1991, Vitrinite structure; alterations with rank and processing, Fuel 70:276-284. Derbyshire, F., Davis, A., and Lin, R., 198980 Experimental observations conceming the two­

component concept of coal structure, Pre print, Am. Chem. Soc., Div. Fuel Chem. 34(3):676-684.

Derbyshire, F., Davis, A., and Lin, R., 1989b, Considerations of physiochemical phenomena in coal processing, Energy & Fuels 3:431-437.

Derbyshire, F., Marzec, A., Schulten, H-R., Wilson, M. A., Davis, A., Tekely, P., Delpuech, J-J., Jurkiewicz, A., Bronnimann, C. E., Wind, R. A., Maciel, G. E., Narayan, R., Bartle, K., and Snape, C., 1989c, Molecular structure of coals: a debate, Fuel 68:1091-1106.

Derenne, S., Largeau, C., Berkaloff, C., and Rousseau, B., 199180 Chemical evidence of kerogen formation in source rocks and oil shales via selective preservation of thin resistant outer walls ofmicroaleae: origin ofultralaminae, Geochim. Cosmochim. Acta 55:1041-1050.

Derenne, S., Largeau, C., Casadevall, E., Tegelaar, E. W., and de Leeuw, J. W., 1988, Relation­ships between algal coals and resistant cell wall biopolymers of extant algae as revealed by Py-GC-MS, Fuel Process. Technol. 20:93-101.

Derenne, S., Largeau, C., and Casadevall, E., 1991 b, Occurrence of tightly bound isoprenoid acids in an algal, resistant biomacromolecule: possible geochemical implications, Org. Geochem. 17:597-602.

Deshpande, G. V., Solomon, P. R., and Serio, M. A., 1988, Crosslinking reactions in coal pyrolysis, Preprint, Am. Chem. Soc., Div. Fuel Chem. 33(2):310-321.

Dong, J-Z., Katoh, T., ltoh, J., and Ouchi, K., 1987, Origin of alkanes in coal extracts and liquefaction products, Fuel 66: 1336-1346.

Dong, J-Z., and Ouchi, K., 1989, Geochemical origin of long chain alkyl aromatics in coal. 2: Model reaction of lignin with alcohol, Fuel 68: 1354-1357.

Doughten, M. W., and Gillison, J. R., 1990, Determination of selected elements in whole coals and in coal ash from the eight Argonne premium coal samples by atomic absorption spec­trometry, atomic emission spectrometry, and ion-selective electrode, Energy & Fuels 4:426-430.

Du, Z., Sarofim, A. F., and Longwell, J. P., 1990, Activation energy distribution in temperature­programmed desorption: modeling and application to the soot-oxygen system, Energy & Fuels 4:296-302.

Dubinin, M. M., 1982, Microporous structures of carbonaceous adsorbents, Carbon 20:195-200.

Dubinin, M. M., 1987, Adsorption properties and microporous structure of carbonaceous adsor­bents, Carbon 25:593-598.

Dudek, D. R., Longwell, J. P., and Sarofim, A. F., 1989, Single-particle surface area measurements in the electrodynamic balance, Energy & Fuels 3:24-28.

Dunbar, J., and Wilson, A. T., 1983, The use of 180P60 ratios to study the formation and chemical origin of coal, Geochim. Cosmochim. Acta 47:1541-1543.

Page 18: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

426 REFERENCES

Durand, B., 1980, Sedimentary organic matter and kerogen. Definition and quantitative impor­tance of kerogen, in Kerogen-Insoluble Matter from Sedimentary Rocks (B. Durand, ed.), pp. 13-34, Editions Technip, Paris.

Durand, B., and Paratte, M., 1983, Oil potential of coals: a geochemical approach, in Petroleum Geochemistry and Exploration oj Europe (J. Brooks, ed.), pp. 225-265, Blackwell, Oxford.

Dutta, S., and Wen, C. Y., 1977, Reactivity of coal and char. 2: In oxygen-nitrogen atmosphere, Ind. Eng. Chem., Process Des. Dev. 16:31-38.

Dutta, S., Wen, C. Y., and Belt, R. J., 1977, Reactivity of coal and char. 1: In carbon dioxide atmosphere, Ind. Eng. Chem., Process Des. Dev. 16:20-30.

Dworzanski, J. P., Buchanan, R. M., Chapman, J. N., and Meuzelaar, H. L. C., 1991, Characteriza­tion of lignocellulosic materials and model compounds by combined TG/(GC)IFTIRlMS, Preprint, Am. Chem. Soc., Div. Fuel Chem. 36(2):725-732.

Dyrkacz, G. R., Bloomquist, C. A. A., and Solomon, P. R., 1984, Fourier transform infrared study of high-purity maceral types, Fuel 63:536-542.

Eglinton, T. I., Sinninghe Damste, J. S., Kohnen, M. E. L., and de Leeuw, J. W., 1990, Rapid estimation of the organic sulphur content of kerogens, coals and asphaltenes by pyrolysis­gas chromatography, Fuel 69: 1394-1404.

Elliot, M. A., and Yohe, G. R., 1981, The coal industry and coal research and development in perspective, in Chemistry oJ Coal Utilization, 2nd suppl. vol. (M. A. Elliot, ed.), pp. 1-54, Wiley, New York.

Energy Information Administration, 1982, Demonstrated reserve base of coal in the United States on January 1, 1980, U.S. Department of Energy, DOElEIA-0280(80), Washington, DC.

Ensminger, A., van Dorse1aer, A., Sppyckerelle, C., Albertcht, P., and Ourisson, G., 1974, Pentacyclic triterpenes on the hopane type as ubiquitous geochemical markers: origin and significance, in Advances in Organic Geochemistry, pp. 245-260, Editions Technip, Paris.

Essenhigh, R. H., 1981, Fundamentals of coal combustion, in Chemistry oJ Coal Utilization, 2nd suppl. vol. (M. A Elliot, ed.), pp. 1153-1312, Wiley, New York.

Essenhigh, R. H., 1988, An integration path for the carbon-oxygen reaction with internal reaction, 22nd Int. Symp. Combustion, The Combustion Institute, pp. 89-96.

Essenhigh, R. H., and Misra, M. K., 1990, Autocorre1ations of kinetic parameters in coal and char reactions, Energy & Fuels 4:171-177.

Essenhigh, R. H., Misra, M. K., and Shaw, D. W., 1987, Ignition of coal particles: a review, Int. Specialists' Meeting Solid Fuel Utilization, Portuguese Section, The Combustion Insti­tute, Lisbon, Portugal.

Evans, J. R., Sellers, G. A, and Johnson, R. G., 1990, Analysis of eight Arogonne premium coal samples by x-ray fluorescence spectrometry, Energy & Fuels 4:440-442.

Exarchos, C., and Given, P. H., 1977, Cell wall polymers of higher plants in peat formation: the role of microorganisms, in Interdisciplinary Studies oj Peat and Coal Origins (P. H. Given and A D. Cohen, eds.), pp. 122-141, Geol. Soc. Am., Microform Publ. No.7.

Faulon, J-P., Hatcher, P. G., and Wenzel, K. A, 1992, A computer assisted structural elucidation for coal macromolecules, Preprint, Am. Chem. Soc., Div. oj Fuel Chem. 37(2):900-907.

Ferimsky, E., Palmer, A. D., Kalkreuth, W. D., Cameron, A. R., and Kovacik, G., 1990, Prediction of coal reactivity during combustion and gasification by using petrographic data, Fuel Process. Techno!. 25:135-151.

Finkelman, R. B., Palmer, C. A, Krasnow, M. R., Aruscavage, P. J., Sellers, G. A, and Dulong, F. T., 1990, Combustion and leaching behavior of elements in the Arogonne premium coal samples, Energy & Fuels 4:755-766.

Fish, R., 1987, Depolymerization mechanism of model coal linkages, EPRI Report ER-5474, Palo Alto, CA.

Fisher, M. E., and Essam, J. W., 1961, Some cluster size and percolation problems, J. Math. Phys.2:609-619.

Page 19: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 427

Fjeldsted, J. C., and Lee, M. L., 1984, Capillary supercritical fluid chromatography, Anal. Chem. 56:619A-628A.

Flaig, W., 1968, Biochemical factors in coal formation, in Coal and Coal-bearing Strata (D. G. Murchison and T. S. Westoll, eds.), pp. 197-232, Oliver and Boyd, Edinburgh.

Fletcher, T. H., 1989a, Time-resolved particle temperature and mass loss measurements of a bituminous coal during devolatilization, Comb. Flame 78:223-236.

Fletcher, T. H., 1989b, Time-resolved temperature measurements of individual coal particles during devolatilization, Comb. Sci. Tech. 63:89-105.

Fletcher, T. H., Grant, D. M., and Pugmire, R. J., 1991, Predicting vapor pressure of tar and metaplast during coal pyrolysis, Preprint, Am. Chem. Soc., Div. Fuel Chem. 36(1):250-257.

Fletcher, T. H., and Hardesty, D. R., 1992, Compilation of Sandia coal devolatilization data: milestone report, for DOFJPETC FWP 0709, Sandia Report SAND92-8209, available NTIS.

Fletcher, T. H., Kerstein, A. R., Pugmire, R. J., and Grant, D. M., 1990a, Chemical percolation model for devolatilization. II: Temperature and heating rate effects on product yields, En­ergy & Fuels 3:54-60.

Fletcher, T. H., Kerstein, A. R., Pugmire, R. J., and Grant, D. M., 1992a, A chemical percolation model for devolatilization. III: Direct use of "c NMR data to predict effects of coal type, Energy & Fuels 6:414-431.

Fletcher, T. H., Solum, M. S., Grant, D. M., Critchfield, S., and Pugmire, R. J., 1990b, Solid state "c and IH NMR studies of the evolution of the chemical structure of coal char and tar during devolatilization, 23rd Int. Symp. Combustion, The Combustion Institute, Pitts­burgh, PA, pp. 1231-1237.

Fletcher, T. H., Solum, M. S., Grant, D. M., and Pugmire, R. J., 1992b, Chemical structure of char in the transition from devolatilization to combustion, Energy & Fuels 6:643-650.

Floess, J. K., Longwell, J. P., and Sarofim, A. F., 1988a, Intrinsic reaction kinetics of micro porous carbons. 1: Noncatalyzed chars, Energy & Fuels 2:18-26.

Floess, J. K., Longwell, J. P., and Sarofim, A. F., 1988b, Intrinsic reaction kinetics of microporous carbons. Catalyzed chars, Energy & Fuels 2:756-764.

Floess, J. K., Oleksy, S. A., and Lee, K. J., 1989, Low temperature oxidation reaction of microporous carbons, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(1):184-191.

Flory, P. J., 1953, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY. Fong, W. S., Khalil, Y. F., Peters, W. A., and Howard, J. B., 1986, Plastic behavior of coal

under rapid-heating high-temperature conditions. Fuel 65:195-201. Freihaut, J. D., and Proscia, W. M., 1989, Tar evolution in heated-grid apparatus, Energy &

Fuels 3:625-635. Freihaut, J. D., Proscia, W. M., and Seery, D. J., 1989, Chemical characteristics of tars produced

in a novel low-severity, entrained-flow reactor, Energy & Fuels 3:692-703. French, D. c., Dieckman, S. L., Gopalsmai, N., and Botto, R. E., 1991, NMR imaging: a

"chemical" microscope for coal analysis, Preprint, Am. Chem. Soc., Div. Fuel Chem. 36(3):1289-1294.

Freund, H., 1986, Gasification of carbon by CO2: A transient kinetics experiment, Fuel 65:63-66.

Froberg, R. W., and Essenhigh, R., 1978, Reaction order and activation energy of carbon activa­tion during internal burning, 17th Int. Symp. Combustion, The Combustion Institute, Pitts­burgh, PA, p. 179.

Fu, W. B., and Zhang, E. Z., 1992, A universe correlation between the heterogeneous ignition temperatures of coal char particles and coals, Comb. Flame 90: 103-113.

Fu, W., Zhang, Y., Han, H., and Wang, D., 1989, A general model of pulverized coal devolatiliza­tion, Fuel 68:505-510.

Page 20: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

428 REFERENCES

Furimsky, E., 1988, Effect of HlC ratio on coal ignition, Fuel Process. Techno!. 19:203-210. Gaines, A. F., 1988, The infrared spectra of coals, 1980-1986, in New Trends in Coal Science

(Y. Yilriim, ed.), pp. 197-218, Kluwer, Dordrecht, The Netherlands. Gallegos, D. P., and Smith, D. M., 1988, A NMR technique for the analysis of pore structures:

determination of continuous pore size distributions, J. Colloid Interface Sci. 122:143-153. Gavalas, G. R., 1980, A random capillary model with application to char gasification at chemically

controlled rates, AlChE J. 26:577-585. Gavalas, G. R, 1981, Analysis of char combustion including the effect of pore enlargement,

Combust. Sci. Technol. 24:197-210. Gavalas, G. R., 1982, Coal Pyrolysis. Elsevier, Amsterdam. Gavalas, G. R., Cheong, P. H-K., and Jain, R, 1981a, Model of coal pyrolysis. 1: Qualitative

development, Ind. Eng. Chem. Fundam. 20:113-122. Gavalas. G. R., Jain, R., and Cheong, P. H-K., 1981b, Model of coal pyrolysis. 2: Qualitative

formulation and results, Ind. Eng. Chem. Fundam. 20:122-132. Gavalas, G. R., and Wilkes, K. A.. 1980, Intraparticle mass transport in coal pyrolysis, AlChE

J.26:201-212. George, G. N., Gorbaty, M. L., Kelemen, S. R., and Sansone, M., 1991, Direct determination

and quantification of sulfur forms in coals from the Argonne premium sample program, Energy & Fuels 5:93-97.

Gibbins, J. R., Gonenc, Z., S., and Kandiyoti, R, 1991, Pyrolysis and hydropyrolysis of coal: Comparison of product distributions from a wire-mesh and a hot-rod reactor, Fuel 70:621-626.

Gibbins, J., and Kandiyoti, R, 1989a, Experimental study of coal pyrolysis and hydropyrolysis at elevated pressures using a variable heating rate wire-mesh apparatus, Energy & Fuels 3:670-677.

Gibbins, J. R .• and Kandiyoti, R., 1989b, The effect of variations in time-temperature history on product distribution from coal pyrolysis, Fuel 68:895-903.

Gibbins-Matham, J., and Kandiyoti, R., 1988a, An investigation of heating rate and pressure effects in coal pyrolysis and hydropyrolysis, Preprint. Am. Chem. Soc., Div. Fuel Chem. 33(3):67-74.

Gibbins-Matham, J .• and Kandiyoti, R, 1988b, Coal pyrolysis yields from fast and slow heating in a wire-mesh apparatus with a gas sweep, Energy & Fuels 2:505-511.

Given, P. H., 1960, The distribution of hydrogen in coals and its relation to coal structure, Fuel 39:47-153.

Given, P. H., 1984a, Concepts of coal structure in relation to combustion behavior, Prog. Energy Combust. Sci. 10:149-158.

Given, P. H., 1984b, An essay on the organic geochemistry of coal, in Coal Science. Vol. 3 (M. L. Gorbaty, J. W. Larsen and I. Wender, eds.), pp. 63-252, Academic Press, New York.

Given, P. H., 1988, The origin of coals, in New Trends in Coal Science (Y. Yilriim, ed.), pp. 1-52, Kluwer, Dordrecht, The Netherlands.

Given, P. H., and Dyrkacz. G. R., 1988, The nature and origins of coal macerals, in New Trends in Coal Science (Y. YUriIm, ed.), pp. 52-72, Kluwer, Dordrecht, The Netherlands.

Given, P. H., Marzec, A., Barton, W. A., Lynch. L. J., and Gerstein, B. c., 1986, The concept of a mobile or molecular phase within the macromolecular network of coals: a debate, Fuel 65:155-163.

Given, P. H., Spackman, W., Davis, A., and Jenkins. R. G., 1980, Some proved and unproved effects of coal geochemistry on liquefaction behavior with emphasis on U.S. coals, ACS Symp. Ser. 139:3-34.

Given, P. H., Spackman, W., Painter, P. c., Rhoads, C. A., Ryan, N. J., Alemany, L., and

Page 21: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 429

Pugmire, R. J., 1984, The fate of cellulose and lignin in peats: an exploratory study of the input to coalification, Org. Geochem. 6:399-407.

Glaves, C. L., Davis, P. J., Gallegos, D. P., and Smith, D. M., 1988, Pore structure analysis of coals via low-field spin-lattice relaxation measurements, Energy & Fuels 2:662-668.

Glick, D. C., and Davis, A., 1987, Variability in the inorganic element content of U.S. coals including results of cluster analysis, Org. Geochem. 11:331-342.

Glick, D. C., and Davis, A., 1991, Operation and composition of the Penn State coal sample bank and data base, Org. Geochem. 17:421-430.

Goetz, G. J., Nsakaia, N. Y., Patel, K. L., and Lao, T. C., 1982, Combustion and gasification kinetics of four commercially significant coals of varying rank, 2nd Ann. Conf. Coal Gasifi­cation, EPRI, Palo Alto, CA.

Goldberg, P., 1987, Report of PETC coal analyses, Pittsburgh Energy Technology Center, Pitts­burgh, PA.

Gonenc, Z., S., Gibbins, J. R., Katheklakis, I. E., and Kandiyoti, R., 1990, Comparison of coal pyrolysis product distributions from three captive sample techniques, Fuel 69:383-390.

Goossens, H., de Lange, F., de Leeuw, J. W., and Schenck, P. A., 1988a, The pristane formation index, a molecular maturity parameter. Confirmation in samples from the Paris Basin, Geochim. Cosmochim. Acta 52:2439-2444.

Goossens, H., Due, A., de Leeuw, J. W., van de Graaf, B., and Schenck, P. A., 1988b, The pristane formation index, a new molecular maturity parameter. A simple method to assess maturity by pyrolysis/evaporation-gas chromatography of unextracted samples, Geochim. Cosmochim. Acta 52:1189-1193.

Gorbaty, M. L., Mraw, S. C., Gethner, J. S., and Brenner, D., 1986, Coal physical structure: porous rock and macromolecular network, Fuel Process. Technol. 12:31-49.

Grant, D. M., Pugmire, R. J., Fletcher, T. H., and Kerstein, A. R., 1989, Chemical model of coal devolatilization using percolation lattice statistics, Energy & Fuels 3:175-186.

Gray, J. A., Brady, C. J., Cunningham, J. R., Freeman, J. R., and Wilson, G. M., 1983, Thermo­physical properties of coal liquids. 1: Selected physical, chemical, and thermodynamic properties of narrow boiling range coal liquids, Ind. Eng. Chem. Process Des. Dev. 22:410-424.

Gray, J. A., Holder, G. D., Brady, C. J., Cunningham, J. R., Freeman, J. R., and Wilson, G. M., 1985, Thermophysical properties of coal liquids. 3: Vapor pressure and heat of vaporization of narrow boiling coal liquid fractions, Ind. Eng. Chem. Process Des. Dev. 24:97-107.

Green, T., Kovac, J., Brenner, D., and Larsen, J. W., 1982, The macromolecular structure of coal, in Coal Structure (R. A. Meyers, ed.), pp. 199-282, Academic Press, New York.

Gregg, S. J., and Sing, K. S. W., 1982, Adsorption, Surface Area, and Porosity, Academic Press, New York.

Grimmett, G., 1989, Percolation, Springer-Verlag, New York.

Guilford, W. 1., Schneider, D. M., Larovitz, J., and Opella, S. J., 1988, High resolution solid state 13C NMR spectroscopy of sporopollenin from different plant taxa, Plant Physiol. 86: 134-136.

Gururajan, T. F., Wall, T. F., and Truelove, J. S., 1988, The combustion of evolved volatile matter in the vacinity of a coal particle: an evaluation of the diffusion limited model, Comb. Flame 72:1-12.

Haenel, M. W., 1992, Recent progress in coal structure research, Fuel 71:1211-1223.

Haga, T., Nishiyama, Y., Agarwal, P. K., and Agnew, J. B., 1991, Surface structural changes of coal upon heat treatment at 200-900°C, Energy & Fuels 5:312-316.

Haider, K., and Schulten, H-R., 1985, Pyrolysis field ionization mass spectrometry of lignin, soil humic components and whole soil, J. Anal. Appl. Pyrol. 8:317-331.

Page 22: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

430 REFERENCES

Hajaligol, M. R., Peters, W. A., and Howard, J. B., 1988, Intraparticle nonisothennalities in coal pyrolysis, Energy & Fuels 2:430-437.

Hajaligol, M. R., and Yi, S. C., 1989, Approximating rapid pyrolysis of coal particles with shrinking core model, Preprint, Am. Chem. Soc., Diy. Fuel Chem. 34(4):1300-1307.

Hall, P. J., Calo, J. M., Teng, H., Suuberg, E. M., May, J. A., and Lilly, W. D., 1989, The nature of carbon-oxygen complexes produced by different oxidants: towards a unified theory of gasification, Preprint, Am. Chem. Soc., Diy. Fuel Chem. 34(1):112-120.

Hall, P. J., Marsh, H., and Thomas, K. M., 1990, The relationships between coal macromolecular structure and solvent diffusion mechanisms, Preprint, Am. Chem. Soc., Diy. Fuel Chem. 35(2):299-306.

Hampartsoumian, E., Pourkashanian, M., Trangmar, D. T., and Williams, A., 1989, Effect of the porous structure of char on the rate of gasification, Preprint, Am. Chem. Soc., Diy. Fuel Chem. 34(1):212-219.

Harper, A. M., Meuzelaar, H. L. c., and Given, P. H., 1984, Correlations between pyrolysis mass spectra of Rocky Mountain coals and conventional coal parameters, Fuel 63:793-802.

Harris, D. J., and Smith, I. W., 1989, Intrinsic reactivity of coke and char to carbon dioxide, Preprint, Am. Chem. Soc., Diy. Fuel Chem. 34(1):94-101.

Hartounian, H., and Allen, D. T., 1989, Group contribution methods for coal liquids: vapour pressures, Fuel 68:480-484.

Hashimoto, K., Miura, K., and Ueda, T., 1986, Correlation of gasification rates of various coals measured by a rapid heating method in a steam atmosphere at relatively low temperature, Fuel 65:1516-1523.

Hastaoglu, M. A., and Karmann, M. G., 1987, Modelling of catalytic carbon gasification, Chem. Eng. Sci. 42:1121-1130.

Hatcher, P. G., 1988, Dipolar-dephasing BC NMR studies of decomposed wood and coalified xylem tissue: evidence for chemical structural changes associated with defunctionalization of lignin structural units during coalification, Energy & Fuels 2:48-58.

Hatcher, P. G., 1990, Chemical structural models for coalified wood (vitrinite) in low rank coal, Org. Geochem. 16:959-968.

Hatcher, P. G., Breger, I. A., and Earl, W. L., 1981, Nuclear magnetic resonance studies of ancient buried wood. I: Observations on the origin of coal to the brown coal stage, Org. Geochem. 3:49-55.

Hatcher, P. G., Breger, I. A., Szeverenyi, N., and Maciel, G. E., 1982, Nuclear magnetic resonance studies of ancient buried wood. II: Observations on the origin of coal from lignite to bituminous coal, Org. Geochem. 4:9-18.

Hatcher, P. G., Faulon, J-P., and Wenzel, K. A., 1992, A three dimensional, structural model for vitrinite from high volatile bituminous coal, Preprint, Am. Chem. Soc., Diy. of Fuel Chem. 37(2):886-892.

Hatcher, P. G., and Lerch, H. E. III, 1989, Survival of lignin-derived structural units in ancient coalified wood samples, Preprint, Am. Chem. Soc., Diy. Fuel Chem. 34(3):617-623.

Hatcher, P. G., Lerch, H. E. III, and Verheyen, T. V., 1989a, Organic geochemical studies of the transfonnation of gymnospennous xylem during peatification and coalification to subbituminous coal, in Coal: Classification, Coalification, Mineralogy, Trace-Element Chemistry, and Oil and Gas Potential (P. C. Lyons and B. Alpern, eds.), Int. 1. Coal Geol. 13:65-97.

Hatcher, P. G., Wilson, M. A., Vassallo, A. M., and Lerch, H. E.III, 1989b. Studies of angiosper­mous wood in Australian brown coal by nuclear magnetic resonance and analytical pyrolysis: New insights into the early coalification process, in Coal: Classification, Coalification, Mineralogy, Trace-element Chemistry, and Oil and Gas Potential (P. C. Lyons and B. Alpern, eds.), Int. 1. Coal Geol. 13:99-126.

Page 23: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 431

Hayatsu, R., Botto, R. E., McBeth, R. L., Scott, R. G., and Winans, R. E., 1988, Chemical alteration of a biological polymer "sporopollin" during coalification: origin, formation, and transformation of the coal maceral sporinite, Energy & Fuels 2:843-847.

Hayatsu, R., Botto, R. E., Scott, R. G., McBeth, R. L., and Winans, R. E., 1986, Evaluation of lignin and cellulose contributions to low-rank coal formation by alkaline cupric oxide oxida­tion, Fuel 65:821-826.

Hayatsu, R., McBeth, R. L., Neill, P. H., Xia, Y., and Winans, R. E., 1990, Terpenoid biomarkers in Argonne premium coal samples and their role during coalification, Energy & Fuels 4:456-463.

Hayatsu, R., McBeth, R. L., Scott, R. G., Botto, R. E., and Winans, R. E., 1984, Artificial coalification study: preparation and characterization of synthetic macerals, Org. Geochem. 6:463-471.

Hayatsu, R., Winans, R. E., McBeth, R. G. S., Moore, L. P., and Studier, M. H., 1981, Structural characterization of coal: lignin-like polymers in coals, in Coal Structure (M. L. Gorbaty and K. Ouchi, eds.), pp. 133-149, Am. Chern. Soc., Washington, DC.

Hazard, H. P., and Bucldey, F. D., 1948, Experimental combustion of pulverized coal at atmo­spheric and elevated pressures, ASME Trans. 70:729.

Hecker, W. C., McDonald, K. M., Jackson, C. D., and Cope, R. F., 1991, Effects of burnout on char oxidation rates, Proc. Int. Conf. Coal Science, Butterworth-Heineman, Newcastle, U.K., pp.264-266.

Hecker, W. C., McDonald, K. M., Reade, W., Swenson, M. R., and Cope, R. F., 1992, Effects of burnout on char oxidation kinetics, 24th Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1225-1231.

Hedges, J. I., Cowie, G. I., Ertel, J. R., Barbour, R. J., and Hatcher, P. G., 1985, Degradation of carbohydrates and lignin in buried woods, Geochim. Cosmochim. Acta 49:701-711.

Helble, J. J., and Sarofim, A. F., 1989, Influence of char fragmentation on ash particle size distributions, Comb. Flame 76:183-196.

Helble, J. J., Srinivasachar, S., and Boni, A. A., 1990, Factors influencing the transformation of minerals during pulverized coal combustion, Prog. Energy Combust. Sci. 16:267-279.

Hensel, R. P., 1981, Coal: classification, chemistry, and combustion, paper presented at Coal­Fired Industrial Boilers Workshop, Raleigh, NC, Fossil Power Systems, Combustion Engi­neering, Inc., Windsor, CT.

Hertzberg, M., and Zlochower, I. A., 1990, Devolatilization rates and intraparticle wave structures during the combustion of pulverized coals and polymethylmethacrylate, 23rd Int. Symp. Combustion, The Combustion Institute, pp. 1247-1255.

Hertzberg, M., Zlochower, I. A., and Edwards, J. C., 1988, Coal particle pyrolysis mechanisms and temperatures, Bureau of Mines Report of Investigations no. 9169, U.S. Department of Interior, Washington, DC.

Hodek, W., Kirschstein, 1., and van Heek, K-H., 1991, Reactions of oxygen containing structures in coal pyrolysis, Fuel 70:424-428.

Hodek, W., Kraemer, M., and Jiintgen, H., 1990, Asphaltenes as basic structures of coals and their use for the evaluation of coal properties, Fuel Process. Technol. 24:417-424.

Horsfield, B., Yordy, K. L., and Crelling, J. C., 1988, Determining the petroleum-generating potential of coal using organic geochemistry and organic petrology, Org. Geochem. 13: 121-129.

Howard, J. B., 1981, Fundamentals of coal pyrolysis and hydropyrolysis, in Chemistry of Coal Utilization, 2nd suppl. vol. (M. A. Elliot, ed.), pp. 665-784, Wiley, New York.

Howard, J. B., Fong, W. S., and Peters, W. A., 1987, Kinetics of devolatilization, in Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion O. Lahaye and G. Prado, eds.), pp. 77 -1 03, Martinus Nijhoff, Dordrecht, The Netherlands.

Page 24: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

432 REFERENCES

Hsuen, H. K. D., and Sotirchos, S. V., 1989a, Multiplicity analysis of intrapartic1e char combus­tion, Chem. Eng. Sci. 44:2639-2651.

Hsuen, H. K. D., and Sotirchos, S. V., 1989b, Multiplicity analysis of char combustion with homogeneous CO oxidation, Chem. Eng. Sci. 44:2653-2665.

Hu, J. Z., Alderman, D. W., Ye, C., Pugmire, R. J., and Grant, D. M., 1993, An isotropic chemical shift-chemical shift anisotropy magic angle slow-spinning 2-D NMR experiment, J. Magn. Reson. 105:82-88.

Hu, J. Z., Pugmire, R. J., Orendt, A. M., Grant, D. M., and Ye, c., 1992a, Selective saturation and inversion of multiple resonances in high-resolution solids state l3C experiments using slow spinning CPIMAS and tailored DANTE pulse sequences, Solid State Nucl. Mag. Reson. 185-195.

Huai, H., Lo, R., Yun, Y., and Meuzelaar, H. L. c., 1990, A comparative study of 8 U.S. coals by several different pyrolysis mass spectrometry techniques, Preprint. Am. Chem. Soc., Diy. Fuel Chem. 35(3):816-823.

Huang, E. c., Jackson, B. J., Markides, K. E., and Lee, M. L., 1988, Direct coupling of capillary supercritical fluid chromatography to high resolution mass spectroscopy with minimum modification, Chromatographia 25:51-54.

Huang, G., and Scaroni, A. W., 1989, Development of char structure pyrolysis of a hvB bitumi­nous coal, Preprint. Am. Chem. Soc., Diy. Fuel Chem. 34(4):1329-1336.

Huff, S. M., Meuzelaar, H. L. C., Pope, D. L., and Kjedlsberg, C. R, 1981, Characterization of leukemic and normal white blood cells by Curie-point pyrolysis-mass spectrometry. I: Nu­merical evaluation of the results of a pilot study, J. Anal. Appl. Pyrol. 3:95-109.

Huffman, G. P., Huggins, F. E., Levasseur, A. A., Chow, 0., and Srinivasachar, S., 1989a, Investigation of the transformation of pyrite in a drop-tube furnace, Fuel 68:485-490.

Huffman, G. P., Huggins, F. E., Levasseur, A. A., Lytle, F. W., Greegor, R. B., and Mehta, A., 1989b, Investigation of the atomic structures of calcium in ash and deposits produced during the combustion of lignite and bituminous coals, Fuel 68:238-242.

Huffman, G. P., Huggins, F. E., Shah, N., and Shah, A., 1990, Behavior of basic elements during coal combustion, Prog. Energy Combust. Sci. 16:243-251.

Huffman, G. P., Shah, N., Huggins, F. E., Cassucio, G. S., and Mershon, W. J., 1991a, Develop­ment of computer-controlled scanning electron microscopy (CCSEM) techniques for de­termining mineral-maceral association, Preprint, Am. Chem. Soc., Diy. Fuel Chem. 36(3):1155-1163.

Huffman, G. P., Shah, N., Taghiei, M. M., Lu, F., and Huggins, F. E., 1991b, Quantitative analysis of sulfur functional forms and reactions by XAFS spectroscopy, Preprint, Am. Chem. Soc., Diy. Fuel Chem. 36(3):1204-1212.

Huggins, S. E., Huffman, G. P., and Lee, R J., 1982, Scanning electron microscopy based automated image analysis (SEM-AIA) and Mossbauer spectroscopy: quantitative character­ization of coal minerals, in Coal and Coal Products: Analytical Characterization Techniques (E. L. Fuller, ed.), pp. 239-258, ACS Symp. Series 205, Am. Chern. Soc., Washington, DC.

Huggins, S. E., Kosmack, D. A., Huffman, G. P., and Lee, R. J., 1980, Coal mineralogies by SEM automatic image analysis, in Scanning Electron Microscopy. I, AMF O'Hare, Chicago, pp.531-540.

Hurt, R H., Dudek, D. R, Longwell, J. P., and Sarofim, A. F., 1988, The phenomenon of gasification-induced carbon densification and its influence on pore structure evolution, Car­bon 26:433-449.

Hurt, R. H., and Hardesty, D. R., 1991, Rates and mechanisms of coal char combustion, (D. R. Hardesty, ed.), Quarterly Progress Report for DOFJPETC Contract FWP 0709, Sandia Report SAND91-8233, available NTIS.

Page 25: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 433

Hurt, R. H., and Mitchell, R. E., 1992, Unified high temperature char combustion kinetics for a suite of coals of various rank, 24th Int. Symp. Combustion, The Combustion Institute, Pittsburgh, P A.

Hurt, R. H., Mitchell, R. E., Baxter, L. L., and Hardesty, D. R, 1992 Char combustion kinetics of U.S. coals: a comprehensive data base for industry, Proc. of the 9th Ann. Pittsburgh Coal Conf., Pittsburgh, PA, pp. 634-639.

Hurt, R H., Sarofim, A. F., and Longwell, J. P., 1991a, Effect of nonuniform surface reactivity on the evolution of pore structure and surface area during carbon gasification, Energy & Fuels 5:463-468.

Hurt, R. H., Sarofim, A. F., and Longwell, J. P., 1991b, The role of microporous surface area in uncatalyzed carbon gasification, Energy & Fuels 5:290-299.

Hurt, R H., Sarofim, A. F., and Longwell, J. P., 1991c, Role of microporous surface area in the gasification of chars from a sub-bituminous coal, Fuel 70:1079-1082.

Hiittinger, K. J., 1989, Mechanisms of steam gasification and the role of hydrogen inhibition, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(1):56-62.

Hiittinger, K. J., 1990, A method for the determination of active sites and true activation energies in carbon gasification. 1: Theoretical treatment, Carbon 28:453-456.

Hiittinger, K. J., and Michenfelder, A. W., 1987, Fuel 66:1164-1165. Hiittinger, K. J., and Nill, J-S., 1989, Mechanism of carbon dioxide gasification studied by TPD,

Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(1):169-175. Hiittinger, K. J., and Nill, J-S., 1990, A method for the determination of active sites and true

activation energies in carbon gasification. 1: Experimental results, Carbon 28:457-465. Hyde, W. D., 1990, Effects of preparation method and parent coal rank on coal char reactivity,

M.S. thesis, Department of Chemical Engineering, Brigham Young University, Provo, UT. Hyde, W. D., Hecker, W. c., McDonald, K. M., Painter, M. M., and Bartholomew, C. H., 1989,

The effects of devolatilization conditions, devolatilization reactor type, and parent coal rank on char oxidation reactivity and char surface area, presented at the fall meeting of the Western States Sectionffhe Combustion Institute, Livermore, CA.

Ibarra, J. V., Cervero, I., Garcia, M., and Moliner, R., 1990, Influence of cross-linking on tar formation during pyrolysis of low-rank coals, Fuel Process. Technol. 24:19-25.

Ibarra, I. V., Moliner, R., and Gavilan, M. P., 1991, Functional groups dependence of cross­linking reactions during pyrolysis of coal, Fuel 70:408-413.

Ikan, R., Iosolis, P., Rubinsztain, Y., Aizenshtat, Z., Miloslavsky, I., Yariv, S., Pugmire, R I., Anderson, L. L., Woolfenden, W. R, Kaplan, I. R., Dorsey, T., Peters, K. E., Boon, I. I., deLeeuw, I. W., Ishiwatari, R., Morinaga, S., Yamamoto, S., Machihara, T., Muller­Vonmoss, M., and Rub, A., 1992, Chemical, isotopic, spectroscopic and geochemical aspects of natural and synthetic humic substances, in The Science of the Total Environment, 1171 118, pp. 1-12.

Ikan, R, Ioselis, P., Rubinsztain, Y., Aizenshtat, Z., Pugmire, R., Anderson, L. L., and Ishiwatari, R, 1986a, Carbohydrate origin of humic substances, Naturwiss. 73:150-151.

Ikan, R, Iosolis, P., Rubinsztain, Y., Aizenshtat, Z., Pugmire, R I., Anderson, L. L., Woolfeeden, W. R., and Ishiwatari, R, 1985, Heterocycles as building blocks of the polymeric matrix of humic substances and melanoidens, IHSS Comm. 1(4):4.

Ikan, R, Rubinsztain, Y., Ioselis, P., Aizenshtat, Z., Pugmire, R., Anderson, L. L., and Woolfen­den, W. R, 1986b, Carbon-13 cross polarized magic-angle samples spinning nuclear mag­netic resonance of melanoidins, Org. Geochem. 9:199-212.

International Committee for Coal Petrology, 1963, 1971, 1975, International Handbook of Coal Petrology, Centre Nat. Rech. Sci., Paris.

Jackson, W. P., Kong, R. C., and Lee, M. L., 1985, Capillary supercritical fluid chromatography of polynuclear aromatic compounds, in Polynuclear Aromatic Hydrocarbons: Mechanisms,

Page 26: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

434 REFERENCES

Methods and Metabolisms (M. Cooke and A. J. Dennis, eds.), p. 609, Battelle Press, Colum­bus,OH.

Jakab, E., Hoesterey, B., Windig, W., Hill, G. R., and Meuzelaar, H. L. C., 1988, Effects of low temperature air oxidation (weathering) reactions on the pyrolysis mass spectra of U.S. coals, Fuel 67:73-79.

Jakab, E., Windig, W., and Meuzelaar, H. L. c., 1987, Effect of low temperature oxidation on time-resolved pyrolysis mass spectra of Hiawatha coal, Energy & Fuels 1:161-167.

Jakab, E., Yun, Y., and Meuzelaar, H. L. C., 1989, Effects of weathering on the molecular structure of coal, Coal Sci. Technol. 14:61-82.

Jezko, J., Gray, D., and Kershaw, J. R., 1982, The effect of solvent properties on the supercritical gas extraction of coal, Fuel Process. Technol. 5:229-239.

Jiang, H., and Radovic, L. R., 1989, Transient kinetic studies of char gasification in carbon dioxide, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(1):79-86.

Johns, R. B. (Ed.), 1986, Biological Markers in the Sedimentary Record, Elsevier, Amsterdam. Jones, B. A., Markides, K. E., Bradshaw, J. S., and Lee, M. L., 1986, Contemporary capillary

column technology for chromatography, Chromatogr. Forum 1:38-44. Jones, M. L., and Benson, S. A., 1987, An overview of fouling/slagging with western coals,

Proc. Conf. Effects of Coal Quality on Power Plants, EPR!, Atlanta, GA. Jones, M. L., Kalmanovitch, D. P., Steadman, E. N., Zygarlicke, C. J., and Benson, S. A., 1992,

Application of SEM techniques to the characterization of coal and coal ash products, in Advances in Coal Spectroscopy (H. L. C. Meuzelaar, ed.), pp. 1-26, Plenum, New York.

Joseph, D., and Oberlin, A., 1983, Oxidation of carbonaceous matter. II: X-ray diffraction and electron transmission microscopy, Carbon 21:565-571.

Jung, B., Stachel, S., and Calkins, W. H., 1991, Organic oxygen contents of Argonne premium coal samples, Preprint, Am. Chem. Soc., Div. Fuel Chem. 36(3):869-876.

Jiintgen, H., 1984, Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal, Fuel 63:731-737.

Jiintgen, H., 1987a, Coal characterization in relation to coal combustion, Erd Koh EP 40:153-165.

Jiintgen, H., 1987b, Coal characterization in relation to coal combustion, in Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion (J. Lahaye and G. Prado, eds.), pp. 4-59, Martinus Nijhoff, Dordrecht, Netherlands.

Jiintgen, H., and van Heek, K. H., 1979, An update of German non-isothermal coal pyrolysis work, Fuel Process. Technol. 2:261-293.

Jurkiewicz, A., Bronnimann, C. E., and Maciel, G., 1989, lH CRAMPS n.m.r. study of the molecular-macromolecular structure of coal, Fuel 68:872-876.

Kalkreuth, W., Steller, M., Wieschenkiimper, I., and Ganz, S., 1991, Petrographic and chemical characterization of Canadian and German coals in relation to utilization potential. 1: Petro­graphic and chemical characterization of feedcoals, Fuel 70:683-694.

Kalmanovitch, D. P., and Benson, S. A., 1989, Evaluation of coals using a drop tube furnace, Proc. 6th Ann. Int. Pittsburgh Coal Conf. 2, pp. 939-948.

Kalmanovitch, D. P., Zygarlicke, C. J., Steadman, E. N., and Benson, S. A., 1989, Deposition of Beulah ash in a drop-tube furnace under slagging conditions, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(2):318-329.

Kamienski, B., Pruski, M., Gerstein, B. C., and Given, P. H., 1987, Mobilities of hydrogen in solvent-swollen coals. A study by pulsed NMR, Energy & Fuels 1:45-50.

Kang, S-W., Sarofim, A. F., and Beer, J. M., 1988, Particle rotation in coal combustion: Statistical, experimental and theoretical studies, 22nd Int. Symp. Combustion, The Combustion Institute, pp. 145-153.

Karas, J., Pugmire, R. J., Wooifenden, W. R., Grant, D. M., and Blair, S., 1985, Comparison of

Page 27: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 435

physical and chemical properties of maceral groups separated by density gradient centrifuga­tion, Int. 1. Coal Geol. 5:315-338.

Keely, B. I., Prowse, W. G., and Maxwell I. R., 1990, The Treibs hypothesis: an evaluation based on structural studies, Energy & Fuels 4:628-634.

Kelemen, S. R., Gorbaty, M. L., George, G. N., and Kwiatek, P. I., 1991a, Surface composition of iron and inorganic sulfur forms in Argonne premium coals by x-ray photoelectron spec­troscopy, Energy & Fuels 5:720-723.

Kelemen, S. R., Gorbaty, M. L., George, G. N., and Kwiatek, P. I., 1991b, Reactivity of oxidized organic sulfur forms in coal, Preprint, Am. Chem. Soc., Div. Fuel Chem. 36(3):1213-1216.

Kelemen, S. R., Gorbaty, M. L., George, G. N., Kwiatek, P. I., and Sansone, M., 1991c, Thermal reactivity of sulphur forms in coal, Fuel 70:396-402.

Kershaw, I. R., 1982, Solvent effects on the supercritical gas extraction of coal, Fuel Process. Technol. 5:241-246.

Kerstein, A. R., and Edwards, B. F., 1987, Percolation model for simulation of char oxidation and fragmentation time-histories, Chem. Eng. Sci. 42:1629-1634.

Kerstein, A. R., and Niksa, S., 1984, Fragmentation during carbon conversion: predictions and measurements, 20th Int. Symp. Combustion, The Combustion Institute, pp. 941-949.

Kerstein, A. R., and Niksa, S., 1987, Polymer scission with irreversible reattachment: a kinetic model of pyrolysis with char formation, Macromol. 20: 1811-1818.

Khan, M. R., 1987a, Reactivity of low-temperature chars: Significance of char active surface area as a reactivity parameter, Preprint, Am. Chem. Soc., Div. Fuel Chem. 32(1):298-309.

Khan, M. R., 1987b, Significance of char active surface area for appraising the reactivity of low­and high-temperature chars, Fuel 66: 1626-1634.

Khan, M. R., 1989a, A literature survey and an experimental study of coal devolatilization at mild and severe conditions: influences of heating rate, temperature, and reactor type on products yield and composition, Fuel 68:1522-1531.

Khan, M. R., 1989b, An evaluation of oxygen chemisorption capacity of mild gasification char at various burnoff levels, Combust. Sci. Tech. 65:195-206.

Khan, M. R., 1989c, Variations in the oxygen chemisorption capacity of mild gasification char at various levels of burnoff, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(1):192-201.

Khan, M. R., Everitt, C. E., and Lui, A. P., 1990, Modeling of oxygen chemisorption kinetics on coal char, Combust. Flame 80:83-93.

Killops, S. D., and Readman, I. W., 1985, HPLC fractionation and GC-MS determination of aromatic hydrocarbons from oils and sediments, Org. Geochem. 8:247-257.

King, C. I., 1980, Separation Processes, McGraw-Hill, New York. Kiro, S. A., Vovchuk, Y. I., Zolotko, A. N., and Klyachko, L. A., 1983, Ignition of high ash

coal particles, Comb. Expl. Shock Waves 19(5):566-568. Klotzkin, M. P., 1985, Solvent treatment of coals. 1: Effects of micro porosity at ambient tempera­

ture, Fuel 64:1092-1096. Ko, G. H., Peters, W. A., and Howard, I. B., 1987, Correlation of tar yields from rapid pyrolysis

with coal type and pressure, Fuel 66:1118-1122. Ko, G. H., Peters, W. A., and Howard, I. B., 1988a, Comparison of tar evolution rate predictions

in coal pyrolysis from the multiple independent parallel reaction model and the functional group model over a wide range of heating rates, Energy & Fuels 2:567-573.

Ko, G. H., Sanchez, D. M., Peters, W. A., and Howard, J. B., 1988b, Correlations for effects of coal type and pressure on tar yields from rapid devolatilization, 22nd Int. Symp. Combustion, The Combustion Institute, pp. 115-124.

Kobayashi, H., Howard, I. B., and Sarofim, A. F., 1976, Coal devolatilization at high tempera­tures, 16th Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 411-425.

Kohnen, M. E. L., Sinninghe Damste, I. S., Kock-van Dalen, A. C., ten Haven, H. L., Rullkotter,

Page 28: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

436 REFERENCES

I., and de Leeuw, I. W., 1990, Origin and diagenetic transfonnations of C25 and C30 highly branched isoprenoid sulphur compounds: further evidence for the formation of organically bound sulphur during early diagenesis, Geochim. Cosmochim. Acta 54:3053-3063.

Kothandaraman, G., and Simons, G. A., 1984, Evolution of the pore structure in PSOC 140 lignite during pyrolysis, 20th Int. Symp. Combustion, The Combustion Institute, pp. 1523-1529.

Kuo, K., and Marsh, H., 1989, Active surface area on carbon reactivity, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(1):153-160.

Lahaye, I., and Prado, G., 1987, Porous morphology of coal. Its transfonnation during pyrolysis, in Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion (I. Lahaye and G. Prado, eds.), pp. 159-177, Martinus Nijhoff, Dordrecht, The Netherlands.

Largeau, C., Derenne, S., Casadevall, E., Berkaloff, C., Corolleur, M., Lugardon, B., Raynaud, I. F., and Connan, I., 1990, Occurrence and origin of "ultralaminar" structures in "amor­phous" kerogens of various source rocks and oil shales, Org. Geochem. 16:889-895.

Larsen, I. W., 1988a, Macromolecular structure of coals: status and opportunities, in New Trends in Coal Science (Y. YiirUm, ed.), pp. 73-84, Kluwer, Dordrecht, The Netherlands.

Larsen, I. W., 1988b, Macromolecular structure and coal pyrolysis, Fuel Process. Technol. 20:13-22.

Larsen, J. W., 1990, Reservations concerning the use of "model compounds" for coals, Preprint, Am. Chem. Soc., Div. Fuel Chem. 35(2):376-380.

Larsen, J. W., Green, T. K., and Kovac, J., 1985, The nature of the macromolecular network structure of bituminous coals, J. Org. Chem. 50:4729-4735.

Larsen, J. W., Lee, D., and Shawver, S. E., 1986, Coal macromolecular structure and reactivity, Fuel Process. Technol. 12:51-62.

Larsen, J. W., Mohammadi, M., Yiginsu, I., and Kovac, J., 1984, The molecular weight distribu­tion of coal extracts. Coalification is not a condensation polymerization, Geochim. Cos­mochim. Acta 48:135-141.

Larsen, J. W., and Shawver, S., 1990, Solvent swelling studies of two low-rank coals, Energy & Fuels 4:74-77.

Larsen, J. W., and Wei, y.-c., 1988, Macromolecular chemistry of coalification. Molecular weight distribution of pyridine extracts, Energy & Fuels 2:344-350.

Later, D. W., and Lee, M. L., 1983, Chromatographic methods for the chemical and biological characterization of polycyclic aromatic compounds in synfuel materials, in Advanced Tech­niques in Synthetic Fuels Analysis (C. W. Wright, W. C. Weimer and W. D. Felix, eds.), U. S. DOE Technical Infonnation Center, Washington, DC.

Later, D. W., Lee, M. L., Bartle, K. D., Kong, R. c., and Vassilaros, L., 1981, Chemical class separation and characterization of organic compounds in synthetic fuels, Anal. Chem. 53:1612-1620.

Later, D. W., Wilson, B. W., and Lee, M. L., 1985, Standardization of alumnia and silica absorbents used for chemical class separation of polycyclic aromatic compounds, Anal. Chem. 57:2979-2984.

Lau, C. W., and Niksa, S., 1992, The combustion of individual particles of various coal types, Comb. Flame 90:45-70.

Laurendeau, N. M., 1978, Heterogeneous kinetics of coal char gasification and combustion, Prog. Energy Combust. Sci. 4:221-270.

Lazarov, L., and Marinov, S. P., 1987, Modelling the structure of a coking coal, Fuel Process. Technol. 15:411-422.

Lee, M. L., 1987, unpublished results, Brigham Young University, Provo, UT. Lee, M. L., and Markides, K. E., 1987, Chromatography with supercritical fluid, Science

235:1342-1347.

Page 29: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 437

Lee, M. L., Yang, F. J., and Bartle, K. D., 1984, Open Tubular Column Gas Chromatography: Theory and Practice, Wiley, New York.

Leslie, I. H., Jost, M., and Kruger, C. H., 1989, Measured and predicted char reactivity of three U.S. coals, Combust. Flame 78:195-203.

Lester, T. W., Seeker, W. R., and Merklin, J. F., 1981, The influence of oxygen and total pressure on the surface oxidation rate of bituminous coal, 18th Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1257-1265.

Levendis, Y. A., FJagan, R. C., and Gavalas, G. R., 1989a, Oxidation kinetics of monodisperse spherical carbonaceous particles of variable properties, Combust. Flame 76:221-241.

Levendis, Y. A., Nam, S. W., Lowenberg, M., FJagan, R. C., and Gavalas, G. R., 1989b, Catalysis of the combustion of synthetic char particles by various forms of calcium additives, Energy & Fuels 3:28-37.

Levendis, Y. A., Sahu, R., FJagan, R. c., and Gavalas, G. R., 1989c, Post-ignition transients in the combustion of single char particles, Fuel 68:849-855.

Levenspiel, 0., 1972, Chemical Reaction Engineering, pp. 460-505, Wiley, New York. Lewis, P. F., and Simons, G. A., 1979, Char gasification. II: Oxidation results, Combust. Sci.

Tech. 20:117-124. Lin, R., and Davis, A., 1988, A fluorogeochemical model for coal macerals, Org. Geochem.

12:363-374. Lin, R., Davis, A., Bensley, D. F., and Derbyshire, F. J., 1986, Vitrinite secondary fluorescence:

Its chemistry and relation to the development of a mobile phase and thermoplasticity in coal, Int. J. Coal Geol. 6:215-228.

Lin, R., Davis, A., Bensley, D. F., and Derbyshire, F. J., 1987, The chemistry of vitrinite, Org. Geochem. 11:393-399.

Lizzio, A. A., Jiang, H., and Radovic, L. R., 1990, On the kinetics of carbon (char) gasification: reconciling models with experiments, Carbon 28:7 -19.

Lizzio, A. A., and Radovic, L. R., 1989, Temperature-programmed desorption studies on coal char gasification, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(1):102-111.

Loewenberg, M., Bellen, J., and Gavalas, G. R., 1987, A simplified description of char combus­tion, Chem. Eng. Comm 58:89-103.

Lopez-Peinado, A. J., Tromp, P. J. J., and Moulijn, J. A., 1989, Quantitative heat effects associated with pyrolysis of coals, ranging from anthracite to lignite, Fuel 68:999-1004.

Lucas, A. J., Given, P. H., and Spackman, W., 1988, Studies of peat as the input to coalification. I: Rationale and preliminary examination of polysaccharides in peat, Int. J. Coal Geol. 9:235-251.

Lucht, L. M., Larsen, J. M., and Peppas, N. A., 1987, Macromolecular structure of coals. 9: Molecular structure and glass transition temperature, Energy & Fuels 1:56-58.

Lucht, L. M., and Peppas, N. A., 1981, Cross-linked structures in coals: models and preliminary experimental data, in New Approaches in Coal Chemistry, ACS Symp. Series No. 169 (B. D. Blaustein, B. C. Bockrath and S. Friedman, eds.), pp. 43-59, Am. Chern. Soc., Washington, DC.

Lucht, L. M., and Peppas, N. A., 1987, Macromolecular structure of coals. II: Molecular weight between cross-links from pyridine swelling experiments, Fuel 66:803-809.

Lynch, L. J., Webster, D. S., Sakurovs, R., Barton, W. A., and Maher, T. P., 1988, The molecular basis of coal thermoplasticity, Fuel 67:579-583.

Maciel, G. E., Bronnimann, C. E., Jurkiewicz, A., Wind, R. A., and Pan, V. H., 1991, Recent advances in coal characterization by 13C and IH n.m.r., Fuel 70:925-930.

Mackenzie, A. S., Brassell, S. c., Elington, G., and Maxwell, J. R., 1982, Chemical fossils: the geological fate of steroids, Science 217:491-504.

Malhotra, R., McMillen, D. F., and Huestis, D. L., 1991, Characterization of the Argonne

Page 30: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

438 REFERENCES

premium coal samples by field ionization mass spectrometry, Preprint, Am. Chem. Soc., Div. Fuel Chem. 36(3):1251-1258.

Maloney, D. J., and Jenkins, R. G., 1984, Coupled heat and mass transport and chemical kinetic rate limitations during coal rapid pyrolysis, 20th Int. Symp. Combustion, The Combustion Institute, pp. 1435-1443.

Manskaya, S. M., and Drozdova, T. V., 1968, Geochemistry of Organic Substances (translated and edited by L. Spiro and I. A. Breger), Pergamon Press, Oxford, England.

Marlow, D., Niksa, S., and Kruger, C. H., 1992, Secondary pyrolysis and combustion of coal volatiles, Preprint, Am. Chem. Soc., Div. Fuel Chem. 37(2):745-748. Also presented at the 24th Int. Symp. on Combustion.

Marsh, H., 1987, Adsorption methods to study microporosity in coals and chars-a critique, Carbon 25:49-58.

Marsh, H., O'Hair, E., and Wynne-Jones, W. F. K., 1965, Oxidation of carbons and graphites by atomic oxygen kinetic studies, Trans. Faraday Soc. 61:274-284.

Martin, K. A., and Chao, S. S., 1988, Structural groups analysis of Argonne premium coals by FfIR spectroscopy, Preprint, Am. Chem. Soc., Div. Fuel Chem. 33(3):17-23.

Marzec, A., 1985, Macromolecular and molecular structure of coal and the possible role of pyrolysis-field desorption mass spectrometry in its elucidation, J. Anal. Appl. Pyrol. 8:241-254.

Marzec, A., 1986, Macromolecular and molecular model of coal structure, Fuel Process. Technol. 14:39-46.

Marzec, A., and Schulten, H-R., 1989, Chemical nature of species associated with mobile protons in coals; a study by field ionization mass spectroscopy, Pre print, Am. Chem. Soc., Div. Fuel Chem. 34(3):668-675.

Maswadeh, W., Arnold, N. S., and Meuzelaar, H. L. C., 1990, Laser pyrolysis-transfer line chromatography/mass spectrometry of single, levitated coal particles, presented at the 38th ASME Conf. Mass Spectrometry and Allied Topics, Tucson, AZ.

Maswadeh, W., Roberts, K. A., McClennen, W. H., Meuzelaar, H. L. C., and Arnold, N. W., 1989, Laser pyrolysis mass spectrometry of single levitated coal particles, Proc. 37th ASMS Conf. Mass Spectrometry Allied Topics, pp. 304-305.

Mather, S. P., and Farnham, R. S., 1985, Geochemistry of humic substances in peatlands, in Humic Substances in Soil, Sediment, and Water (G. R. Aiken, D. M. McKnight, R. L. Wershaw and P. MacCarthy, Eds.), Wiley, New York.

Matzakos, A., and Zygourakis, K., 1990, Pyrolysis of plastic coals: pore structure development and char reactivity, Preprint, Am. Chem. Soc., Div. Fuel Chem. 35(2):505-515.

McCollor, D. P., Jones, M. L., Benson, S. A., and Young, B. C., 1988, Promotion of char oxidation by inorganic constituents, 22nd Int. Symp. Combustion, The Combustion Institute, pp.59-67.

McDonald, K. M., Hyde, W. D., and Hecker, W. C., Low temperature kinetics of coal char oxidation, presented at the fall meeting of the Western States SectionlThe Combustion Institute, LaJolla, CA.

McDonald, K. M., Hyde, W. D., and Hecker, W. C., 1992, Low temperature char oxidation kinetics: effect of preparation method, Fuel 71:319-323.

McMillen, D. F., Malhotra, R., Chang, S-J., and Hum, G. P., 1987, Hydrogen-transfer-promoted bond scission initiated by coal fragments, Energy Fuels 1:193-198.

McMillen, D. F., Malhotra, R., and Nigenda, S. E., 1989, The case for induced bond scission during coal pyrolysis, Fuel 68:380-386.

McMillen, D. F., Malhotra, R., and Serio, M. A., 1990, Synthesis and conversion studies of polymeric models for low-rank coals, Preprint, Am. Chem. Soc., Div. Fuel Chem. 35(2):430-437.

Page 31: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 439

Mehta, B. N., and Aris, R., 1971, Communications on the theory of diffusion and reaction­VII, the isothermal pili order reaction, Chem. Engr. Sci. 26:1699.

Merrick, D., 1983a, Mathematical models of the thermal decomposition of coal. 1: The evolution of volatile matter, Fuel 62:534-539.

Merrick, D., 1983b, Mathematical models of the thermal decomposition of coal. 2: Specific heats and heats of reaction, Fuel 62:540-546.

Merrick, D., 1983c, Mathematical models of the thermal decomposition of coal. 3: Density, porosity and contraction behaviour, Fuel 62:547 -552.

Merrick, D., 1983d, Mathematical models of the thermal decomposition of coal. 6: Effect of blend composition on coke strength, Fuel 62:567 - 570.

Merrick, D., 1987, The thermal decomposition of coal: mathematical models of the chemical and physical changes, in Coal Science and Chemistry (A. Volborth, ed.), pp. 307-342, Elsevier, Amsterdam.

Metcalf, G. S., Windig, W., Hill, G. R., and Meuzelaar, H. L. c., 1987, Characterization of U.S. lignites by pyrolysis mass spectrometry and multivariate analysis, Int. J. Coal Geol. 7:245-268.

Meuzelaar, H. L. C., Harper, A. M., Hill, G. R., and Given, P. H., 1984a, Characterization and classification of Rocky Mountain coals by Curie-point pyrolysis mass spectrometry, Fuel 63:640-652.

Meuzelaar, H. L. C., Harper, A. M., Pugmire, R. J., and Karas, J., 1984b, Characterization of coal maceral concentrates by Curie-point mass spectrometry, Int. J. Coal Geol. 4: 143 -171.

Meuzelaar, H. L. C., Haverkamp, J., and Hileman, F. D., 1982, Curie-point Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials, Compendium and Atlas, Elsevier, Amster­dam.

Meuzelaar, H. L. c., Hoesterey, B. L., Windig, W., and Hill, G. R., 1987, Prediction and modeling of coal conversion reactions by pyrolysis mass spectrometry and multivariate statistical analysis, Fuel Process. Technol. 15:59-70.

Meuzelaar, H. L. c., Huai, H., Lo, R., and Dworzanski, J. P., 1991, Chemical composition and origin of fossil resins from Utah Wasatch plateau coal, Fuel Process. Technol. 28:119-134.

Meuzelaar, H. L. C., and Huff, S. M., 1981, Characterization of leukemic and normal white blood cells by Curie-point pyrolysis-mass spectrometry. II: Biochemical interpretation of some differences in the pyrolysis patterns, J. Anal. Appl. Pyrol. 3:111-129.

Meuzelaar, H. L. C., Roberts, K. A., and Yun, Y., 1988, Novel mass spectrometric techniques for coal devolatilization studies, Western States Combustion Institute Proc., The Combustion Institute, Salt Lake City, UT.

Meuzelaar, H. L. c., Windig, W., Harper, A. M., Huff, S. M., McClennen, W. H., and Richards, J. M., 1984c, Pryolysis mass spectrometry of complex organic materials, Science 226:268-274.

Meuzelaar, H. L. c., Yun, Y., Chakravarty, T., and Metcalf, G. S., 1992, Computer-enhanced pyrolysis spectrometry. A new window on coal structure and reactivity, in Advances in Coal Spectroscopy (H. L. C. Meuzelaar, ed.), pp. 275-294, Plenum, New York.

Meuzelaar, H. L. c., Yun, Y., Simmleit, N., and Schulten, H-R., 1989, The mobile phase in coal viewed from a mass spectrometric perspective, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(3):693-701.

Meyers, R. A., 1982, Introduction, in Coal Structure (R. A. Meyers, ed.), pp. 1-5, Academic Press, New York.

Miknis, F. P., 1988, Solid state 13C NMR in coal research: selected techniques and application, in New Trends in Coal Science (Y. Yiiriim, ed.), pp. 117-158, Kluwer, Dordrecht, The Netherlands.

Page 32: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

440 REFERENCES

Mitchell, R. E., 1987, Experimentally detennined overall burning rates of coal chars, Combust. Sci. Techno/. 53:165-186.

Mitchell, R. E., 1988, On the products of the heterogeneous oxidation reaction at the surfaces of burning coal char particles, 22nd Int. Symp. Combustion, The Combustion Institute, pp. 69-78.

Mitchell, R. E., 1990, Variations in the temperatures of coal-char particles during combustion: A consequence of particle-to-particle variations in ash-content, 23rd Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1297 -1304.

Mitchell, R. E., Hurt, R. H., Baxter, L. L., and Hardesty, D. R., 1992. Compliation of Sandia coal char combustion data and kinetic analysis, Milestone report.

Mitchell, R. E., Kee, R. J., Glarborg, P., and Coltrin, M. E., 1990, The effect of conversion in the boundary layer surrounding pulverized-coal char particles, 23rd Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1169-1176.

Mitchell, R. E., and Madsen, O. H., 1986, Experimentally detennined overall rates of pulverized coal chars in specified O2 land CO2 environments, 21 st Int. Symp. Combustion, The Combus­tion Institute, Pittsburgh, P A, pp. 173 -181.

Mitchell, R. E., and McLean, J. W., 1982, On the temperature and reaction rate of burning pulverized fuels, 19th Symp. Combustion, The Combustion Institute, Pittsburgh, P A, pp. 1113-1122.

Miura, K., Hashimoto, K., and Silveston, P. L., 1989, Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity, Fuel 68:1461-1475.

Moers, M. E. C., Baas, M., de Leeuw, J. W., Boon, J. J., and Schenck, P. A., 1990, Occurrence and origin of carbohydrates in peat samples from a red mangrove environment as reflected by abundances of neutral monosaccharide, Geochim. Cosmochim. Acta 54:2463-2472.

Mohanty, K. K., Ottino, J. M., and Davis, H. T., 1982, Reaction and transport in disordered composite media: Introduction of percolation concepts, Chem. Eng. Sci. 37:905-924.

Mon, E., and Amundson, N. R., 1978, Diffusion and reaction in a stagnant boundary layer about a carbon particle. 2: An extension, Ind. Eng. Chem. Fundam. 17:313-321.

Mon, E., and Amundson, N. R., 1979, Diffusion and reaction in a stagnant boundary layer about a carbon particle. 3: Stability, Ind. Eng. Chem. Fundam. 18:162-168.

Mon, E., and Amundson, N. R., 1980, Diffusion and reaction in a stagnant boundary layer about a carbon particle. 4: The dynamical behavior, Ind. Eng. Chem. Fundam. 19:243-250.

Monson, C. R., 1992 Char oxidation at elevated pressure, Ph.D. Dissertation, Brigham Young University, Mechanical Engineering Department, Provo, UT.

Monson, C. R., Germane, G. J., Blackham, A. J., and Smoot, L. D., 1992, Char oxidation at elevated pressures, presented at the Western States Section of the Combustion Institute, paper No. WSS/CI 92-87 Berkeley, CA.

Monthioux, M., Oberlin, M., Oberlin, A., Bourrat, X., and Boulet, R., 1982, Heavy petroleum products: microtexture and ability to graphitize, Carbon 20:167-176.

Morell, J. I., Amundson, N. R., and Park, S-K., 1990, Dynamics of a single particle during gasification, Chem. Eng. Sci. 45:387 -401.

Morrison, G. F., 1986, Understanding Pulverized Coal Combustion, lEA Coal Research, London. Mudamburi, Z., and Given, P. H., 1985, Some structural features of coal of differing maceral

distribution and geological history, Org. Geochem.8:221-232. Mukhopadhyay, P. K., Hatcher, P. G., and Calder, J. H., 1991, Hydrocarbon generation from

deltaic and intermontane fluviodeltaic coal and coaly shale from the tertiary of Texas and carboniferous of Nova Scotia, Org. Geochem. 17:765-783.

Mulcahy, M. F. R., and Smith, I. W., 1969, Kinetics of combustion of pulverized fuel: a review of theory and experiment, Rev. Pure App/. Chem. 19:81-108.

Page 33: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 441

Muntean, I. V., and Stock, L. M., 1991, Solid-state 13C NMR spectroscopy of Pocahontas no. 3 coal, Energy & Fuels 5:767-769.

Murchison, D. G., 1987, Recent advances in organic petrology and organic geochemistry: an overview with some reference to "oil from coal," in Coal and Coal-Bearing Strata: Recent Advances (A. C. Scott, ed.), pp. 257-302. Geol. Soc. Spec. Publ. No. 32.

Murchison, D. G., 1991, Petrographic aspects of coal structure: reactivity of macerals in laboratory and natural environments, Fuel 70:296-315.

Neavel, R. C., 1981a, Origin, petrography, and classification of coal, in Chemistry of Coal Utilization,· 2nd suppl. vol. (M. A. Elliot, ed.), pp. 91-158, Wiley, New York.

Neavel, R. C., 1981b, Coal structure and coal science: overview and recommendations, in Coal Structure (M. L. Gorbaty and K. Ouchi, eds.), pp. 1-13, Am. Chern. Soc., Washington, DC.

Neavel, R. C., 1982, Coal plasticity mechanisms; inferences from liquefaction studies, in Coal Science, vol. 1 (M. L. Gorbaty, I. W. Larsen, and I. Wender, eds.), pp. 1-19, Academic Press, New York.

Nelson, P. F., 1987, Chemically-bound n-alkyl groups in coal, Fuel 66:1264-1268. Nelson, P. F., Kelly, M. D., and Womat, M. 1.,1991, Conversion of fuel nitrogen in coal volatiles

to NO. precursors under rapid heating conditions, Fuel 70:403-407. Nelson, P. F., Smith, I. W., Tyler, R. I., and Mackie, I. C., 1988, Pyrolysis of coal at high

temperatures, Energy & Fuels 2:391-400. Nettleton, M. A., and Stirling, R., 1971, The combustion of clouds of coal particles in shock­

heated mixtures of oxygen and nitrogen, Proc. R. Soc. London A322, 207. Niksa, S., 1988a, Rapid coal devolatilization as an equilibrium flash distillation, AlChE J. 34:790-

802. Niksa, S., 1988b, Modeling the devolatilization behavior of high volatile bituminous coals, 22nd

Int. Symp. Combustion, The Combustion Institute, pp. 105-114. Niksa, S., 1991a, Flashchain theory for rapid coal devolatilization kinetics. 2: Impact of operating

conditions, Energy Fuels 5:665-673. Niksa, S., 1991b, Flashchain theory for rapid coal devolatilization kinetics. 3: Modeling the

behavior of various coals, Energy & Fuels 5:673-683. Niksa, S., and Kerstein, A. R., 1986a, The distributed-energy chain model for rapid coal devolatil­

ization kinetics. I: Formulation, Combust. Flame 66:95-109. Niksa, S., and Kerstein, A. R., 1986b, The distributed-energy chain model for rapid coal devolatil­

ization kinetics. II: Transient weight loss correlations, Combust, Flame 66:111-119. Niksa, S., and Kerstein, A. R., 1987, On the role of macromolecular configuration in rapid coal

devolatilization, Fuel 66:1389-1399. Niksa, S., and Kerstein, A. R., 1989, Interpreting coal devolatilization as a flash distillation

driven by competitive kinetics for depolymerization and reattachment, Preprint. Am. Chem. Soc., Div. Fuel Chem. 34(4):1293-1299.

Niksa, S., and Kerstein, A. R., 1991, Flashchain theory for rapid coal devolatilization kinetics. 1: Formulation, Energy & Fuels 5:647-665.

Niksa, S., Kerstein, A. R., and Fletcher, T. H., 1987, Predicting devolatilization at typical coal combustion conditions with the distributed-energy chain model, Combust. Flame 69:221-228.

Niksa, S., Russel, W. B., and Savelle, D. A., 1982, Time-resolved weight loss kinetics for the rapid devolatilization of a bituminous coal, 19th Int. Symp. Combustion, The Combustion Institute, pp. 1151-1157.

Nip, M., de Leeuw, I. W., and Crelling, I. C., 1992, Chemical structure of bituminous coal and its constituting maceral fractions as revealed by flash pyrolysis, Energy & Fuels 6:125-136.

Page 34: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

442 REFERENCES

Nip, M., de Leeuw, J. W., and Schenck, P. A., 1988, The characterization of eight maceral concentrates by means of Curie point pyrolysis-gas chromatography and Curie point pyroly­sis-gas chromatography-mass spectrometry, Geochim. Cosmochim. Acta 52:637-648.

Nip, M., de Leeuw, J. W., Schenck, P. A., Meuzelaar, H. L. C., Stout, S. A., Given, P. H., and Boon, J. J., 1985, Curie-point pyrolysis mass spectrometry, Curie-point pyrolysis-gas chromatography-mass spectrometry and fluorescence microscopy as analytical tools for the characterization of two uncommon lignites, J. Anal. Appl. Pyrol. 8:221-239.

Nip, M., de Leeuw, J. W., Schenck, P. A., Windig, W., Meuzelaar, H. L. C., and Crelling, J. C., 1989, A flash pyrolysis and petrographic study of cutinite from the Indiana paper coal, Geochim. Cosmochim. Acta 53:671-683.

Nip, M., Tegelaar, E. W., Brinkhuis, H., de Leeuw, J. W., Schenck, P. A., and Holloway, P. J., 1986a, Analysis of modern and fossil plant cuticles by Curie point Py-GC and Curie point Py-GC-MS: recognition of a new, highly aliphatic and resistant biopolymer, Org. Geochem. 10:69-778.

Nip, M., Tegelaar, E. W., de Leeuw, J. W., Schenck, P. A., and Holloway, P. J., 1986b, A new non-saponifiable highly aliphatic and resistant biopolymer in plant cuticles: evidence from pyrolysis and llC-NMR analysis of present day and fossil plants, Naturwiss. 73:579-585.

Nip, M., Windig, W., Beckman, S., Meuzelaar, H. L. C., 1985, Comparison of MS, GClMS, IR and other Data Sets obtained on Lignite Samples, 33rd ASMS Conference on Mass Spec­trometry and Allied Topics, San Diego, CA, 257-258.

Nishioka, M., 1988, Aromatic sulfur compounds other than condensed thiophenes in fossil fuels: enrichment and identification, Energy & Fuels 2:214-219.

Nishioka, M., 1989, Study of the proposed two phase model for high-volatile bituminous coals, Preprint. Am. Chem. Soc., Div. Fuel Chem. 34(3):685-692.

Nishioka, A., 1992, The associated molecular nature of bituminous coal, Fuel 71:941-948. Nishioka, M., Campbell, R. M., Lee, M. L., Muchiri, D. R., Stuart, J. G., and Castle, R. N.,

1985, Isolation and determination of hydroxylated nitrogen heterocycles in a coal liquid, Anal. Chem. 57:2211-2215.

Nishioka, M., Chang, H-C., and Lee, M. L., 1988, Structural characteristics of polycyclic aromatic hydrocarbons isomers in coal tars and combu.stion products, Environ. Sci. Techno/. 20: 1023-1027.

Nishioka, M., and Gorbaty, M. L., 1990, Test of the proposed two-phase model for high-volatile bituminous coal, Energy & Fuels 4:70-73.

Nishioka, M., and Larsen, L. W., 1990a, Association of aromatic structures in coals, Energy & Fuels 4:100-106.

Nishioka, M., and Larsen, L. W., 1990b, Solvent-induced associations of high-volatile bituminous coals, Preprint. Am. Chem. Soc., Div. Fuel Chem. 35(2):319-326.

Nishioka, M., and Lee, M. L., 1988, Preferred annellated structures of polycyclic aromatic compounds in coal-derived materials, in Polynuclear Aromatic Compounds, Adv. Chern. Ser., Paper 217, Am. Chern. Soc. Symp. Ser. 14, pp. 235-253.

Nishioka, M., Lee, M. L., and Castle, R. N., 1986, Sulfur heterocycles in coal-derived products: relation between structure and abundance, Fuel 65:390-396.

Nozaki, T., Adschiri, T., and Furusawa, T., 1990, Characterization of coal char reactivity by transient kinetics techniques, Fuel Process. Technol. 24:277-283.

O'Brien, R. J., Gibbons, J. R., and Kandiyoti, R., 1987, The effect of chloroform extractables on tar formation in flash pyrolysis and catalytic flash pyrolysis, Fuel Process. Technol. 15:71-82.

Oh, M. S., Burnham, A. K., and Crawford, R. W., 1988, Evolution of sulfur gases during coal pyrolysis, Pre print, Am. Chem. Soc., Div. Fuel Chem. 33(1):274-282.

Page 35: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 443

Oh, M. S., Peters, W. A., and Howard, J. B., 1989, An experimental and modeling study of softening coal pyrolysis, AIChE J. 35:775-792.

Oka, N., Murayama, T., Matsuoka, H., Yamada, T., Shinozaki, S., Shibaoka, M., and Thomas, C. G., 1987, The influence of rank and maceral composition on ignition and char burnout of pulverized coal, Fuel Process. Technol. 15:213-224.

Orendt, A., M., Solum, M. S., Sethi, N. K., Hughes, C. D., Pugmire, R. J., and Grant, D. M., 1993, Measurement of 13C chemical shielding anisotropy in coal, in Magnetic Resonance of Solid Carbonaceous Fuels, Adv. Chem. Series 229, Ch. 22, (R. E. Botto and Y. Sanada, eds.), pp. 419-439.

Orendt, A., M., Solum, M. S., Sethi, N. K., Pugmire, R. J., and Grant, D. M., 1992, 13C NMR techniques for structural studies of coals and coal chars, in Advances in Coal Spectroscopy (H. L. C. Meuzelaar, ed.), pp. 215-254, Plenum, New York.

Ouchi, K., Itoh, S., Makabe, M., and ltoh, H., 1989, Pyridine extractable material from bituminous coal, its donor properties and its effect on plastic properties, Fuel 68:735-740.

Ourisson, G., Albrecht, P., and Rohmer, M., 1979, The hopanoids, Pure Appl. Chem. 51:709-729.

Ourisson, G., Albrecht, P., and Rohmer, M., 1984, The microbial origin of fossil fuels, Sci. Am. 251:44-51.

Painter, P., Park, Y., Graf, J., Sobkowiak, M., and Coleman, M., 1990, Coal solubility and swelling, Preprint. Am. Chem. Soc., Div. Fuel Chem. 35(2):307-318.

Painter, P. C., Snyder, R. W., Starsinic, M., Coleman, M. M., Kuehn, D. W., and Davis, A., 1982, Fourier transform IR spectroscopy. Application to the quantitative determination of functional groups in coal, in Coal and Coal Products: Analytical Characterization Tech­niques (E. L. Fuller, ed.), pp. 47-76, ACS Symp. Series 205, Am. Chern. Soc., Washington, DC.

Painter, P. C., Starsinic, M., and Coleman, M. M., 1985, Determination of functional groups in coal by F~urier transform interferometry, in Fourier Transform Infrared Spectroscopy, vol. 4 (J. R. Ferraro and L. J. Basile, eds.), Academic Press, Orlando, FL.

Palmer, A. D., Cheng, M., Goulet, J.-C., and Ferimsky, E., 1990, Relation between particle size and properties of some bituminous coals, Fuel 69:183-188.

Palmer, C. A., 1990, Determination of twenty-nine elements in eight Argonne premium coal samples by intrumental neutron activation analysis, Energy & Fuels 4:436-439.

Palmer, S. R., Hippo, E. J., Kruge, M. A., and Crelling, J. C., 1990, Characterization of organic sulfur compounds in coals and coal macerals, in Geochemistry of Sulfor in Fossil Fuels (W. L. Orr and C. M. White, eds.), pp. 298-315, ACS Symp. Series 429, Am. Chern. Soc., Washington, DC.

Park, K. Y., and Edgar, T. F., 1987, Modeling and cavity growth for underground coal gasification, Ind. Chem. Res. 26:237.

Peaden, P. A., and Lee, M. L., 1982, Supercritical fluid chromatography: methods and principles, J. Liquid Chromatogr. 5:179-221.

Pennsylvania State University, 1990, The Penn State Coal Sample Bank and Data Base, 2nd ed., report of the Energy and Fuels Research Center, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, PA.

Peppas, N. A., and Lucht, L. M., 1984, Macromolecular structure of coals. I: The organic phase of bituminous coals as a macromolecular network, Chem. Eng. Commun. 30:291-310.

Petrov, A. A., Vorobieva, N. S., and Zemskova, Z. K., 1985, Sterenes and triterpenes in brown coals,Org. Geochem. 8:269-273.

Philp, R. P., 1985, Fossil Fuels Biomarkers: Applications and Spectra, Elsevier, Amsterdam. Philp, R. P., and Oung, J-N., 1988, Biomarkers, Anal. Chem. 6O:887A-896A. Pierce, B. S., and Stanton, R. W., 1990, Coal quality and compositional characteristics of the

Page 36: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

444 REFERENCES

Upper Freeport coal bed, source of the Argonne #1 premium sample, open-file report 90-697, Dept. of the Interior, U.S. Geological Survey.

Pierce, B. S., Stanton, R. W., and Cecil, C. B., 1989, Coal quality characteristics of the Blind Canyon coal bed, Utah, source of the Argonne #6 Premium Sample, open-file report 89-634, Dept. of the Interior, U.S. Geological Survey.

Pitt, G. J., 1962, The kinetics of evolution of volatile products from coal, Fuel 41:267. Prado, G., Froelich, D., and Lahaye, J., 1987, Heterogeneous combustion of residual coke particle,

in Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion (J. Lahaye and G. Prado, eds.), pp. 219-241, Martinus Nijhoff, Dordrecht, The Netherlands.

Prahl, A. K., Springstubbe, H., Grumbach, K., and Wiermann, R., 1985, Studies on sporopollenin biosynthesis: the effect on inhibitors of carotenoid biosynthesis on sporopollenin accumula­tion, Z Natuiforsch. C.40:621-626.

Pregermain, S., 1988, Rank and maceral effects on coal combustion characteristics, Fuel Process. Technol.20:297-306.

Pugmire, R. J., Dunkel, R., Mayne, C. L., and Grant, D. M., 1989, The use of pattern recognition with high resolution lH and 13C NMR techniques in the study of fuels and coal derived liquids, Int. Conf. Coal Sci., Vol. 2, pp. 1095-1098.

Pugmire, R. J., Sethi, N. K., Solum, M. S., Facelli, J. C., and Grant, D. M., 1988, The use of variable angle spinning 13C NMR spectroscopy to assess aromatic cluster size in coals, coal chars, and carbonaceous materials, Conf. Proc. Carbon '88, The University of Newcastle Upon Tyne, lOP Pub., Bristol, UK.

Pugmire, R. J., Soderquist, A., Burton, D. J., Beeler, A. J., and Grant, D. M., 1985, New insights into the carbon skeletal structure of coal and coal macerals by means of Carbon-13 CPt MAS spectroscopy, Proc. Int. Conf. Coal Science, Sydney, Austra1ia, pp. 774-776.

Pugmire, R. J., Solum, M. S., Bai, S., Fletcher, T. H., Woods, S., and Grant, D. M., 1993, The use of solid state C-13 NMR spectroscopy to study pyridine extracted and extraction residues in the Argonne premium coals, Preprint. Am. Chem. Soc., Div. Fuel Chem.

Pugmire, R. J., Solum, M. S., Grant, D. M., Critchfield, S., and Fletcher, T. H., 1991, Structural evolution of matched tar-char pairs in rapid pyrolysis experiments, Fuel 70:414-423.

Pugmire, R. J., Woolfenden, W. R., Mayne, C. L., Karas, J., and Grant, D. M., 1983, Application of 2-D and dipolar dephasing 13C NMR techniques to the study of structural variations in coal macerals, Proc. Int. Conf. Coal Science, Pittsburgh, PA, pp. 121-129.

Pugmire, R. J., Woolfenden, W. R., Mayne, C. L., Karas, J., and Grant, D. M., 1984, Applications of 2-D and dipolar 13C NMR techniques to the study of structural variations in coal macerals, in Chemistry and Characterization of Coal Macerals, Am. Chern. Soc. Symp. Series 252, (R. E. Winans and J. C. Crelling, eds.), pp. 79-97.

Pugmire, R. J., Zilm, K. W., Grant, D. M., Larter, S. R., and Allen, J., 1981a, Carbon-13 CPt MASS study of coal macerals of varying rank, in New Approaches in Coal Chemistry ACS Symp. Series No. 169 (B. D. Blaustein, B. C. Bockrath, and S. Friedman, eds.), pp. 23-42, Am. Chern. Soc., Washington, DC.

Pugmire, R. J., Zilm, K. W., Woolfenden, W. R., Grant, D. M., Dyrkacz, G. R., Bloomquist, C. A. A., and Horwitz, E. P., 1981b, Solid state NMR studies of coal macerals, Proc. Int. Conf. Coal Science, Dusseldorf, Germany, pp. 798-806.

Pugmire, R. J., Zilm, K. W., Woolfenden, W. R., Grant, D. M., Dyrkacz, G. R., Bloomquist, C. A. A., and Horwitz, E. P., 1982, Carbon-13 NMR spectra of macerals separated from individual coals, Org. Geochem. 4:79-84.

Quinga, E. M. Y., and Larsen, J. W., 1988, Solvent swelling in coals, in New Trends in Coal Science (Y. Yllrilm, ed.), pp. 85-116, Kluwer, Dordrecht, The Netherlands.

Radke, M., Leythaeuser, D., and Teichmiiller, M., 1984, Relationship between rank and composi­tion of aromatic hydrocarbons for coals of different origins, Org. Geochem. 6:423-430.

Page 37: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 445

Radke, M., Willsch, H., Leythaeuser, D., and TeichmUller, M., 1982, Aromatic compounds of coal: relation of distribution pattern to rank, Geochim. Cosmochim. Acta 46:1831-1848.

Radovic, L. R., Jiang, H., and Lizzio, A. A., 1991, A transient kinetics study of char gasification in carbon dioxide and oxygen, Energy & Fuels 5:68-74.

Radovic, L. R., Steczlm, K., Walker, P. L., Jr., and Jenkins, R. G., 1985, Combined effects of inorganic constituents and pyrolysis conditions on the gasification reactivity of coal chars, Fuel Process. Technol. 10:311-326.

Radovic, L. R., Walker, P. L., and Jenkins, R. G., 1983a, Importance of carbon active sites in the gasification of coal chars, Fuel 62:849-856.

Radovic, L. R., Walker, P. L., and Jenkins, R. G., 1983b, Importance of catalyst dispersion in the gasification of lignite chars, J. Catal. 82:382-394.

Ragland, K. W., and Yang, J-T., 1985, Combustion ofmilimeter sized coal particles in convective flow, Combust. Flame 60:285.

Remenyi, K., Kertesz, V., Voros, L., and Horvath, F., 1989, Dynamic behavior of coal char particle combustion, Combust. Flame 76:311-323.

Reyes, S., and Jensen, K. F., 1984, Modeling of catalytic gasification,lnd. Eng. Chem. Fundam. 23:223-229.

Reyes, S., and Jensen, K. F., 1985, Estimation of effective transport coefficients in porous solids based on percolation concepts, Chem. Eng. Sci. 40:1723-1734.

Reyes, S., and Jensen, K. F., 198680 Percolation concepts in modelling of gas-solid reactions. I: Application to char gasification in the kinetic regime, Chem. Eng. Sci. 41:333-343.

Reyes, S., and Jensen, K. F., 1986b, Percolation concepts in modelling of gas-solid reactions. IT: Application to char gasification in the diffusion regime, Chem. Eng. Sci. 41:345-354.

Rhoads, C. A., Painter, P. C., and Given, P. H., 1987, FTIR studies of the contribution of plant polymers to coal formation, in Peat: Geochemistry, Research and Utilization (D. J. Boron, ed.), Int. J. Coal Geol. 8:69-83.

Richardson, J. S., and Holba, A., 1987, Coal maturity as determined by gas chromatography! mass spectroscopy, in Coal Science and Chemistry (A. Volborth, ed.), pp. 343-354, Elsevier, Amsterdam.

Robben, F., 1983, Coal-fueled diesel engines, SAE Paper 831747. Rochdi, A., and Landais, P., 1991, Transmission micro-infrared spectroscopy: an efficient tool

for microscale characterization of coal, Fuel 70:367-371. Rollins, M. S., Cohen, A. D., Bailey, A. M., and Durig, J. R., 1991, Organic chemical and

petrographic changes induced by early-stage artificial coalification of peats, Org. Geochem. 17:451-465.

Rouzaud, J-N., 1990, Contribution of transmission electron microscopy to the study of the coal carbonization processes, Fuel Process. Technol. 24:55-69.

Russell, N. J., 1984, Gelification of Victorian Tertiary soft brown coal wood. I: Relationship between chemical composition and microscopic appearance and variation in the degree of gelification, Int. J. Coal Geol. 4:99-118.

Russell, N. J., and Barron, P. F., 1984, Gelification of Victorian Tertiary soft brown coal wood. IT: Changes in chemical structure associated with variation in the degree of gelification, Int. J. Coal Geol. 4:119-142.

Russel, W. B., Saville, D. A., and Greene, M. I., 1979, A model for short residence time hydropyrolysis of single coal particles, AlChE J. 25:65-80.

Ryan, N. J., Given, P. H., Boon, J. J., and de Leeuw, J. W., 1987, Study of the fate of plant polymers in peats by Curie-point pyrolysis, in Peat: Geochemistry, Research and Utilization (D. J. Boron, ed.), Int. J. Coal Geol. 8:85-98.

Ryan, T. W., 1989, Coal powder and coal slurry research in diesel engines-a review, 6th Anual Pittsburgh Coal Conf., Pittsburgh, PA, p. 474.

Page 38: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

446 REFERENCES

Rybak, R., 1988, Reactivity of heat treated coals, Fuel Process. Technol. 19:107-122. Sahimi, M., Gavalas, G. R., and Tsotsis, T. T., 1990, Statistical and continuum models of fluid­

solid reactions in porous media, Chem. Eng. Sci. 45:1443-1502. Sahimi, M., and Tsotsis, T. T., 1988, Statistical modeling of gas-solid reaction with pore volume

growth: kinetic regime, Chern. Eng. Sci. 43:113-121. Sahu, R., Flagan, R. C., and Gavalas, G. R., 1989, Discrete simulation of cenospheric coal-char

combustion, Combust. Flame 77:337-346. Sahu, R., Levendis, Y. A., Flagan, R. C., and Gavalas, G. R., 1988a, Physical properties and

oxidations rates of chars from three bituminous coals, Fuel 67:275-283. Sahu, R., Northrop, P. S., Flagan, R. C., and Gavalas, G. R., 1988b, Char combustion: measure­

ment and analysis of particle temperature histories, Combust. Sci. Technol. 60:215-230. Saito, M., Sato, M., Murata, H., and Sadakata, M., 1991, Combustion behavior of pulverized

coal particles in a high temperature and high oxygen concentration atmosphere, Fuel 70:709-712.

Saiz-Jimenez, C., Boon, J. J., Hedges, J. I., Hessels, J. K. C., and de Leeuw, J. W., 1987, Chemical characterization of recent and buried woods by analytical pyrolysis. Comparison of pyrolysis data with l3C NMR and wet chemical data, J. Anal. Appl. Pyrol. 11:437 -450.

Saiz-Jimenez, C., and de Leeuw, J. W., 1984, Pyrolysis-gas chromatography mass spectrometry of isolated, synthetic and degraded lignins, Org. Geochem. 6:417-422.

Saiz-Jimenez, C., and de Leeuw, J. W., 1986, Lignin pyrolysis products: their structure and significance as biomarkers, Org. Geochem. 10:869-876.

Sakurovs, R., Lynch, L. J., and Barton, W. A., 1989, Molecular structure and conformational stability of coals, Preprint, Am. Chem. Soc., Div. Fuel Chern. 34(3):702-713.

Sakurovs, R., Lynch, L. J., Maher, T. P., and Banerjee, R. N., 1987, Mobility during pyrolysis of Australian bituminous coals, Energy & Fuels 1:167-172.

Sandmann, C. W., Jr., and Zygourakis, K., 1986, Evolution of pore structure during gas-solid reactions: discrete models, Chern. Eng. Sci. 41:733-739.

Sandmann, C. W., Jr., and Zygourakis, K., 1987, Pore structure evolution during non-catalytic gas-solid reactions. IV: Studies with demineralized chars, Chern. Eng. Comm. 58: 139-164.

Saxena, S. C., 1990, Devolatilization and combustion characteristics of coal particles, Prog. Energy Combust. Sci. 16:55-94.

Schobert, H. H., 1987, Coal, The Energy Source of the Past and Future, Am. Chern. Soc., Washington, DC.

Schulten, H-R., Marzec, A., Dyla, P., Simmleit, N., and Muller, R., 1989a, Thermal behavior and degradation products of differently ranked coals studied by thermogravimetry and high­resolution field-ionization mass spectrometry, Energy & Fuels 3:481-487.

Schulten, H-R., Simmleit, N., and Marzec, 1988, Liquefaction behavior of coals: a study by field-ionization mass spectrometry and pattern recognition, Fuel 67:619-625.

Schulten, H-R., Simmleit, N., and MUller, R., 1987, High-temperature, high-sensitivity pyrolysis field ionization mass spectrometry, Anal. Chem. 59:2903-2908.

Schulten, H-R., Simmleit, N., and Muller, R., 1989b, Characterization of plant materials by pryolysis-field ionization mass spectrometry: high resolution mass spectrometry, time­resolved high-resolution mass spectrometry, and Curie-point pyrolysis-gas chromatographyl mass spectrometry of spruce needles, Anal. Chem. 61:221-227.

Schulze Osthoff, K., and Wiermann, R., 1987, Phenols as integrated compounds of sporopollenin from Pinus pollen, J. Plant Physiol. 131:5-15.

Seifert, W. K., and Moldowan, J. M., 1980, The effect of thermal stress on source-rock quality as measured by hopane sterochemistry, in Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), pp. 229-237, Pergamon Press, University of Newcastle On Tyne, England.

Page 39: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 447

Seifert, W. K., and Moldowan, J. M., 1981, Paleoreconstruction by biological markers, Geochim. Cosmochim. Acta 45:783-794.

Semenov, N. N., 1934, Chemical kinetics and chain reactions, Z. Phys. 48:571. Senftle, J. T., and Larter, S. R., 1988, The geochemistry of exinites. 1: Evaluation of spectral

fluorescence of a series of modem resins and fossil resinites, in Advances in Organic Geochemistry, 1987, Org. Geochem. 13:973-980.

Serio, M. A., Hamblen, D. G., Markham, J. R., and Solomon, P. R., 1987a, Kinetics of volatile evolution in coal pyrolysis: experiment and theory, Energy & Fuels 1:138-152.

Serio, M. A., Solomon, P. R., Bassilakis, R., and Suuberg, E. M., 1989a, The effects of minerals and pyrolysis conditions on char gasification rates, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(1):9-21.

Serio, M. A., Solomon, P. R., and Carangelo, R. M., 1988a, Pyrolysis of the Argonne premium coals under slow heating conditions, Preprint, Am. Chem. Soc., Div. Fuel Chem. 33(2):295-309.

Serio, M. A., Solomon, P. R., Charpenay, S., Yu, Z-Z., and Bassilakis, R., 1990, Kinetics of volatile product evolution from the Argonne premium coals, Preprint, Am. Chem. Soc., Div. Fuel Chem. 35(4):808-815.

Serio, M. A., Solomon, P. R., and Suuberg, E. M., 1987b, Variations in char reactivity with coal type and pyrolysis conditions, Int. Conf. Coal Science, Elsevier, Amsterdam.

Serio, M. A., Solomon, P. R., and Suuberg, E. M., 1994, The variations in char reactivity with pyrolysis conditions and coal type, Fuel, submitted.

Serio, M. A., Solomon, P. R., Yu, Z-Z., Bassilakis, R., Markham, J. R., and Klapheke, J. G., 1989b, The effect of rank on coal pyrolysis kinetics, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(4):1324-1328.

Serio, M. A., Solomon, P. R., Yu, Z-Z., Deshpande, G. V., and Hamblen, D. G., 1988b, Pyrolysis modeling of the Argonne premium coals, Preprint, Am. Chem. Soc., Div. Fuel Chem. 33(3):91-101.

Sethi, N. K., 1989, Spin diffusion and selective exitation NMR techniques for coal structure studies, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(3):714-720.

Sethi, N. K., Grant, D. M., and Pugmire, R. J., 1987a, 13C chemical shielding anisotropy studied by variable-angle sample spinning, J. Magn. Reson. 71:476-479.

Sethi, N. K., Pugmire, R. J., Facelli, J. c., and Grant, D. M., 1988, Quantitative determination of different carbon types in fusinite and anthracite coals from carbon-13 nuclear magnetic resonance chemical shielding line-shape analysis, Anal. Chem. 60:1574-1579.

Sethi, N. K., Pugmire, R. J., and Grant, D. M., 1987b, Non-magic angle spinning NMR-an approach to determine the chemical shift tensors in char particles, Preprint, Am. Chem. Soc., Div. Fuel Chem. 32(4):155-167.

Shabtai, J. S., Guohe, Q., Balusarni, K., Nag, N. K., and Massoth, F. E., 1988, Catalytic functional­ities of supported sulfides. V: C-N bond hydrogenolysis selectivity as a function of promoter type, J. Catal. 113:206-219.

Shabtai, J. S., Nag, N. K., and Massoth, F. E., 1987, Catalytic functionalities of supported sulfides. IV: C-O hydrogenolysis selectivity as a function of promoter type, J. Catal. 104:413-423.

Shabtai, J. S., and Saito, J., 1988, Process for the low-temperature depolymerization of coal and its conversion to a hydrocarbon oil, U.S. Patent No. 4,728,418.

Shabtai, J. S., Skulthai, T., and Saito, I., 1986, Low-temperature depolymerization. 5: Conversion of New Mexico and Utah HVB coals to hydrocarbon oils, Preprint, Am. Chem. Soc., Div. Fuel Chem. 31(4):15-23.

Shadle, L. J., Neill, P. H., and Given, P. H., 1988, The dependence ofliquefaction behavior on

Page 40: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

448 REFERENCES

coal characteristics. 10: Structural characteristics of a set of high-sulphur coals and asphal­tenes derived from them, Fuel 67:1465-1476.

Sharkey, A. G., Jr., and McCartney, J. T., 1981, Physical properties of coal and its products, in Chemistry of Coal Utilization, 2nd suppl. vol. (M. A. Elliot, ed.), pp. 159-283, Wiley, New York.

Shaw, D. W., Zhu, X., Misra, M. K., and Essenhigh, R. H., 1990, Determination of global kinetics of coal volatiles evolution, 23rd Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1155-1162.

Shin, S-C., Baldwin, R. M., and Miller, R. L., 1989, Correlation of bituminous coal hydroliquefac­tion activation energy with fundamental coal chemical properties, Energy & Fuels 3:193-199.

Shinn, J. H., 1984, From coal to single-stage and two stage products: a reactive model of coal structure, Fuel 63:1187-1195.

Simmleit, N., Yun, Y., Meuzelaar, H. L. C., and Schulten, H-R., 1992, Thermochemical analysis of U.S. Argonne premium coal samples by time-resolved pyrolysis field ionization mass spectrometry, in Advances in Coal Spectroscopy (H. L. C. Meuzelaar, ed.), pp. 295-339, Plenum, New York.

Simoneit, B. R. T., 1986, Cyclic terpenoids of the geosphere, in Biological Markers in the Sedimentary Record (R. B. Johns, ed.), pp. 43-99, Elsevier, Amsterdam.

Simoneit, B. R., Grimalt, J. 0., Wang, T. G., Cox, R. E., Hatcher, P. G., and Nissenbaum, A., 1986, Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods and coals, in Advances in Organic Geochemistry, 1985, Org. Geochem. 10:877-889.

Simons, G. A., 1979a, Char gasification. I: Transport model, Combust. Sci. Technol. 20:107-116.

Simons, G. A., 1979b, The structure of coal char. n: Pore combination, Combust. Sci. Technol. 19:227-235.

Simons, G. A., 1980, The unified coal-char reaction, Fuel 59:143-144. Simons, G. A., 1981, Documentation of the PSI char oxidation/pore tree model, Report no. PSI

TR-257, U.S. DOE contract no. DE-AC22-80PC-30293, Physical Sciences, Inc., Woburn, MA.

Simons, G. A., 1982a, The pore tree structure of porous char, 19th Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1067-1076.

Simons, G. A., 1982b, Intrinsic rate constants for the oxidation of carbon char, Carbon 20:117-118.

Simons, G. A., 198380 Coal pyrolysis. I: Pore evolution theory, Combust. Flame 53:83-92. Simons, G. A., 1983b, Enhanced char reactivity via a tailored pore structure, Combust. Flame

50:275-285. Simons, G. A., 1983c, The role of pore structure in coal pyrolysis and gasification, Prog. Energy

Combust. Sci. 9:269-290. Simons, G. A., 1984, Coal pyrolysis. II: Species transport theory, Combust. Flame 55:181-194. Simons, G. A., and Finson, M. L., 1979, The structure of coal char. I: Pore branching, Combust.

Sci. Tech. 19:217-225. Simons, G. A., and Lewis, P. F., 1983, Single particle model for char oxidation, Math. Comput.

Simulation 25:527-530. Singer, J. G., (Ed.), 1981, Combustion: Fossil Power Systems, 3rd ed., Combustion Engineering,

Windsor, CT. Sinninghe Damste, J. S., Eglinton, T. I., de Leeuw, J. W., and Schenck, P. A., 1989a, Organic

sulphur in macromolecular sedimentary organic matter. I: Structure and origin of sulphur­containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis, Geochim. Cosmochim. Acta 53:873-889.

Page 41: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 449

Sinninghe Damste, J. S., Rijpstra, I. c., de Leeuw, J. W., and Schenck, P. A., 1989b, The occurrence and identification of series of organic sulphur compounds in oils and sediment extracts. II: Their presence in samples from hypersaline and non-hypersaline palaeoenviron­ments and possible application as source, palaeoenvironmental and maturity indicators, Geochim. Cosmochim. Acta 53:1323-1342.

Sinninghe Damste, J. S., Rijpstra, I. c., Kock-van Dalen, A. c., de Leeuw, J. W., and Schenck, P. A., 1989c, Quenching of labile functionalised lipids by inorganic sulphur species: evidence for the formation of sedimentary organic sulphur compounds at the early stages of diagenesis, Geochim. Cosmochim. Acta 53:1343-1355.

Skeen, C. J., Libby, B. J., and Crandell, W. B., 1990, Automated semiquantitative direct-current­arc spectrographic analysis of eight Argonne premium coal ash samples, Energy & Fuels 4:431-436.

Skelton, R. J., Jr., Chang, H-C., K., Farnsworth, P. B., Markides, K. E., and Lee, M. L., 1989a, Radio-frequency plasma detector for sulfur selective capillary gas chromatographic analysis of fossil fuels, Anal. Chem. 61:2292-2298.

Skelton, R. J., Jr., Farnsworth, P. B., Markides, K. E., and Lee, M. L., 1989b, Element selective detection after supercritical fluid chromatography using a radio-frequency plasma detector, Anal. Chem. 61:1815-1821.

Slatick, E. R., 1985, Coal Data: A Reference, Energy Information Administration, U.S. Depart­ment of Energy, DOElEIA-0664 (84), Washington, DC.

Smith, E. S., Neavel, R. C., Hippo, E. J., and Miller, R. N., 1981, OTGA combustion of coals in the Exxon coal library, Fuel 60:458.

Smith, I. W., 1978, The intrinsic reactivity of carbons to oxygen, Fuel 57:409-414. Smith, I. W., 1982, The combustion rates of coal chars: a review, 19th Int. Symp. Combustion,

The Combustion Institute, Pittsburgh, PA, pp. 1045-1065. Smith, I. W., Harris, D. J., Valix, N. G., and Trimm, D. L., 1991, Fundamental issues in

Control of Carbon Gasification Reactivity (1. Lahaye and P. Ehrburger, Eds.), p. 49, Kluwer, Dordrecht, The Netherlands.

Smith, J. D., and Smith, P. 1., 1990, Effect of parameter uncertainty on high pressure gasification using advanced simulation software, Proc. Spring Combined Western States/Canadian Com­bustion Institute, Banff, Alberta, Canada.

Smith, J. D., Smith, P. J., and Hill, S. C., 1987, Parametric sensitivity study of an entrained flow pulverized fuel combustion model, Proc. Combined Western States/Japanese Combustion Institute, Hawaii.

Smith, J. D., Smith, P. J., and Hill, S. c., 1991, Parametric sensitivity study of an entrained flow pulverized fuel combustion model, in J. AlChE 39:1668-1679.

Smith, J. M., 1981, Chemical Engineering Kinetics, McGraw-Hill, New York. Smith, K. L., and Smoot, L. D., 1988, Selection and characteristics of standard ACERC coals,

Report of the Advanced Combustion Engineering Research Center, Brigham Young Univer­sity, Provo, UT.

Smith, K. L., and Smoot, L. D., 1990, Characteristics of commonly-used U.S. coals-towards a set of standard research coals, Prog. Energy Combust. Sci. 16:1-53.

Smith, K. L., Smoot, L. D., and Fletcher, T. H., 1993, Coal characteristics, structure and reaction rates, in Fundamentals of Coal Combustion (L. D. Smoot, ed.), pp. 131-298, Elsevier, Amsterdam.

Smoot, L. D., 1991, Coal and char combustion, in Fossil Fuel Combustion: A Source Book (W. Bartok and A. F. Sarofim, eds.), pp. 653-781, Wiley, New York.

Smoot, L. D., (Ed.), 1993, Fundamentals of Coal Combustion, Elsevier, Amsterdam. Smoot, L. D., Bartholomew, C. H., and Pershing, D. W., 1991, Fifth-Year Progress Report, Vols.

Page 42: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

450 REFERENCES

I, n, Advanced Combustion Engineering Research Center, Brigham Young University, Provo, UT and the University of Utah, Salt Lake City, UT.

Smoot, L. D., Bartholomew, C. H., and Pershing, D. W., 1992, Sixth-Year Progress Report, Vols. I, n, Advanced Combustion Engineering Research Center, Brigham Young University, Provo, UT and the University of Utah, Salt Lake City, UT.

Smoot, L. D., and Smith, P. J., 1985, Heterogeneous char reaction processes, in Coal Combustion and Gasification, pp. 77-110, Plenum, New York.

Snape, C. E., 1987, Characterisation of organic coal structure for liquefaction, Fuel Process. Technol. 15:257-279.

Snape, C. E., 1991, Similarities and differences of coal reactivity in liquefaction and pyrolysis, Fuel 70:285-288.

Snape, C. E., Bolton, C., Dosch, R. G., and Stephens, H. P., 1989, High yields from bituminous coal via hydropyrolysis with dispersed catalysts, Energy & Fuels 3:421-425.

Snape, C. E., Derbyshire, F. J., Stephens, H. P., Kottenstette, R. J., and Smith, N. W., 1990, Influence of organic coal structure on liquefaction behavior: an update with emphasis on low severity conditions, Fuel Process. Technol. 24:119-125.

Snape, C. E., and Love, G. D., 1991, Quantitative l3C NMR measurements on the Argonne samples and other coals, Preprint, Am. Chem. Soc., Div. Fuel Chern. 36(3):877-883.

Snape, C. E., Stokes, B. J., and Bartle, K. D., 1981, Identification of straight-chain fatty acides in coal extracts and their geochemical relation with straight-chain alkanes, Fuel 60:903-908.

Snyder, A. P., Kremer, J. H., Meuzelaar, H. L. C., Windig, W., and Taghizaden, K., 1987, Curie­point pyrolysis atmospheric pressure chemical ionization mass spectrometry: preliminary performance data for three biopolymers, Anal. Chem. 59: 1945 -1951.

Snyman, C. P., 1989, The role of coal petrography in understanding the properties of South African coal, in Erich Stach Memorial Issue, (W. Pickardt, ed.), Int. J. Coal Geol. 14:83-101.

Soderquist, A., Burton, D. L., Pugmire, R. J., Beeler, A. J., Grant, D. M., Durand, B., and Huk, A. Y., 1987, Structural variations and evidence of segmental motion in the aliphatic region in coals observed with dipolar dephasing NMR, Energy & Fuels 1:50-55.

Solomon, P. R., 1981, Coal structure and thermal decomposition, in New Approaches in Coal Chemistry, ACS Symp. Series No. 169 (B. D. Blaustein, B. C. Bockrath, and S. Friedman, eds.), pp. 61-71, Am. Chem. Soc., Washington, DC.

Solomon, P. R., Beer, J. M., and Longwell, J. P., 198780 Fundamentals of coal conversion and relation to coal properties, Energy 12(8-9):837-862.

Solomon, P. R., Best, P. E., Yu, Z-Z., and Deshpande, G. V., 1989a, A macromolecular network model for coal fluidity, Preprint, Am. Chem. Soc., Div. Fuel Chern. 34(3):895-906.

Solomon, P. R., and Carangelo, R. M., 1982, FTIR analysis of coal. 1: Techniques and determina­tion of hydroxyl concentration, Fuel 61:663-669.

Solomon, P. R., and Carangelo, R. M., 1988, FTIR analysis of coal. 2: Aliphatic and aromatic hydrogen concentration, Fuel 67:949-959.

Solomon, P. R., and Colket, M. B., 1978, Coal devolatilization, 17th Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 131-143.

Solomon, P. R., Fletcher, T. H., and Pugmire, R. J., 1993, Progress in coal pyrolysis, Fuel 72:587-597.

Solomon, P. R., and Hamblen, D. G., 1983, Finding order in coal pyrolysis kinetics, Prog. Energy Combust. Sci. 9:323-361.

Solomon, P. R., and Hamblen, D. G., 1985, Pyrolysis, Chemistry of Coal Conversion (R. H. Schlosberg, Ed.), pp. 121-251, Plenum, New York.

Solomon, P. R., Hamblen, D. G., and Carangelo, R. M., 1982, Applications of Fourier transform

Page 43: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 451

IR spectroscopy in fuel science, in Coal and Coal Products: Analytical Characterization Techniques (E. L. Fuller, ed.), pp. 77-131, ACS Symp. Series 205, Am. Chern. Soc., Washington, DC.

Solomon, P. R., Hamblen, D. G., Carangelo, R. M., Serio, M. A., and Desphande, G. V., 1988a, General model of coal devolatilization, Energy & Fuels 2:405-422.

Solomon, P. R., Hamblen, D. G., Carangelo, R. M., Serio, M. A., and Deshpande, G. V., 1988b, Models of tar formation during coal devolatilization, Combust. Flame 71:137-146.

Solomon, P. R., Hamblen, D. G., Serio, M. A., Smoot, L. D., and Brewster, S., 1987b, Measure­ment and Modelling of Advanced Coal Conversion Processes, First Annual Report for the U.S. Department of Energy, Contract No. DE-AC21-86MC23075, Morgantown Energy Technology Center, Morgantown, WV, Advanced Fuel Research, Inc., East Hartford, CT, Brigham Young University, Provo, UT.

Solomon, P. R., Hamblen, D. G., Serio, M. A., Smoot, L. D., and Brewster, B. S., 1988c, Measurement and Modelling of Advanced Coal Conversion Processes, Sixth Quarterly Re­port for the U.S. Department of Energy, Contract No. DE-AC21-86MC23075, Morgantown Energy Technology Center, Morgantown, WV, Advanced Fuel Research, Inc., East Hartford, CT, Brigham Young University, Provo, UT.

Solomon, P. R., Hamblen, D. G., Serio, M. A., Smoot, L. D., and Brewster, B. S., 1988d, Measurement and Modelling of Advanced Coal Conversion Processes, Second Annual Re­port for U.S. Department of Energy, Contract No. DE-AC21-86MC23075, Morgantown Energy Technology Center, Morgantown, WV, Advanced Fuel Research, Inc., East Hartford, CT, Brigham Young University, Provo, UT.

Solomon, P. R., Hamblen, D. G., Serio, M. A., Smoot, L. D., and Brewster, B. S., 1989b, Measurement and Modelling of Advanced Coal Conversion, Third Annual Report for U.S. Department of Energy, Contract No. DE-AC21-86MC23075, Morgantown Energy Technol­ogy Center, Morgantown, WV, Advanced Fuel Research, Inc., East Hartford, CT, Brigham Young University, Provo, UT.

Solomon, P. R., Hamblen, D. G., Serio, M. A., Smoot, L. D., and Brewster, B. S., 199Od, Measurement and Modelling of Advanced Coal Conversion Processes, Fourteenth Quarterly Report for U.S. Department of Energy, Contract No. DE-AC21-86MC23075, Morgantown Energy Technology Center, Morgantown, WV, Advanced Fuel Research, Inc., East Hartford, CT, Brigham Young University, Provo, UT.

Solomon, P. R., Hamblen, D. G., Serio, M. A., Yu, Z-Z., and Charpenay, S., 1991, Can coal science be predictive? Preprint, Am. Chem. Soc., Div. Fuel Chem. 36(1):267-300.

Solomon, P. R., Hamblen, D. G., Yu, Z-Z., and Serio, M. A., 199Oc, Network models of coal thermal decomposition, Fuel 69:754-763.

Solomon, P. R., and King, H-H., 1984, Tar evolution from coal and model polymers: theory and experiments, Fuel 63:1302-1311.

Solomon, P. R., and Serio, M. A., 1987, Evaluation of coal pyrolysis kinetics, in Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion O. Lahaye and G. Prado, eds.), pp. 126-151, Martinus Nijhoff, Dordrecht, The Netherlands.

Solomon, P. R., Serio, M. A., Carangelo, R. M., Bassilakis, R., Gravel, D., Baillargeon, M., Baudais, F., and Vail, G., 199Od, Analysis of the Argonne premium coal samples by thermo­gravimetric Fourier transform infrared spectroscopy, Energy & Fuels 4:319-333.

Solomon, P. R., Serio, M. A., Carangelo, R. M., and Markham, J. R., 1986a, Very rapid coal pyrolysis, Fuel 65:182-194.

Solomon, P. R., Serio, M. A., Despande, G. V., and Kroo, E., 199Oe, Cross-linking reactions during coal conversion, Energy & Fuels 4:42-54.

Solomon, P. R., Serio, M. A., Hamblen, D. G., Yu, Z-Z., and Charpenay, S., 199Of, Advances

Page 44: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

452 REFERENCES

in the FG-DVC model of coal devolatilization, Pre print, Am. Chem. Soc., Div. Fuel Chern. 35(2):479-488.

Solomon, P. R., Serio, M. A., and Heninger, S. G., 1986b, Variations in char reactivity with coal type and pyrolysis conditions, Preprint, Arn. Chern. Soc., Div. Fuel Chem. 31(3):200-209.

Solomon, P. R., Serio, M. A., and Suuberg, E. M., 1992, Coal pyrolysis: experiments, kinetic rates and mechanisms, Prog. Energy Comb. Sci. 18:133-220.

Solomon, P. R., and Squire, K. R., 1985, Experiments and modeling of coal depolymerization, Preprint, Arn. Chern. Soc., Div. Fuel Chern. 30(4):346-356.

Solum, M. S., Pugmire, R. J., and Grant, D. M., 1987, 13C NMR structural determination of the coals in the premium coal sample bank, Preprint, Am. Chern. Soc., Div. Fuel Chern. 32(4):273-279.

Solum, M. S., Pugmire, R. J., and Grant, D. M., 1989a, 13C solid-state NMR of Argonne premium coals, Energy & Fuels 3:187-193.

Solum, M. S., Pugmire, R. J., Grant, D. M., Fletcher, T. H., and Solomon, P. R., 1989b, Solid state 13C NMR studies of coal char structure evolution, Pre print, Am. Chem. Soc., Div. Fuel Chem.34(4):1337-1346.

Sotirchos, S. V., 1987, On a class of random pore and grain models for gas-solid reactions, Chem. Eng. Sci. 42:1262-1265.

Sotirchos, S. V., 1989, Multicomponent diffusion and convection in capillary structures, AIChE J.35:1953-1961.

Sotirchos, S. V., and Amundson, N. R., 1984a, Diffusion and reaction in a char particle and in the surrounding gas phase. Two limiting models, Ind. Eng. Chern. Fundam. 23:180-191.

Sotirchos, S. V., and Amundson, N. R., 1984b, Diffusion and reaction in a char particle and in the surrounding gas phase. A continuous model, Ind. Eng. Chem. Fundam. 23:191-201.

Sotirchos, S. V., and Amundson, N. R., 1984c, Dynamic behavior of a porous char particle burning in an oxygen-containing environment: I. Constant particle radius, AIChE J. 30:537-549.

Sotirchos, S. V., and Amundson, N. R., 1984d, Dynamic behavior of a porous char particle burning in an oxygen-containing environment: n. Transient analysis of a shrinking particle, AIChE J. 30:549-556.

Sotirchos, S. V., and Burganos, V. N., 1986, Intraparticle diffusion and char combustion, Chern. Eng. Sci. 41:1599-1609.

Sotirchos, S. V., and Burganos, V. N., 1988, Analysis of multicomponent diffusion in pore networks, AIChE J. 34:1106-1118.

Sotirchos, S. V., Srinivas, B., and Amundson, N. R., 1984, Modelling of the combustion of single char particles, Rev. Chem. Eng. 2:175-236.

Spackman, W., Davis, A., Walker, H. L., Lovell, F. L., Vastola, F. J., Given, P. H., Suhr, N. H., and Jenkins, R. G., 1982, The characteristics of American coals in relation to their conversion into clean energy fuels, final report, DOFlET/I0615-17, Pennsylvania State University, University Park, PA.

Spackman, W., Ryan, N. J., Rhoads, C. A., and Given, P. H., 1988, Studies of peat as the input to coalification. n: Sampling sites and preliminary fractionation, Int. J. Coal Geol. 9:253-265.

Speight, J. G., 1983, The Chemistry and Technology of Coal, Dekker, New York. Spieker, E. C., and Hatcher, P. G., 1987, The effects of early diagenesis on the chemical and

stable carbon isotopic composition of wood, Geochim. Cosmochirn. Acta 51:1385-1391. Spiro, C. L., 1981, Space-filling models for coal: a molecular description of coal plasticity, Fuel

60:1121-1126.

Page 45: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 453

Spiro, C. L., and Kosky, P. G., 1982, Space-filling models for coal. 2: Extension to coals of various types, Fuel 61: 1080-1084.

Squire, K. R., Solomon, P. R., Carangelo, R. M., and DiTaranto, M. B., 1986, Tar evolution from coal and model polymers. 2: The effects of aromatic ring sizes and donatable hydrogens, Fuel 65:833-843.

Srinivas, B., and Amundson, N. R., 1980a, A single-particle char gasification model, AIChE 1. 26:487 -496.

Srinivas, B., and Amundson, N. R., 1980b, Intraparticle effects in char combustion steady state analysis, Can. 1. Chem. Eng. 58:476-484.

Srinivas, B., and Amundson, N. R., 198130 Intraparticle effects in char combustion. II: Steady state analysis, Can. 1. Chem. Eng. 59:728-738.

Srinivas, B., and Amundson, N. R., 1981b, Intraparticle effects in char combustion. m: Transient studies, Can. 1. Chem. Eng. 59:728-738.

Srinivasachar, S., Toqan, M. A., Beer, J. M., and Ettouney, H. M., 1988, Percolation model for coal char particle combustion and fragmentation, Combust. Sci. Technol. 57:55-70.

Stach, E., 1968, Basic principles of coal petrology: macerals, microlithotypes and some effects of coalification, in Coal and Coal-Bearing Strata (D. G. Murchison and T. S. Westoll, eds.), pp. 233-267, Oliver and Boyd, Edinburgh.

Stach, E., Mackowski, M-Th., Teichmiiller, M., Talor, G. H., Chandra, D., and Teichmiiller, R., 1982, Stach's Textbook of Coal Petrology, Gebriider Bomtraeger, Berlin, Germany.

Stauffer, D., 1985, Introduction to Percolation Theory, Taylor and Francis, London. Steams, C. A., Kohn, F. L., and Rosner, D. E., 1981, Combustion system processes leading to

corrosive deposits, U.S. DOE Report, DOFINASA/2493-27. Stein, S. E., 1981, A fundamental chemical kinetics approach to coal conversion, in New Ap­

proaches in Coal Chemistry (B. D. Blaustein, B. C. Blockrath, and S. Friedman, eds.), pp. 97-129, ACS Symp. Series 169, Am. Chem. Soc., Washington, DC.

Stewart, W. N., 1983, Palaeobotany and the Evolution of Plants, Cambridge University Press, London.

Stock, L. M., and Wang, S-H., 1989, Aliphatic structural elements of a Pocahontas no. 3 coal, Energy & Fuels 3:533-535.

Stock, L. M., and Wang, S-H., 1990, Paraffinic materials in coals, Energy & Fuels 4:335-336. Stock, L. M., and Wolny, R., 1990, Elemental sulfur in bituminous coals, in Geochemistry of

Sulfur in Fossil Fuels (W. L. Orr and C. M. White, eds.), pp. 241-248, ACS Symp. Series 429, Am. Chem. Soc., Washington, DC.

Stock, L. M., Wolny, R., and Bal, B., 1989, Sulfur distribution in American bituminous coals, Energy & Fuels 3:651-661.

Stout, S. A., Boon, J. J., and Spackman, W., 1988, Molecular aspects of the peatification and early coalification of angiosperm and gymnosperm woods, Geochim. Cosmochim. Acta 52:405-414.

Stout, S. A., and Spackman, W., 1987, A microscopic investigation of woody tissues in peats: some processes active in the peatification of ligno-cellulosic cell walls, in Peat: Geochemis­try, Research and Utilization (D. 1. Boron, Ed.), Int. 1. Coal Geol. 8:55-68.

Stout, S. A., and Spackman, W., 1989, Peatification and early coalification of wood as deduced by quantitative microscopic methods, Org. Geochem. 14:285-298.

Stout, S. A., Spackman, W., Boon, J. J., Kistemaker, P. G., and Bensley, D. F., 1989, Correlations between the microscopic and chemical changes in wood during peatification and early coalification: a canonical variant study, in Coal: Classification, Coalification, Mineralogy, Trace-Element Chemistry, and Oil and Gas Potential (P. C. Lyons and B. Alpern, eds.), Int. 1. Coal Geol. 13:41-64.

Page 46: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

454 REFERENCES

Straszheim, W. E., and Markuszewski, R., 1990, Automated image analysis of minerals and their association with organic components in bituminous coals, Energy & Fuels 4:748-754.

Straszheim, W. E., Yousling, J. G., Younkin, K. A., and Markuszewski, R., 1988, Mineralogical characterization of lower-rank coals by SEM-based automated image analysis and energy­dispersive x-ray spectrometry, Fuel 67:1042-1047.

Su, J-L., and Perlmutter, D. D., 1985a, Porosity effects on catalytic char oxidation. I: A catalyst deposition model, AIChE J. 31:957 -964.

Su, J-L., and Perlmutter, D. D., 1985b, Porosity effects on catalytic char oxidation. II: Experimen­tal results, AIChE J. 31:965-972.

Su, J-L., and Perlmutter, D. D., 1985c, Effect of pore structure on char oxidation kinetics, AIChE J. 31:973-981.

Sundaresan, S., and Amundson, N. R., 1980, Diffusion and reaction in a stagnant boundary layer about a carbon particle. 5: Pseudosteady state structure and parameters sensitivity, Ind. Eng. Chern. Fundam. 19:344-351.

Sundaresan, S., and Amundson, N. R., 1981, Diffusion and reaction in a stagnant boundary layer about a carbon particle. 7: Transient behavior and effect of water vapor, AIChE J. 27:679-686.

Suuberg, E. M., 1977, Rapid pyrolysis and hydropyrolysis of coal, Sc.D. thesis, MIT, Cambridge, MA.

Suuberg, E. M., 1985, Mass transfer effects in pyrolysis of coals: A review of experimental evidence and models, in Chemistry of Coal Conversion (R. H. Schlosberg, ed.), pp. 67-119, Plenum, New York.

Suuberg, E. M., 1988, Transport of volatile products in porous coals, Appendix A in Measurement and Modelling of Advanced Coal Conversion, 2nd Ann. Report #523043-24 (P. R. Solomon, D. G. Hamblen, M. A. Serio, L. D. Smoot, and B. S. Brewster, eds.), work performed under contract no. DE-AC21-86MC23075, East Hartford, CT.

Suuberg, E. M., Calo, J. M., and Wojtowicz, M., 1986, Oxygen chemisorption as a tool for characterization "young" chars, Preprint, Am. Chern. Soc., Div. Fuel Chern. 31(3):186-193.

Suuberg, E. M., Lee, D., and Larsen, J. W., 1985a, Temperature dependence of crosslinking processes in pyrolysing coals, Fuel 64:1668-1671.

Suuberg, E. M., Otake, Y., and Deevi, S. C., 1991, Solvent swelling as a measure of the breakdown of the macromolecular structure of coal, Preprint, Am. Chern. Soc., Div. Fuel Chern. 36(1):258-266.

Suuberg, E. M., Peters, W. A., and Howard, J. B., 1978, Product compositions and formation kinetics in rapid pyrolysis of pulverized coal-implications for combustion, 17th Int. Symp. Combustion, The Combustion Institute, pp. 117 -130.

Suuberg, E. M., Unger, P. E., and Larsen, J. W., 1987, Relation between tar and extractables formation and cross-linking during coal pyrolysis, Energy & Fuels 1:305-308.

Suuberg, E. M., Unger, P. E., and Lilly, W. D., 1985b, Experimental study on mass transfer from pyrolysing coal particles, Fuel 64:956-962.

Suuberg, E. M., Wojtowicz, M., and Calo, J. M., 1988, Reaction order for low temperature oxidation of carbons, 22nd Int. Symp. Combustion, The Combustion Institute, pp. 79-87.

Takanohashi, T., and lino, M., 1990, Extraction of Argonne premium coal samples with CSrN­methyl-2-pyrrolidinone mixed solvent at room temperature and ESR parameters of their extracts and residues, Energy & Fuels 4:452-455.

Takarada, T., Tamai, Y., and Tomita, A., 1985, Reactivities of 34 coals under steam gasification, Fuel 64:1438-1442.

Tarbet, B. J., Bradshaw, J. S., Markides, K. E., Jones, B. A., and Lee, M. L., 1988, The chemistry of capillary column technology, LC-GC 6:232.

Page 47: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 455

Tegelaar, E. W., de Leeuw, J. W., Derenne, S., and Largeau, C., 198980 A reappraisal of kerogen formation, Geochim. Cosmochim. Acta 53:3103-3106.

Tegelaar, E. W., Matthezing, R., Jansen, J. B. H., Horsfield, B., and de Leeuw, J. W., 1989b, Possible origin of n-alkanes in high-wax crude oils, Nature 342:529-531.

TeichmUller, M., 1982, Fluorescence microscopical changes of liptinites and vitrinites during coalification and their relationship to bitumin generation and coking behavior (translated from German by N. H. Bostick), Soc. Petrol., Spec. Publ., No.1, Houston, TX.

Teichmilller, M., 1987, Recent advances in coalification studies and their application to geology, in Coal and Coal-Bearing Strata: Recent Advances (A. C. Scott, ed.), pp. 127-169, Geol. Soc. Spec. Publ. No. 32.

Teichmilller, M., 1989, The genesis of coal from the viewpoint of coal petrology, in Peat and Coal: Origin, Facies, and Depositional Models (P. C. Lyons and B. Alpern, eds.), Int. J. Coal Geol. 12:1-87.

TeichmUller, M., and Durand, B., 1983, Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals, and comparison with results of the Rock-Eval pyrolysis, Int. J. Coal Geol 2:197-230.

TeichmUller, M., and TeichmUller, R., 1968, Geological aspects of coal metamorphism, in Coal and Coal-Bearing Strata (D. G. Murchison and T. S. Westoll, eds.), pp. 233-267, Oliver and Boyd, Edinburgh.

ten Haven, H. L., de Leeuw, J. L., Rullkotter, J., and Sinninghe Damste, J. S., 1987, Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator, Nature 330:641-643.

Thiele, E. W., 1939, Relation between catalytic activity and size of particle, Ind. Eng. Chem. 31:916-921.

Tichenor, D. A., Mitchell, R. E., Hencken, K. R., and Niksa, S., 1984, Simultaneous in situ measurement of the size, temperature and velocity of particles in a combustion environment, 20th Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1213-1221.

Ting, F. T. C., 1982, Coal macerals, in Coal Structure (R. A. Meyers, ed.), pp. 199-282, Academic Press, New York.

Tognotti, L., Malotti, A., Petarc80 L., and Zanelli, S., 1985, Measurement of ignition temperature of coal particles using a thermogravimetric technique, Combust. Sci. Technal. 44:15-28.

Torres-Ordonez, R. J., Calkins, W. L., and Klein, M. T., 1990, Distribution of organic-sulfur­containing structures in high organic sulfur coals, in Geochemistry of Sulfur in Fossil Fuels (W. L. Orr and C. M. White, eds.), pp. 287-295, ACS Symp. Series 429, Am. Chern. Soc., Washington, DC.

Treloar, L. R. G., 1975, The Physics of Rubber Elasticity, Clarendon Press, Oxford. Tromp, P. J. J., Moulign, J. A., and Boon, J. J., 1988, Coal characterization by means of Curie­

point pyrolysis techniques, in New Trends in Coal Science (Y. Yfiriim, ed.), pp. 241-269, Kluwer, Dordrecht, The Netherlands.

Tsai, C-Y., and Scaroni, A. W., 198780 The structural changes of bituminous coal particles during the initial stages of pulverized-coal combustion, Fuel 66:200-206.

Tsai, C-Y., and Scaroni, A. W., 1987b, Reactivity of bituminous coal chars during the initial stage of pulverized-coal combustion, Fuel 66:1400-1406.

Tsiao, C., and Botto, R. E., 1991, 12~e NMR investigation of coal micropores, Energy & Fuels 5:7-92.

Unger, P. E., and Suuberg, E. M., 1983, Internal and external mass transfer limitations in coal pyrolysis, Preprint, Am. Chern. Soc., Div. Fuel Chem. 28(4):278-291.

Unger, P. E., and Suuberg, E. M., 1984, Molecular weight distribution of tars produced by flash pyrolysis of coals, Fuel 63:606-611.

Page 48: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

456 REFERENCES

Vahnnan, M., 1972, The smaller molecules-an overlooked component of coal, Chem. Br. 8:16-24.

Vajdi, L. E., and Allen, D. T., 1989, Vapour pressure of coal liquids estimated using a group contribution equation of state, Fuel 68:388-1393.

Valix, M. G., Harris, D. J., Smith, I. W., and Trimm, D. L., 1992, The intrinsic combustion reactivity of pulverized coal chars: the use of experimental pore diffusion coefficients, presented at the 24th Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA.

van Aarssen, B. G. K., and de Leeuw, J. W., 1991, Structural elucidation of polymeric diterpenoids in fossil gymnosperm resins by means of pyrolysis combined with GC-MS, Preprint, Am. Chem. Soc., Div. Fuel Chem. 36(2):774-780.

van Bergen, P. F., Collinson, M. E., Sinninghe, Damste, J. S., and de Leeuw, J. W., 1991, A novel polyphenol biopolymer isolated from fossil seeds: An alternative source for (aikyl)phe­nol moieties in coals, Pre print, Am. Chem. Soc., Div. Fuel Chem. 36(2):698-701.

van Krevelen, D. W., 198180 Coal: Typology, Chemistry, Physics and Constitution, Elsevier, New York.

van Krevelen, D. W., 1981b, The transformation of coal into coke, in Coal Science and Technol­ogy 3: Coal, pp. 113-120, pp. 263-271, Elsevier, New York.

Vleeskens, J. M., van Haasteren, T. W. M. B., Roos, M., and Gerrits, J., 1988, Behavior of different char components in fluidized bed combustion: a char petrology study, Fuel 67:426-436.

Volkman, J. K., and Maxwell, J. R., 1986, Acyclic isoprenoids as biological markers, in Biological Markers in the Sedimentary Record (R. B. Johns, ed.), pp. 1-42, Elsevier, Amsterdam.

Voller, V. R., Cross, M., and Merrick, D., 1983, Mathematical models of the thermal decomposi­tion of coal. 5: Distribution of gas flow in a coke oven charge, Fuel 62:562-566.

Vorres, K. 5., 1989, Users handbook for the Argonne premium coal sample program, ANU PCSP-89/l, USDOE contract no. W-31-109-ENG-238, Argonne National Laboratory, IL.

Vorres, K. S., 199080 The Argonne premium coal sample program, Energy & Fuels 4:420-426. Vorres, K. 5., 1990b, Growth and Status of the Argonne premium coal sample program, Preprint,

Am. Chem. Soc., Div. Fuel Chem. 35(3):774-778. Walker, P. L., Jr., Matsumoto, S., Hanzawa, T., Moira, T., and Ismail, I. M. K., 1983, Catalysis

of gasification of coal-derived cokes and chars, Fuel 62:140-149. Walker, P. L., Jr., Russinko, F., Jr., and Austin, L. G., 1959, Gas reaction of carbon, in Advances

in Catalysis (D. D. Eley, P. W. Selwood and P. B. Weisz, eds.), pp. 162-178, Academic Press, New York.

Walker, P. L., Jr., Verma, S. K., Rivera-Utrilla, J., and Davis, A., 1988a, Densities, porosities and surface areas of coal macerals as measured by their interaction with gases, vapors and liquids, Fuel 67:1615-1623.

Walker, P. L., Jr., Verma, S. K., Rivera-Utril1a, J., and Khan, M. R., 1988b, A direct measurement of expansion in coals and macerals induced by carbon dioxide and methanol, Fuel 67:719-726.

Walker, S., 1993, Major coalfields of the world, International Energy Report, IEACR 151, London, UK.

Wall, T. F., Phong-Anant, D., Gururajan, V. S., Wibberley, L. J., Tate, A., and Lucas, J., 1988, Indicators of ignition for clouds of pulverized coal, Comb. Flame 72: 111-118.

Wall, T. F., Tate, A. G., Bailey, J. G., Jenness, L. G., Mitchell, R. E., and Hurt, R. H., 1992, The temperature, burning rates and char character of pulverized coal particles prepared from maceral concentrates, presented at the 24th Int. Symp. Combustion, The Combustion Insti­tute, Pittsburgh, PA.

Wang, S. C., and Wen, C. Y., 1972, Experimental evaluation of nonisothermal solid-gas reaction model, AIChE J. 18:285.

Page 49: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 457

Wanzl, W., 1988, Chemical reactions in thermal decomposition of coal, Fuel Process. Techno!. 20:317-336.

Wanzl, W., and Bittner, D., 1990, Experiments on pyrolysis behavior of different coals, Fuel Process. Techno!. 24:11-17.

Warwick, P. D., and Stanton, R. W., 1988, Petrographic characteristics of the Wyodak-Anderson coal bed (Paleocene), Powder River Basin, Wyoming, U.S.A., Org. Geochem. 12:389-399.

Waters, B. J., Mitchell, R. E., Squires, R. G., and Laurendeau, N. M., 1988a, Overall kinetic parameters for combustion of a highly non-spherical carbon char, 22nd Int. Symp. Combus­tion, The Combustion Institute, pp. 17 - 27.

Waters, B. J., Squires, R. G., and Laurendeau, N. M., 1988b, Morphological development and intrinsic reactivity for combustion of two microporous carbon chars, Combust. Sci. Techno!. 62:187-209.

Waters, B. J., Squires, R. G., and Laurendeau, N. M., 1988c, Evidence for formation of CO2 in the vicinity of burning pulverized carbon particles, Combust. Flame 74:91-106.

Wells, W. F., Kramer, S. K., Smoot, L. D., and Blackham, A. U., 1984, Reactivity and combustion of coal chars, 20th Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1539-1546.

Wheeler, A., 1951, Reaction rates and selectivity in catalyst pores, in Advances in Catalysts, vol. 3 (W. G. Frankenburg, V. I. Komarewsky and E. K. Rideal, eds.), pp. 249-327, Academic Press, New York.

White, W. E., 1990, Determination of surface areas and pore structures of coals and chars and changes in these properties during devolatilization, M.S. thesis, Department of Chemical Engineering, Brigham Young University, Provo, UT.

White, W. E., Bartholomew, C. H., Hecker, W. C., and Smith, D. M., 1991, Changes in surface area, pore structure and density during formation of high temperature chars from representa­tive U.S. coals, Adsorption Sci. Techno!. 7:180-209.

Wigley, F., Williamson, J., and Jones, A. R., 1990, Slagging indices for UK coals and their relationship with mineral matter, Fuel Process. Techno!. 24:383-389.

Williams, J. M., Vanderborgh, N. E., and Walker, R. D., 1987, The host/guest structure concept and the thermoplasticity of coal, in Coal Science and Chemistry (A. Volborth, ed.), pp. 435-359, Elsevier, Amsterdam.

Wilson, M. A., Collin, P. J., Pugmire, R. J., and Grant, D. M., 1982, Relaxation of 13C and 15N nuclei by solvent-refined coal, Fuel 61:959-967.

Wilson, M. A., and Hatcher, P. G., 1988, Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state 13C nuclear magnetic resonance, Org. Geochem. 12:539-546.

Wilson, M. A., and Pugmire, R. J., 1984, New NMR techniques in coal analysis, Trends in Ana!' Chem.3:144-147.

Wilson, M. A., Pugmire, R. J., Karas, J., Alemany, L. B., Woolfenden, W. R., Grant, D. M., and Given, P. H., 1984, Carbon distribution in coals and coal macerals by cross polarization magic angle spinning carbon-13 nuclear magnetic resonance spectrometry, Anal. Chem 56:933-943.

Wilson, M. A., and Vassallo, A. M., 1985, Developments in high-resolution solid-state 13C NMR spectroscopy in coals, Org. Geochem. 8:299-312.

Winans, R. E., and Crelling, J. C. (Eds.), 1984, Chemistry and Characterization o/Coal Macerals, Am. Chern. Soc., Washington, DC.

Winans, R. E., Hayatsu, R., McBeth, R. L., Scott, R. G., and Botto, R. E., 1988a, Aromatic structures in whole coals and coal macerals, Preprint, Am. Chem. Soc., Div. Fuel Chem. 33(1):407-414.

Winans, R. E., Hayatsu, R., Squires, T. G., Carrado, K. A., and Botto, R. E., 1990, Use of model

Page 50: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

458 REFERENCES

compounds in coal structure and reactivity studies, Preprint, Am. Chem. Soc., Div. Fuel Chem. 35(2):423-429.

Winans, R. E., McBeth, R. L., and Neill, P. H., 1988b, Characterization of the Argonne premium coal samples by pyrolysis high resolution mass spectrometry, Preprint, Am. Chem. Soc. Div. Fuel Chem. 33(3):85-90.

Winans, R. E., McBeth, R. L., Scott, R. G., Thiyagarajan, P., Botto, R. E., and Hayatsu, R., 1987, Chemical and physical structure of coals, in Proc. 2nd Coal Research Conf., paper R13.1, Coal Research Assoc. of New Zealand, Wellington, New Zealand.

Winans, R. E., and Neill, P. H., 1990, Mu1tip1e-heteroatom-containing sulfur compounds in a high sulfur coal, in Geochemistry of Sulfur in Fossil Fuels (W. L. Orr and C. M. White, Eds.), pp. 249-260, ACS Symp. Series 429, Am. Chern. Soc., Washington, DC.

Winans, R. E., Scott, R. G., Neill, P. H., Dyrkacz, G. R., and Hayatsu, R., 1986, Characterization and pyrolysis of separated coal macerals, Fuel Process. Technol. 12:77 -88.

Wind, R. A., Jurkiewicz, A., and Maciel, G. E., 1989, lH n.m.r. Zeeman relaxation in premium coals and other coals of various rank, Fuel 68:1189-1197.

Windig, W., 1981, Chemical interpretation of differences in pyrolysis-mass spectra of simulated mixtures of biopolymers by factor analysis with graphical rotation, J. Anal. Appl. Pyrol. 3:199-212.

Windig, W., Chakravarty, T., Richards, J. M., and Meuze1aar, H. L. C., 1986a, Multivariate analysis of time-resolved mass spectral data, Anal. Chim. Acta 191:205-218.

Windig, W., Haverkamp, J., and Kristemaker, P. G., 1983, Interpretation of sets of pyrolysis mass spectra by discriminant analysis and graphical rotation, Anal. Chem. 55:81-88.

Windig, W., Jakab, E., Richards, J. M., and Meuzelaar, H. L. C., 1987, Self-modeling curve resolution by factor analysis of a continuous series of pyrolysis mass spectra, Anal. Chem. 59:317-323.

Windig, W., Kristemaker, P. G., Haverkamp, J., and Meuzelaar, H. L. C., 1980, Factor analysis of the influence of changes in experimental conditions in pyrolysis-mass spectrometry, J. Anal. Appl. Pyrol. 2:7 -18.

Windig, W., McClennen, W. H., Stolk, H., and Meuzelaar, H. L. c., 1986b, Unsupervised chemical pattern recognition in complex mass spectra, Opt. Eng. 25:117-122.

Windig, W., and Meuzelaar, H. L. C., 1984, Nonsupervised numerical component extraction from pyrolysis mass spectra of complex mixtures, Anal. Chem. 54:2297-2303.

Windig, W., and Meuzelaar, H. L. C., 1987, Numerical extraction of components from mix­ture spectra by multivariate data sanalys, in Computer-Enhanced Analytical Spectroscopy (H. L. C. Meuzelaar and T. L. Isenhour, eds.), pp. 67-102, Plenum, New York.

Windig, W., Meuzelaar, H. L. C., Shafizaden, F., and Kelsey, R. G., 1984, Biochemical analysis of wood and wood products by pyrolysis-mass spectrometry and multivariate analysis, J. Anal. Appl. Pyrol. 6:233-250.

Wiser, W. H., 1975, Preprint, Am. Chem. Soc., Div. Fuel Chem. 20:122. Wong, C. M., Crawford, R. W., Barton, V. c., Brand, H. R., Neufeld, K. W., and Bowman,

J. E., 1983, Development of a totally computer-controlled triple quadrupole mass-spectrome­ter system, Rev. Sci. Instrum. 54:996-1004.

Wornat, M. J., Sarofim, A. F., and Longwell, J. P., 1987, Changes in the degree of substitution of polycyclic aromatic compounds from pyrolysis of a high-volatile bituminous coal, En­ergy & Fuels 1:431-437.

Wornat, M. J., Sarofim, A. F., and Longwell, J. P., 1988, Pyrolysis-induced changes in the ring number composition of polycyclic aromatic compounds from a high volatile bituminous coal, 22nd Symp. (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 135-143.

Xieu, D. V., Masuda, T., Cogoli, J. G., and Essenhigh, R. H., 1981, A mathematical model of

Page 51: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

REFERENCES 459

a one-dimensional char flame: A comparison of theory and experiment, 18th Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1461-1469.

Xu, W-C., and Tomita, A., 1987a, Effect of coal type on the flash pyrolysis of various coals, Fuel 66:627-631.

Xu, W-C., and Tomita, A., 1987b, Effect of temperature on the flash pyrolysis of various coals, Fuel 66:632-636.

Yang, R. T., and Wong, C., 1981, Kinetics and mechanism of oxidation of basal plane on graphite, J. Chern. Phys. 75:4471-4476.

Young, B. c., McCollor, D. P., Weber, B. J., and Jones, M. L., 1988, Temperature measurements of Beulah lignite char in a novel laminar-flow reactor, Fuel 67:40-44.

Young, B. C., and Niksa, S., 1988, Combustion rates for selected low-rank coal chars, Fuel 67:155-164.

Young, B. C., and Smith, I. W., 1981, The kinetics of combustion of petroleum coke particles at 1000 to 1800 K: the reaction order, 18th Int. Symp. Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1249-1255.

Young, B. C., and Smith, I. W., 1987, Pulverized coal char combustion: the effect of coal rank and pyrolysis conditions, 1st Int. Symp. Coal Combustion, Beijing, China.

Youtcheff, J. S., Given, P. H., Baset, Z., and Sundaram, M. S., 1983, The mode of association of alkanes with coals, Org. Geochem. 5:157-164.

Yu, Q., Bukka, K., Ye, Y., and Miller, J. D., 1991, Characterization ofresin types from Hiawatha seam of the Utah Wasatch plateau coal field, Fuel Proc. Tech. 28:105-118.

Yun, Y., Hoesterey, B. L., Meuzelaar, H. L. c., and Hill, G. R., 1987a, Attempted development of a "weathered index" for Argonne PCSP coals, Preprint, Am. Chem. Soc., Div. Fuel Chem. 32(4):301-308.

Yun, Y., Jakab, E., McClennen, Hill, G. R., and Meuzelaar, H. L. C., 1987b, The role of aliphatic and aromatic coal structures and macerals in low temperature oxidation processes, Preprint, Am. Chem. Soc., Div. Fuel Chem. 32(1):129-133.

Yun, Y., Maswadeh, W., Meuzellaar, H. L. C., Simmleit, N., and Schulten, H-R., 1989, Estimation of coal devolatilization modelling parameters from thermogravimetric and time-resolved soft ionization mass spectrometric data, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(4):1308-1316.

Yun, Y., and Meuzelaar, H. L. C., 1988, Simultaneous thermogravimetric and mass spectrometric observations on vacuum pyrolysis of Argonne PCSP coals, Preprint, Am. Chem. Soc., Div. Fuel Chem. 33(3):75-84.

Yun, Y., and Meuzelaar, H. L. C., 1991, Development of a reliable coal oxidation (weathering) index-slurry pH and its applications, Fuel Process. Techno/. 27:179-202.

Yun, Y., Meuzelaar, H. L. c., Simmleit, N., and Schulten, H-R., 1991a, The mobile phase in coal viewed from a mass spectrometric perspective, in Recent Advances in Coal Science: A Symposium in Remembrance of Peter H. Given (H. Schobert, K. Bartle, and L. Lynch, eds.), ACS Symp. Series, Am. Chem. Soc., Washington, DC.

Yun, Y., Meuzelaar, H. L. C., Simmleit, N., and Schulten, H-R., 1991b, Vacuum pyrolysis mass spectrometry of Pittsburgh #8 coal: comparison of three different, time resolved techniques, Energy & Fuels 5:22-29.

Yiiriim, Y., Karabakan, A. K., and Altuntas, N., 1991, Effect of heating rate on glass transition temperature of Zonguldak bituminous coal, Energy & Fuels 5:701-703.

Zarkanitis, S. E., Efthimiadis, E. A., and Sotirchos, S. V., 1990, Experimental evaluation of a class of distributed pore size models for gas-solid reactions with solid product, Chem. Eng. Sci. 45:1443-1502.

Zhang, Z-G., Kyotomi, T., and Tomita, A., 1988, TPD study on coal chars chemisorbed with oxygen-containing gases, Energy & Fuels 2:679-684.

Page 52: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

460 REFERENCES

Zhang, Z-G., Kyotomi, T., and Tomita, A., 1989, Dynamic behavior of surface oxygen complexes during O2 chemisorption and subsequent temperature-programmed desorption of calcium loaded coal chars, Energy & Fuels 3:560-571.

Zhang, D., Wall, T. F., Harris, D. J., Smith, I. W., Chen, J., and Stanmore, B. R., 1992, Experimental studies of ignition behavior and combustion reactivity of pulverized fuel particles, Fuel 71: 1239-1246.

Zhu, Z-B., Furusawa, T., Adschiri, T., and Nozaki, T., 1989, Characterization of coal char reactivity by the number of active sites during CO2 gasification, Preprint, Am. Chem. Soc., Div. Fuel Chem. 34(1):87-93.

Zilm, K. W., Pugmire, R. J., Larter, J. R., Allen, J., and Grant, D. M., 1981, Carbon-13 CPt MASS spectroscopy of coal macerals, Fuel 60:717-722.

Zygarlicke, C. J., Jones, M. L., Steadman, E. N., and Benson, S. A., 1990a, Characterization of mineral matter in ACERC coals, report prepared for the Advanced Combustion Engineering Research Center, Combustion and Environmental Systems Research Institute, Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND.

Zygarlicke, C. J., Steadman, E. N., Benson, S. A., and Puffe, W. H., 1990b, Studies of transforma­tion of inorganic constituents in a Texas lignite during combustion, Prog. Energy Combust. Sci. 16:195-204.

Zygourakis, K., 1989, A new discrete simulation method for modeling char gasification in the diffusion-controlled regime, Preprint, Am. Chem Soc., Div. Fuel Chem 34(1):202-211.

Zygourakis, K., Arri, L., and Amundson, N. R., 1982, Studies on the gasification of a single char particle, Ind. Eng. Chem. Fundam. 21: 1-12.

Zygourakis, K., and Glass, M. W., 1988, Macropore size analysis using digital image processing and a stereological model, Chem. Eng. Commun. 70:39-55.

Zygourakis, K., and Sandmann, C. W., Jr., 1988, Discrete structural models and their application to gas-solid reacting systems, A/ChE J. 34:2030-2040.

Page 53: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

INDEX

Acenaphthalenes, 114, 115 ACERC coals, 94 Acetic acid, 105, 106 Acids, 139 Activation energy of diffusion, 159 Active surface area, 158, 159, 160 Adsorption isotherms, 158 Advanced Combustion Engineering Re-

search Center (ACERC), 77,188 Agglomeration behavior, 57 Algae, 95 Aliphatics, 121 Alkanes, 114, 115, 118 Alkenes, 98, 106 Alkyl fragments, 98 Alkyl substituted compounds, 99,114-117,

133 aromatic compounds, 115 biphenyls, 133 dihydroxybenzenes,114 napthalenes,99, 114, 117, 133 phenanthrenes, 114 tetralins, 114

Aliphatic carbon, 87, 93 alkyl groups, 81 aliphatic bridges, 81 aliphatic loops, 81 aliphatic side chain, 93 aliphatic carbons per cluster, 93 aliphatic hydrocarbons, 98, 124

Aluminosilicates, 170 Aluminosilicate minerals, 169, 170 Analytical pyrolysis, 94, 96

Anisoles,142 ANL Premium coals, 106, 116, 119, 121,

123, 134, 147, 148, 180, 193, 196, 203

Annealing, 353 Anthracenes, 114 Anthracite A 82 Arenes,118 Aromatic clusters, 81, 90, 93

attachments per cluster, 81, 85, 87, 93, 188, 197

average bridge mass, 197 average molecular weight, 81, 104, 188 cluster size, 80, 83, 84, 85, 86, 93, 94

Aromaticity, 77, 79, 80, 82, 90, 93, 98, 137 Argonne National Laboratory, 17

PCSP sample coals, 20 Premium Coal Sample Program (PCSP),

17 See also ANL Premium coals

Argonne Premium coals, 78, 81, 94, 117, 118,153,154,174,176

ASTM rank,S, 7 Average carbon skeletal structure, 188 Average molecular structure, 90, 94 Average pore diameter, 167 Azanaphthalenes, 134 Azaphenanthrenes, 134

Base-catalyzed depolymerization (BCD), 118, 120, 137

Benzenes, 98, 115 Benzo[a]pyrene, 127

461

Page 54: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

462

Benzo[b]thiophene, 133 Benzofluorenes, 127, 142 Benzofurans, 106, 114 Benzonaphthothiophenes, 133 Benzoperylenes, 114, 115 Benzopyrenes, 114, 115 Bethe lattices, 276 Beulah Zap lignite, 84,86,91,93,94,99,

103,106,107,110,112-114,116, 125, 127, 134, 135, 137, 139, 142, 145, 148, 152, 153, 155-157, 161, 164, 168, 172, 176, 185, 192, 193, 196,198,202-204

Beulah Zap Char, 90, 91, 93 Biaryllinkages, 83, 85 Biomarkers, 49, 67, 68,113,116,117,135

hopane,50 pristane/phytane, 49

Biphenyls, 106, 114, 115, 142,205 Bipyridines, 134 Bitumen, 232, 235 Bitumen products, 117 Bituminization, 56 Blind Canyon coal, 94, 106, 112-114, 122,

127,133,135,137,139,145,148, 151, 153, 154, 168, 193, 199,203, 206,207

Block decay (BD), 78, 79, 86, 94 Bridge-breaking, 156 Bridgehead or condensed carbons, 80, 83 Bridges and loops, 81, 85, 87,90, 154, 155,

188,202 Bridge fragments, 90 Bridge mass, 81, 85 Brown coal char, 341, 362 Buck Mountain anthracite, 85, 86,117,148,

153, 192 Bulk density measurements, 158 Bulk pyrolysis step, 116

13C_1H dipolar coupling, 79 13c NMR, 78, 86, 93,117,154,188-192,

196,202,203,205,206 Calcite, 169 Canonical correlation analysis, 95 Canonical variate analysis, 99 Capillary column chromatography, 118,

122 Carbazoles, 134

Carbon dioxide adsorption, 159 Carbon preference indices (CPI), 125 Carbonates, 170 Carbonate minerals, 169, 176 Carbons per cluster, 87, 93, 188 Carbon skeletal structure, 79, 80, 93 Carbon structural parameters, 82, 86 Carbonyl fraction, 83 Carboxylic acid groups, 105

INDEX

Carboxyl and carbonyl carbon, 80, 149, 176 Carboxyl functional groups, 156 Catagenesis, 55 Catalytic effects, 185 Cellulose, input into coal, 44, 51-54 Center for Microanalysis and Reaction Chem­

istry,95 CH,80 CH2,80 CH3,80 Char combustion

activitation energies apparent, 334 intrinsic, 339 global,376

active sites, 327-328 adsorption/desorption, 342, 343 boundary layer CO combustion, 328,

343,379 catalytic effects, 328, 353-355 chemical structure effects, 223, 328 comprehensive models: see Char reaction

models CO/C02 surface product ratio, 337, 339,

343-344, 357, 374-375 critical temperature (TeriU, 394, 398-399 diffusion

bulk, 325, 327-328, 331, 362 pore, 325, 327-328,331, 334

effective diffusivity, 353-354, 378-381 fluidized bed, 214, 326 fragmentation, 327 heterogeneous reaction, 329-331, 339 kinetic parameters, 331-348, 360

coal structure effects, 336 intrinsic, 332, 362 observed, 332 oxygen concentration effects, 338 particle size effects, 336--337 temperature effects, 336--337

Page 55: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

INDEX

Char combustion (cant.) Langmuir-Hinshelwood approach, 345-

346,371-372 large particles, 341, 357-365

ash layer diffusivity, 358 burning rates, 364 coal type dependence, 361 kinetic parameters, 360 oxygen concentration effects, 361 particle size effects, 361 pressure effects, 364 Reynolds number effects, 361 temperature effects, 361

maximum burning rate (x), 333 maceral groups, 336,349-350 mineral matter, 354-355

catalytic effects, 354-355 hindrance effects, 335-356 particle size effects, 355 thermal effects, 354

multiple particles, 365 order of reaction, 334, 336, 341 pressure effects, 339, 356-360 rate-controlling process, 325, 330--338 reaction chemistry, 339-345

global reactions, 340 oxygen chemisorption, 342-343 rates, 340--341

reaction regimes, 329-331 bulk diffusion control, 330--331 pore diffusion control, 330--331 temperature control, 330--331

reactivity apparent, 334, 336, 376, 396 char preparation variables, 360 coal structure effects, 327, 336, 377,

389 in C02, 335-340, 341, 345, 347, 361 in H2, 340, 346, 347 in H20, 340--341, 347, 362 in 02, 336-338 intrinsic, 325, 328, 335-336, 339,

341,346-347,389-390,395,400 measurement techniques, 389 mineral matter effects, 328 reviews, 339 temperature effects, 335, 395-399

regimes, 329 reviews, 326

Char combustion (cant.) surface areas, 345-348

active, 345-348 N2,351 reactive, 345-346

temperature-prograrnmed desorption (TPD),348

Thiele modulus, 333, 381 time required, 325, 336, 338

Char morphology carbon structure, 328 chemical composition, 328-329 devolatilization, 348-349 minerals, 327 pore size distribution, 349-352 pore structure, 349, 351-353 rank dependence, 350--352 surface area, 345

Char preparation, 390--393 Char reaction models

correlative, 395-405 global, 372-378

CO/C02 ratio, 374-375 surface diffusion, 373 surface kinetics, 372-373

governing processes, 370--371 intrinsic, 379-387

continuum microscopic, 382-387 discrete macroscopic, 387 features, 386 macroscopic diffusion, 379-382

Chars, 152, 154, 155, 159, 192 cluster size, 86 evolution, 86 reactivity, 93

463

See also Char combustion; Char morphol­ogy; Char preparation; Char reac­tion models

Chemical classes, 137 Chemical fractionation, 170 Chemical functional groups, 93 Chemical ionization, 95 Chemical shift, 79, 80 Chemical shielding anisotropy (CSA), 78,

79,94,192 Chemical shielding interactions, 188 Chemical shielding tensor, 79 Chromatographic analysis, 119 Chromatography, 78, 153, 189

Page 56: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

464

Chemometric data analysis techniques, 95 Chrysene, 127 Clausius-Clapeyron, 310 Cluster size, 83, 85, 197 CO2 laser pyrolysis MS, 96 CO2 surface areas, 161 Coal

bonds,216-218,260-261 devolatilization: see Oevolatilization, coal fluidity, 222 general description, 1 maceral groups, 336 molecule, 279, 294, 304 reactivity, 213 softening, 211 standard research, 3 standard suites, 335-336 structures, 218

aliphatic ether linkages, 218 oxygen-containing, 218

uses, 1 Coal classification, 5

alternate methods, 9, 38 anthracite, 9 bituminous coal, 9 lignite, 8 subbituminous coal, 8

Coal depolymerization, 118 Coal depositional periods, 39, 41

plant evolution, 40 Coal devolatilization, 96, 168 Coal extracts, 133, 192 Coal geology, 37, 38 Coal macerals, 39,41,54,57,69

fluorogeochemical model, 59 huminite, 41, 42, 44 inertinite, 53, 56 liptinite, 45, 69 maceral effects on coal reactivity, 57,

58 organic sulfur components, 59 precursors, 41, 44, 46 structural differences, 57, 58, 59 vitrinite, 41, 42, 44, 62, 69

Coal maturation, 116 Coal oxidation, 168 Coal properties, 11, 12

mechanical properites, 65 standard research coals, 32,33, 34

INDEX

Coal properties (cont.) techniques of coal examination, 14 worldwide coals, 25

Coal reflectance, 10 Coal structural models, 64, 69 Coal sweJling, 154 Coalification, 5,37,55

biomarker transformation, 50 colloidal process, 53 continuous evolutionary stages, 55 high-volatile to medium-volatile coal tran-

sition,57 inorganic content, 55, 73 models, 56 peat to lignite transition, 53 pressure, 55 reactions and chemistry, 55, 56 subbituminous to bituminous coal transi-

tion,56 wood coalification, 52

Collodial suspensions, 119 Combined thermogravimetry/MS, 96 Computer-controlled scanning electron mi-

croscopy (CCSEM), 169-172, 176, 177, 180, 184, 185, 196,202

Coordinated metal-ions, 176 Coordination number, 81, 188 Correct aromaticity, 80, 87 Correlated characterization of selected coals,

196 Correlated variance, 97 Corrosional effects, 185 Covalent linking groups, 119 CPO devolatilization model: see Oevolatiliza-

tion models CP/MAS NMR, 78-80, 82, 86,94,192 Cross-link density, 154 CroSS-linking, 77, 90,152,154-157,189,

190,205 Cross links, 90, 156, 189 Cross-linking sites, 93 CrystaJline structure, 348 Curie-point py-EIMS, 115 Curie-pointpy-GC/MS, 99, 117, 193 Curie-point pyrolysis MS, 96, 98, 99, 115,

117,193 Curie-point temperature, 96 Cyclopentaphenanthrenes, 114 Cyclophenanthrenes, 106, 114, 115

Page 57: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

INDEX

2-D dipolar dephasing, 192 2-D experiments, 94 3-D NMR imaging technique, 94 Dehydrogenation, 90 Demineralized coal, 157 Demonstrated reserve base (DRB), 6 Densification, 353 Density, 157, 161, 168,201 Density measurements, 162 Depolymerization, 120, 148, 189, 216-218 Depositional environment, 95, 98, 117 Desorption, 95 Devolatilization, coal, 87, 157

bond scission, 218-219, 278, 282 coal rank: effects, 210 coal structure effects, 209, 259-260 crosslinking, 220-222, 277, 292, 307 depolymerization reactions, 216 extrac~,213,220,288

experimental results, 214-216 uncertainties, 215

factors affecting, 212, 214 fixed bed, 214 fluid bed, 212, 214 gas species, 212, 241-247, 253 gas yields, 211 heat transport, 226-228 heating rate, effects of, 212,215,287,299 kinetic rates, 239, 249, 252 mass spectroscopy (MS), 228-237 mass transport, 225-226 mechanisms, 210, 263, 265-268, 270,

292, 304-305 metaplast, 220 models: see Devolatilization models nitrogen structures, 219-220 oxygen structures, 218-219, 221 particle size, 210 particle temperature measurement, 215 phases, 212, 229 pressure, effects of, 221, 271,287,315 processes, 214 products,219,220,224,228-252

carbon dioxide, 219 carbon monoxide, 219 nitrogen, 219 measurement techniques, 228-252 sulfur, 219, 220

Devolatilization, coal (cont.) radicals, role of, 260 rate measurements, 252-254 reactions, 216-218, 266-267

crosslinking, 220-224, 264 global, 269-270 primary, 279 secondary, 224,225, 279

qualitative features, 211 reviews, 209-210 Rock Eval, 251 sequences of, 265 softening coals, 213 stages

metaplast, 213, 284 primary, 213 secondary, 213,278

sulfur structures, 219 tar

465

empirical correlations, 268-273 molecular weight, 284, 287,314 pressure dependence on yields, 272 rank: dependence of yields, 270-271 yields, 211, 213, 241-248, 301, 312

TG-FfIR, 237-250 trends, 212 vapor pressure, 221, 283, 296-298, 309-

310,320 volatiles combustion, 224-225

Devolatilization models approaches,254 chemical, 257 empirical, 268

coal structure effects, 268 correlation basis, 268-272 pressure effects, 268

functional group (FG), 247, 263, 278 elementary reactions, 264, 266-267 kinetic parameters, 264, 266-267 principles, 263 state variables, 263-264 thermal reactions, 264, 266-267

global,258 kinetic, 258 network, 257, 261, 273

comparison, 316-321 CPD,303-316 FGIDVC, 250, 277-289 FLASHCHAIN, 289-303

Page 58: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

466

Devolatilization models (cont.) phenomenological, 257, 265 reviews, 258

Devolatilized chars, 93 Devolatilized coal products, 95, 117 Dienes, 98 Dietz coal, 117, 148, 153, 154, 165, 168,

185,192,196,203 Dihydroxybenzenes, 98, 99,105,114,115,

117,204,207 Dipolar dephasing (DD), 78, 79, 80, 86, 94

DDIMAS,79 Dipo1e-dipole interactions, 79, 119, 188 Direct probe py-FIMS, 96 Direct probe pyrolysis, 95 Discriminant analysis, 95 Distillation, 95 Distribution of oxygen groups, 83 DOE (Department of Energy) Coal Sample

Bank, 16 DTG system, 111 Dubinin-Polyani, 159 Dynamic angle spinning, 94 Dynamic nuclear polarization, 79

Early cross-linking, 91 Early devo1atilized products, 118 Electron ionization, 95 Electronic environments, 79 Equilibrium flash distillation, 296 Esters, 139 Ethanolamine, 119 Extraction and depolymerization, 119

fa' 80, 82 faB, 80, 82 faC, 80, 83 faR, 80, 82, 86 faN, 80, 82 faP, 80, 83, 86 fas, 80, 83, 86 fa', 82 fa!> 80, 83 fat", 80, 83 faiR, 80, 83 falo, 80, 83 Factor analysis, 95 Factor loading matrix, 97

INDEX

Fatty acids, 118, 137 FGIDVC devolatilization model: see Devola-

tilization models FGP correlation, 310 Field ionization, 95, 96 Fl mass spectra, 97 FLASHCHAIN devolatilization model: see

Devolatilization models Flat-flame burner, 161 Flory-Rehner equation, 154, 190 Fluidity, 211, 225, 285, 349 Fluoranthrenes, 114,115 Fluorenes, 114, 142 Fly ash, 352

formation, 185 Fossil

biomarker, 113 lignins, 106

Fouling, 176 Fractionation, 121 Fragmentation, 96, 352, 388 FTIR,78, 117, 149, 153, 154, 156, 189-191,

193,197,202,203,205,206,228, 237,242,263,281

Functional group distribution, 90 Functional groups, 93, 151 Furnace pyrolysis, 95 Fusinite, 86, 98

Gas chromatography, 118, 139 Gasification, 352-353

rates, 158 Gas release, 90, 93 GC, 122, 127

GClCIMS,99 GClEIMS,99 GC-MS, 122, 127

Graphitization, 353 Gel permeation chromatography (GPe),

121 Gelification, 53 Glass transition temperature, 65 Guaiacyl units, 106 Gulf Province, 98, 99

IHNMR,78 Helium, 163 Helium pycnometry, 158 163

Page 59: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

INDEX

High-pressure liquid chromatography (HPLC),122

High-resolution chromatography, 189 High-resolution MS, 193 High-volatile bituminous coals, 85; see also

Coals Hopanes, 204 HPLC,122 HT-BCD depolymerization, 120, 121, 137,

139, 142, 145, 147, 148, 189, 193, 200

Humic acid origins of coal, 45, 50, 52, 56 Hydroaromatic

compounds, 115 ring structures, 90

Hydrogen aromaticity, 93 bonding, 119, 154

Hydropyrolysis, 209 Hydroxybenzenes, 106

Ignition (of coal, char), 365-370 characteristic index, 369 coal structure effects, 367-370

HlC ratio, 367-368 mineral matter, 368

correlation, 368 definition, 366-367 heating rate effects, 366 heterogeneous, 365 homogeneous, 365,369 particle size effects, 366-367 primary, 365 secondary, 365

Illinois #6 coal, 86, 87, 90, 93, 94, 106, 112, 114, 127, 133, 134, 135, 137, 139, 148,152,156,166,167,177,180, 192,193,202,206

Illinois #6 chars, 90, 91, 93 Illinois Basin Coal Sample Program, 23 Illite, 169, 177 Inorganic geochemistry, 169 Intact bridges, 81 Interior province coals, 170 Ion-exchange sites, 176 Ion trap detector, 95 Isoprenoids, 127 Isothermal gas adsorption, 158 Isotropic shielding, 79

Kaolinite, 169, 177 Knudsen diffusion, 354-381

467

Labile bridges, 282, 287, 291, 293, 296, 311 Laser pyrolysis, 95 Lattice structure, 273-277, 306 Lewiston-Stockton coal, 106, 112, 114, 115,

122, 127, 133, 135, 148, 149, 152, 193

Light gases, 93 Light hydrocarbons, 90 Lignin, input into coal, 44, 51, 54, 70 Lignites, 98 Liquefaction, 213 Long-chain fatty acid biomarkers, 204 Low-voltage ElMS, 115 Low-voltage electron ionization, 96 Lower Wilcox lignite, 117, 148, 153, 154,

168,185,192,196,203

Macerals, 78, 94, 95, 170 Maceral concentrates, 98 Macromolecular network, 77, 104, 115-117,

119, 127, 142 Macromolecular structure, 61, 86, 147, 149,

154, 190 association of molecular and macro-

molecular phases, 68 chain entanglements, 65 chemical structure, 62 cross-link density, 63, 64 glass transition, 65 macromolecular phase, 44, 50, 54, 56, 62,

63,64 molecular phase, 48, 56, 65, 66, 68 physical and chemical interactions, 62,

64,65,74 Macromolecule, 260, 279, 290, 294, 304 Maillard reaction, 53 Macropore volume, 165 Macropores, 157 Magic angle

hopping, 94 spinning, MAS, 79, 86

Magnetic field, 78 Magnetic moments of spin, 78 Magnetic sector instruments, 95 Mass loss, 90, 91 Mass range, 96

Page 60: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

468

Mass release, 87, 90, 93 Mass spectrometry (MS), 122, 228-230

TO-ElMS, 228, 237 TO-MS, 229-230 py-FIMS, 228-230 py-LVMS, 231-232 py-MS, 228-230, 235 py-TLGC/MS, 229, 233 py-TQMS, 251, 257

Mass spectroscopy, 118 Mass transfer effects, 96 Melanoidin material in coal, 53 Mercury intrusion, 158, 163 Mercury porosimetry, 158, 164, 165 Mesopores, 157, 159 Methoxyphenols, 99 Micropores, 157, 159, 161, 163, 164 Micropososity, 158 Mild depolymerization, 119 Mild hydrotreatrnent, 118, 120 Mineral

analysis, 95 associations, 177 grains, 169, 180 matter, 78, 93, 95, 163, 168 matter characterization, 190 matter transformations, 184

Mobile coal components, 66, 68 Mobile phase, 90, 98, 115-119, 142, 147, 148 Molecular ions, 96 Molecular models of coal structure, 64, 69

Oiven model, 71 Huttinger and Michenfelder model, 73 liquefaction reactivity, 73 model features, 70 molecular dynamics, 74 pyrolytic reactivity, 71, 73 Shinn model, 73 Solomon model, 71 Spiro model, 73 structural parameters, 70 three-dimensional models, 73 Wiser model, 71

Molecular weight, 80, 85 Molecular weight distribution, 127 Monte Carlo simulation, 274, 294 Moretanes, 204 Multivariate data analysis, 94, 95, 97, 98, 117 Multivariate factor analysis, 97

N-alkanes, 124-127, 139, 142,204 N-fattyacids, 105, 113 N2

adsorption, 164 surface areas, 161

INDEX

Napthalenes, 98, 114, 115, 118, 127, 142,205 Napthols, 106 Neutral polycyclic aromatic hydrocarbons,

121, 127 Neutron activation analysis, 181 New Mexico Blue, 93, 94 Nitrogen adsorption, 158, 165 Nitrogen and sulfur-containing aromatic hy­

drocarbons, 121, 134 NMR, 122, 137, 153, 156, 165, 191,202,

223,263,287,309 carbon structural parameters, 80 relaxation, 164 spin-relaxation measurements, 158, 160 spectroscopy, 118

Northern Great Plains Province, 98 Number-average molecular weight, 102, 154

between cross-links, 154, 190 Nuclear spin states, 79

O-CH3,80 Oil generation from coal, 56, 68 Open-tubular gas chromatography, 118 Orthogonal factors, 97 Oxidation: see Char oxidation Oxidation rates, 157 Oxides, 176 Oxidized coals, 157 Oxygen containing

compounds, 99 groups, 93

Oxygen functional groups, 81

Parent coal, 93 Pattern recognition, 94 Peat formation, 37,39,43,50

peat diagenesis, 51, 52 sulfur geochemistry, 40

Penn State Coal Sample Bank, 11 coal data base, 15 DOE coal sample bank, 16

Pentacyclic triterpenes, 127, 133,204 Pentacyclic triterpenoid derivatives, 127,204 Percolation, 275, 305, 388

Page 61: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

INDEX

Petrography, 59 Blind Canyon coal bed, 61 Upper Freeport coal bed, 59

Petroleum coke, 334, 341, 362 Petrology, 95 Phenantlrrene, 127, 133,142,205 Phenols, 98, 99,114,115,117,145,204,207 Phytane, 127 Pittsburgh #8 coal, 93, 94, 99, 106, 112, 114-

116, 125, 127, 133-135, 148, 149, 155, 156, 165, 168, 180, 192, 193, 196,198,204,207

Pittsburgh Energy Technology Center (PETC),23

PETC-DU-AR&TD coal sample suite, 23 Plant cuticles, 95 Plastometry, 287 Pocahontas #3 coal, 83, 85,93,94,99, 107,

112,114,115,123,125-127,134, 137, 139, 148, 168, 192, 193, 196, 198,202,205

Polar fractions, 145 Polyaromatic hydrocarbons, 106 Polycondensed aromatic hydrocarbons, 81 Polycyclic aromatic

clusters, 118 hydrocarbons, 142

Pores 169 diameter, 167 size, 93 structures, 157, 158, 166, 168 tree model, 382, 384-385 volume, 158, 16;4, 165,201 volume distribution, 159, 161, 165

Porosity, 157, 161,201 Pristane, 127, 135 Py-FI, 106, III Py-FIMS, 96, 97, 99,102, 106, 112, 116,

117,188,193,202 Py-GC,99 Py-~S, 78,94,96-99,115,153,188,191,

203-207 Py-~S techniques, 95 Pyridine extracts, 81, 119, 121, 122, 123,

137, 148, 154, 189, 190 Pyrite, 169, 177 Pyrolysis, 77, 91, 93, 94, 152, 156, 157

chars, 86, 93 field ionization ~S, 96

469

Pyrolysis (cont.) gas chromatography/mass spectrometry,

94,99,102 mass spectrometry, 94, 96,117,188 products, 99 technique, 95 See also Devolatilization

Quadrupole, 95 mass spectrometer, 96

Quartz, 169, 177 Quaterphenyls,114

Random pore model, 382-383 Rank,5,7,37 Raoult's law, 296, 298, 309 Reactive surface area, 158, 160 Research coals: see Standard research coals Resinite, 46, 61, 127 Resinite-rich coal, 127 Resins, 95 Ring dehydrogenation, 93 Rocky ~ountain Coal Province, 97

Scanning electron microscopy point count (SE~PC), 184, 185

Semipreparative chromatography, 118 Shielding tensor components, 86 Side chains, 81, 85, 197 Size-exclusion chromatography (SEC), 121,

122, 127, 146, 148, 149, 189 Slag deposition, 185 Slow magic angle spinning, 94 Sol-gel model of coal formation, 50, 63 Solid-state 13(: NMR spectroscopy, 83 Solvent

extraction, 118, 189,204,205,207,287 swelling and extracts, 64, 67, 78, 154

Soot, 224-225 Spinner-synchronized pulse sequences, 94 Spin-relaxation, 79 Sporinites, 98, 127 Standard research coals, 25

comparison of selected research coals, 30

properties,32,33,35 standard coal selection, 28

Straight -chain fatty alcohols, 139 Structural evolution of char, 86

Page 62: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

470

Structural parameters, 94 Sulfide minerals, 170 Sulfides, 170 Sulfur-containing compounds, 98, 133, 170 Sulfur content, 173 Sulfur input into coal, 40, 44, 59 Supercritical fluids, 119

chromatography, 118, 122, 123, 146, 148 Surface area, 93, 157, 158, 161, 164, 168,201 Surface tension, 159 Swelling, 226, 350

ratio, 154,202,206

Tandem mass spectrometry, 95 Tar, 90, 93,117, 155, 192,211,214

evolution mechanism, 214, 224-226 hydrogen,214,290 yields

pressure effects, 271-272 rank dependence, 2W-211, 270-271 tars, 210-211, 214 volatiles, 211

See also Devolatilization, tar

Tar release, 87, 93 TEM,223 Temperature-programmed desorption,

160 Terpenoid, 135 Tetrahydrofuran, 119, 121, 137, 189, 193,

199 Tetralins, 106, 114 Texas Wilcox lignite, 185, 196 TO-ElMS, 111 TO/LVMS,99 TO/MS, 99 TO low-voltage ElMS, 106 TOA, 241, 250 Thermal degradation, 95 Thermally extractable bitumen, 116 Thermal shrinking, 159 Thermoplasticity, 63, 68, 220-224 THF extracted, 148 TIl, 115, 116 Time-resolved mode, 96 Time-resolved py-MS, 102 TIIIlIJO 116 Tortuosity, 381 Total ion intensities, 106 Total surface area, 158

Triterpenoid aromatization, 116 biomarker material, 127 structures, 113, 118

INDEX

Two-dimensional high-resolution experimen­tal techniques, 94

Unger-Suuberg correlation, 309-310 Upper Freeport coal, 94, 106, 112-114, 125-

127, 133, 134, 148, 149, 166, 177, 180, 193

Utah Blind Canyon coal, 83, 85; see also Blind Canyon coal

Vacuum py-MS, 96 Vacuum TG/MS, 193 Vacuum thermogravimetry/MS, 99,115,117 VARDIA technique, 97, 98,104 Variable-angle sample spinning 01 ASS), 79,

86,94 Variance diagram, 97 Vitrinite, 95, 98 Volatiles

bonds aliphatic ether linkages, 218 aliphatic hydrocarbon bridges,

217 cleavage, 216-219 crosslinking, 220-224 phenyl-C bonds, 218

combustion, 224-225 significant in, 210

products, 249, 252 rank dependence, 253

reaction activation energies, 216-218 rates, 216, 252 sequence, 216-218

transportation, 211-212 Volatiles yield, 86, 87, 211

coal rank effects, 211 Volumetric-swelling-ratio, 197

Western coals provinces, 170 Wilcox coal, 176; see also Lower Wilcox lig­

nite Wyodak subbituminous coal, 84, 110, 112,

115, 125, 127, 134, 135, 148, 153, 155,156,166,168,193,196,203

Page 63: ACRONYMS - Springer978-1-4899-1322-7/1.pdf · ACRONYMS AC/Cl ACERC ANL amu,AMU AR&TD ASA ASTM ATP BCD BD BCHB BET BYU BZL 13C CAMD CCSEM CI ... atomic mass units Advanced Research

INDEX

XANES, 173 Xb,80 129xe chemical shift, 166 12~ NMR spectroscopy, 158, 166

XPS, 174 X-ray analysis, 170

diffraction (XRO), 169, 173, 185 fluorescence analysis (XRFA), 169

471